新人必看 单片机定时器应用实例解析
51单片机定时器的使用和详细讲解__特别是定时器2

2021/10/10
1
章节概述 很棒
8.1 概述 8.2 定时器T0和T1的结构 8.3 定时器工作模式 8.4 定时器T2
2021/10/10
2
8.1 概述
定时器是单片机的重要功能模块之一,在检测、 控制领域有广泛应用。
定时器常用作定时时钟,以实现定时检测、定 时响应、定时控制,并且可用于产生ms宽的 脉冲信号,驱动步进电机
在工作模式T 2中,(2定5 时-X 器6) 的T定c时y时间由下式确定:
只有T0可工 作于此模式
2021/10/10
21
模式2的结构图如图8-6所示。
8位加法 计数器
2021/10/10
图8-6 方式2结构图
初值寄 存器
22
4.工作模式3 当T0M(T1M)=11时定时器设定为工作模式3,只有定
Tcy
2021/10/10
8
2.模式寄存器(TMOD)
TMOD用来选择定时器0、1的工作模式,低4位 用于定时器0,高4位用于定时器1,其组成如图 8-2所示。
T1
T0
00:模式0
方式 01:模式1 方式
选择
10:模式2 11:模式3
选择
2021/10/10
图8-2 模式寄存器组成
9
3.控制寄存器(TCON)
18
2.工作模式1 T0M(T1M)=01时定时器设定为工作模式1,此时
定时器0(定时器1)被设置为16位定时器。此时 TH0、TL0都是8位加法计数器。其他与工作方式0 相同。 定时器的定时时间
T(65-5X)3T 6cy
计数初始值
计数 2n 初 -定值 时时 (此 间 n 处 1)6 Tcy
单片机定时器的使用

由于TL0既能作定时器也能作计数器使用,而 TH0只能作定时器使用而不能作计数器使用,因此在 方式3模式下,定时/计数器0可以构成二个定时器或 者一个定时器和一个计数器。
如果定时/计数器0工作于工作方式3,那么定时/ 计数器1的工作方式就不可避免受到一定的限制,因 为自己的一些控制位已被定时/计数器借用,只能工 作在方式0、方式1或方式2下,如果设置T1工作在方 式3,则T1停止工作,相当于其他方式时令TR1=0。
在工业检测、控制中,很多场合都要用到计数或者定 时功能。例如对外部脉冲进行计数、产生精确的定时时间、 作串行口的波特率发声器等。MCS-51单片机内部有两个 可编程的定时器/计数器,以满足这方面的需要。它们具 有 两种工作模数(计数器模式、 定时器模式)和四种工 作方式( 方式0、方式1、方式2、方式3),其控制字均 在相应的特殊功能寄存器(SFR)中,通过对它的SFR的 编程,可以方便的选择工作模数和工作方式。
C/T位:计数器模式和定时器模式的选择位。
C/T=0,为定时器模式,内部计数器对晶振脉冲12分频 后的脉冲计数,该脉冲周期等于机器周期,所以可以理 解为对机器周期进行计数。从计数值可以求得计数的时 间,所以称为定时器模式。
C/T=1,为计数器模式,计数器对外部输入引脚T0 (P3.4)或T1(P3.5)的外部脉冲(负跳变)计数,允许 的最高计数频率为晶振频率的1/24。
TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0
TF0、TF1分别是定时器/计数器T0、 T1 的溢出标志位, 加法计数器计满溢出时置 1, 申请中断, 在中断响应后自动复 0。TF产生的中断申请是否被接受, 还需要由中断是否开放 来决定。
TR1、TR0 分别是定时器 /计数器T1、 T0 的运行控制位, 通过软件置 1 后, 定时器 /计数器才开始工作, 在系统复位时 被清 0。
实例(8)-定时器

实验代码如下: #include "sys.h"
//包含系统信息和延时函数
2
#include "SMG.h"
嵌入式学习——51 单片机篇 //包含数码管驱动
ET0=1; EA=1;
//T0 中断使能 //总中断使能
}
/************************************************************************* 定时器 0 中断处理函数
**************************************************************************/ void Time0_ISR() interrupt 1 using 1 {
嵌入式学习——51 单片机篇
实验(8) 定时器
一、实验目的:
1、 熟悉与定时器相关的寄存器。 2、 掌握定时器的工作原理。 3、 编程实现利用定时器控制数码管显示。
二、实验原理:
2.1、 51 单片机的定时器
传统 51 单片机有两个 16 位定时器,分别是定时器 0 和定时器 1。两个 16 位定时器/计 数器 T0 和 T1 都具有计数方式和定时方式两种工作方式。对每个定时器/计数器(T0 和 T1), 在特殊功能寄存器 TMOD 中都有一个控制位 C/T 来选择 T0 或 T1 为定时器计数器。定时器 /计数器的核心部件是一个加法计数器,其本质是对脉冲进行计数,只是计数脉冲来源不同。 如果计数脉冲来自系统时钟,则为定时方式,此时定时器/计数器每 12 个时钟得到一个计断 脉冲,计数值加 1;如果计数脉冲来自单片机外部引脚(T0 为 P3.4,T1 为 P3.5),则为计数 方式,管脚上每来一个脉冲计数值加 1。
单片机定时器的使用

单片机定时器的使用在单片机的世界里,定时器就像是一个精准的时间管家,默默为各种任务提供准确的时间控制。
无论是在简单的系统时钟,还是复杂的实时控制应用中,单片机定时器都发挥着不可或缺的作用。
首先,我们来了解一下单片机定时器是什么。
简单来说,它是单片机内部的一个硬件模块,能够按照设定的时间间隔产生中断或者触发特定的事件。
这就好比我们生活中的闹钟,到了设定的时间就会响铃提醒我们。
那么,单片机定时器是如何工作的呢?它通常基于一个时钟源,这个时钟源可以是内部的振荡器,也可以是外部的时钟信号。
通过对定时器相关寄存器的配置,我们可以设定定时器的计数模式、初始值、预分频系数等参数。
比如说,我们可以选择定时器是向上计数还是向下计数,是每隔一段时间产生一次中断,还是在计数值达到某个特定值时触发事件。
在实际应用中,单片机定时器有多种用途。
其中一个常见的应用就是实现精确的延时。
在很多情况下,我们需要让单片机在执行完一段代码后等待一段时间再进行下一步操作。
如果单纯依靠软件的循环来实现延时,不仅会占用大量的CPU 资源,而且延时的精度也很难保证。
而使用定时器,我们可以轻松地实现精确的毫秒甚至微秒级别的延时,同时让 CPU 去处理其他任务。
另一个重要的应用是产生周期性的信号。
比如,控制一个 LED 灯以一定的频率闪烁,或者驱动一个电机以固定的速度转动。
通过设置定时器的周期和占空比,我们可以精确地控制这些信号的频率和时长。
再比如,在通信领域中,定时器可以用于实现数据的定时发送和接收。
确保数据按照规定的时间间隔进行传输,保证通信的稳定性和可靠性。
要使用单片机定时器,我们首先需要对相关的寄存器进行初始化配置。
不同型号的单片机,其定时器的寄存器和配置方式可能会有所不同,但基本的原理是相通的。
以常见的 8 位单片机为例,我们通常需要设置以下几个关键的参数:一是定时器的工作模式。
常见的模式有定时模式和计数模式。
在定时模式下,定时器根据时钟源进行定时计数;在计数模式下,定时器可以对外部脉冲进行计数。
单片机的时序控制与定时器计数器应用案例分析

单片机的时序控制与定时器计数器应用案例分析单片机是一种嵌入式微处理器系统,通常用于控制和处理电子设备中的信号和数据。
在单片机的应用中,时序控制和定时器计数器是非常重要的功能模块,用于实现各种复杂的控制和计时任务。
本文将从时序控制与定时器计数器的基本原理入手,通过具体案例分析来展示它们在单片机应用中的重要性和实际应用价值。
## 时序控制的基本原理时序控制是指按照一定的时间序列来控制设备或系统的工作顺序和时间间隔。
在单片机中,时序控制通常通过定时器和计数器来实现。
定时器用来产生定时脉冲,计数器则用来计数这些脉冲的数量,从而控制设备的工作时序。
实现时序控制的关键在于合理设置定时器的计数值和时钟源,以确保生成的定时脉冲符合实际需求。
在单片机的程序中,可以通过配置定时器寄存器来实现定时器的初始化和工作参数设置,从而实现精确的时序控制。
## 定时器计数器的应用案例分析以STC单片机为例,我们来看一个简单的定时器计数器的应用案例:LED闪烁控制。
假设我们要让一个LED灯每隔一秒闪烁一次,我们可以通过定时器计数器来实现这个功能。
首先,我们需要配置定时器的计数值和时钟源,使其产生1秒的定时脉冲。
然后,在定时器中断服务程序中,每当定时器溢出时,我们就将LED的状态取反,从而实现LED的闪烁控制。
以下是一个示例代码:```c#include <reg51.h>sbit LED = P1^0;void timer_init(){TMOD = 0x01; // 定时器0工作在模式1TH0 = 0x3C; // 定时器初值高位TL0 = 0xB0; // 定时器初值低位ET0 = 1; // 允许定时器0中断TR0 = 1; // 启动定时器0EA = 1; // 允许中断}void timer0_isr() interrupt 1{static bit led_status = 0;led_status = ~led_status;LED = led_status;}void main(){timer_init();while(1);}```在上面的代码中,我们通过定时器0的计时溢出中断来控制LED的状态,从而实现LED的闪烁控制。
stc32g12k128定时器0的用法范例

stc32g12k128定时器0的用法范例【stc32g12k128定时器0的用法范例】一、概述stc32g12k128是一款功能强大的单片机芯片,内置了多个定时器模块,其中定时器0作为其中之一的模块,在实际应用中有着广泛的用途。
二、基本原理定时器0是stc32g12k128中一个重要的定时器模块,它的主要作用是产生精确的定时信号,并可以根据需求进行配置和使用。
在实际应用中,定时器0常常被用来控制脉冲信号的产生、定时触发某些事件以及测量时间等。
三、配置方法1. 初始化定时器0在使用定时器0之前,首先需要对其进行初始化配置。
通过编程设置寄存器的值来配置定时器0的工作模式、计数器初值、定时器中断使能等,以确保其能够按照预期工作。
2. 设定工作模式定时器0支持多种工作模式,包括定时器模式和计数器模式。
根据具体需求,可以通过设置相关寄存器来选择定时器0的工作模式,并进行相应的参数设置。
3. 设置定时器中断定时器中断可以在定时器计数满足一定条件时触发,通过设置相应的中断使能位和中断优先级,可以实现定时器定时触发中断的功能。
四、使用范例以下是一个简单的使用范例,演示了如何使用stc32g12k128的定时器0模块来产生一定时间间隔的脉冲信号。
```c#include <stc89c.h>void timer0_init(){// 设置定时器0为工作模式1,16位定时器TMOD |= 0x01;TL0 = 0x00; // 初始值设置为0TH0 = 0x00;// 定时器0中断使能ET0 = 1;EA = 1; // 总中断使能TR0 = 1; // 启动定时器0}void timer0_isr() interrupt 1 {// 每次定时器0计数溢出时触发中断// 在中断服务程序中可以编写产生脉冲信号的相关操作}void main(){timer0_init(); // 初始化定时器0while(1){// 主函数中可以进行其他操作}}```通过上述范例,我们可以看到定时器0的基本使用方法,以及如何通过定时器中断来实现脉冲信号的生成。
stc32g12k128定时器0的用法范例

【文章标题】:STC32G12K128定时器0的用法范例及应用技巧1. 概述在STC32G12K128单片机中,定时器0是一个非常重要的功能模块,能够对时间进行精准的计量和控制。
本文将介绍STC32G12K128定时器0的用法范例和应用技巧,帮助读者更好地理解和应用这一功能模块。
2. 定时器0的基本原理和功能在STC32G12K128单片机中,定时器0是一个16位的定时/计数器,可以用于定时和计数。
它可以通过不同的工作模式和定时器0的两个寄存器TH0和TL0来实现各种不同的功能,包括定时、计数、脉冲测量等。
3. 定时器0的使用方法定时器0的使用方法一般包括以下几个步骤:3.1 设定工作模式:定时器0可以工作在13种不同的工作模式中,包括定时器模式、脉冲计数器模式、脉冲宽度调制模式等。
3.2 设定定时器初值:根据需要设定TH0和TL0的初值,用于设定定时器的定时时间。
3.3 启动定时器0:通过设置相应的控制寄存器,启动定时器0开始计时和工作。
3.4 处理中断和输出:根据定时器0的工作状态,处理定时器0的中断请求和输出。
4. STC32G12K128定时器0的应用技巧除了基本的定时和计数功能,STC32G12K128定时器0还可以应用于许多实际的场景中,如:4.1 脉冲宽度调制(PWM):通过定时器0和IO口相结合,可以实现PWM波形的输出,用于控制电机、LED亮度调节等场景。
4.2 脉冲计数和频率测量:通过定时器0可以实现对外部信号的计数和频率测量,用于脉冲信号的采集和处理。
4.3 定时器中断和控制:定时器0可以通过中断的方式,实现定时执行某些特定的操作,如定时采样、数据处理等。
5. 个人观点和理解定时器0作为STC32G12K128单片机中的重要功能模块,具有非常广泛的应用场景和重要的意义。
在实际的应用中,合理地使用定时器0可以提高系统的稳定性、精度和可靠性,为实际的项目开发和应用提供了重要的支持。
单片机定时器实用方法总结

单片机定时器实用方法总结在单片机的应用中,定时器是一种常用的功能模块,它能够精确地计时和定时触发其他操作。
本文将总结一些单片机定时器的实用方法,帮助读者更好地应用定时器功能。
一、定时器的基本原理定时器是单片机中用于计时的硬件模块,通过计算定时器的计数值可以得到一段时间的长度。
定时器通常由一个计数器部分和一个控制逻辑部分组成。
计数器用于累加时钟脉冲的数量,控制逻辑部分负责设置计数器的初始值、计时模式和中断触发条件等。
二、定时器的控制寄存器在使用定时器之前,需要配置定时器的控制寄存器。
不同的单片机厂商和型号的定时器可能设置略有不同,但通常包含以下几个方面的设置:1. 定时器模式选择:定时器可以采用不同的计数模式,如定时模式、计时模式、脉宽调制模式等。
具体选择何种模式要根据实际需求来定。
2. 工作模式选择:定时器可以选择工作在单次触发模式还是连续触发模式。
单次触发模式下,定时器完成一次定时后会停止计数;连续触发模式下,定时器会自动重新开始新的计时。
3. 中断触发条件设置:定时器可以配置中断触发条件,即定时器计数到达某一个值时产生中断请求。
这个值可以通过设置计数器的初始值和定时器的重装载值来实现。
三、定时器的应用案例以下是几个使用单片机定时器的实用案例,供读者参考:1. 脉冲计数器在需要计算脉冲个数的应用场景中,可以使用定时器来实现脉冲计数的功能。
通过设置定时器的工作模式为计时模式,计数器每收到一个脉冲信号就加1,从而实现对脉冲个数的精确计数。
2. 延时功能定时器可以用于实现延时功能。
通过设置定时器的工作模式和计时值,可以精确控制延时的时间长度。
例如,可以使用定时器进行毫秒级别的延时,或者用定时器实现微秒级别的精确延时。
3. PWM输出控制定时器常常用于控制PWM(脉宽调制)信号的输出。
通过设置定时器的工作模式为PWM模式,并根据需要设定脉宽和频率参数,可以实现对PWM信号的输出控制。
这在一些需要模拟控制信号的应用中非常有用,如电机速度控制、LED亮度调节等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人必看单片机定时器应用实例解析
对于刚开始接触单片机定时器知识学习的新人工程师来说,牢固巩固知识基础只是迈出的第一步,更重要的是要结合单片机的设计实例,灵活利用单片机定时器来完成相关的程序设计。
在今天的文章中,我们将会通过一个实际案例,来为大家解析一下单片机定时器在实际应用中的一些设计步骤和技巧。
在本案例中,我们所提出的条件是利用单片机定时器定时50毫秒,使用定时器0,工作方式1模式。
50毫秒一到,即点亮指示灯D1。
按照这一设计要求,我们可以按照下列两个大步骤来进行单片机程序的设置。
我们要做的第一个步骤就是确定定时器0初始化程序。
这一部分的设计是非常重要的,按照单片机的正常使用程序,我们可以从四个方面出发,来进行相应的设置。
第一步是要完成对TMOD的赋值设置,以此来确定T0和T1的工作方式。
在本案例中,我们已经从前文所提及的设计要求上明确了这一方案中需要使用定时器0工作方式,因此这一步的工作就简单了很多。
此时,
TMOD=0X01,因此设置定时器0为工作方式1。
具体设置过程在一些单片机基础教程上已经讲解的非常叙述,因此在本案例的设计过程中,我们不再做过多的赘述。
在完成了对单片机定时器的对TMOD的赋值设置之后,接下来的工作就是精确计算计数初值X,并在得出相应数值后将其按照要求写入TH0、TL0,或写入TH1、TL1。
在本案例中,由于晶振给出的条件为12MHz,所以我们所选取的机器周期Tcy为1ms。
因此,定时器要计数50000个就是50毫秒,。