GE电口速率自协商问题

合集下载

GE电口速率自协商问题(SGMII SERDES)

GE电口速率自协商问题(SGMII SERDES)

GE电口速率自协商问题1、问题描述在某上行扣板的调试过程中,发现上行GE电口与其它GE电口设备对接时,速率都为1000M时,电口可以正常link;但是当与速率强制为100/10M设备对接时,电口不能正确协商,端口link不上。

2、原因分析电口使用已比较成熟,与以前使用过的单板设计架构也没有太大差异,但是为何会出现此问题呢?开始的时候,大家一致认为是软件配置将速率强制成了1000M,但是经过核对,排除了“软件配置问题”。

难道是硬件问题?首先对比一下上个版本的硬件设计,硬件连接如下图:硬件连接图(1)出现问题版本硬件设计,硬件连接如下图:硬件连接图(2)上面的这些接口,都是大家比较熟悉的,硬件设计为了兼容前一版本的上行扣板,在底板上增加了SerDes芯片,使底板出SerDes接口上行。

考虑降成本因素,采用了价格较低TLK1201芯片。

分别分析TLK1201的对外接口。

首先分析SerDes接口,SerDes接口是大家所较熟悉的,“SerDes”接口自协商大家看来是没有任何问题,但是学习了一下“SerDes”接口,却发现和我们平时的理解有些差异。

查阅bcm5464芯片资料,描述如下:SerDes: 1000 Mbps operation。

The SerDes interface shares the same differential data pin as the SGMII interface. The BCM5464S can act as a 1-GHz。

media converter by both supporting SerDes fiber and copper line interfaces simultaneously.很显然SerDes接口仅仅具备1000Mbps数据收发功能,不支持速率的自适应,那么上一版本我们认为的“SerDes”接口是如何进行速率协商的呢?结果发现是我们没有正确的区分速率自协商的。

GE电口速率自协商问题-经典问题解析

GE电口速率自协商问题-经典问题解析

GE电口速率自协商问题案例来源:单板调试关键词:GE电口、自协商1、问题描述在某上行扣板的调试过程中,发现上行GE电口与其它GE电口设备对接时,速率都为1000M时,电口可以正常link;但是当与速率强制为100/10M设备对接时,电口不能正确协商,端口link不上。

2、原因分析电口使用已比较成熟,与以前使用过的单板设计架构也没有太大差异,但是为何会出现此问题呢?开始的时候,大家一致认为是软件配置将速率强制成了1000M,但是经过核对,排除了“软件配置问题”。

难道是硬件问题?首先对比一下上个版本的硬件设计,硬件连接如下图:硬件连接图(1)出现问题版本硬件设计,硬件连接如下图:硬件连接图(2)上面的这些接口,都是大家比较熟悉的,硬件设计为了兼容前一版本的上行扣板,在底板上增加了SerDes芯片,使底板出SerDes接口上行。

考虑降成本因素,采用了价格较低TLK1201芯片。

分别分析TLK1201的对外接口。

首先分析SerDes接口,SerDes接口是大家所较熟悉的,“SerDes”接口自协商大家看来是没有任何问题,但是学习了一下“SerDes”接口,却发现和我们平时的理解有些差异。

查阅bcm5464芯片资料,描述如下:SerDes: 1000 Mbps operation。

The SerDes interface shares the same differential data pin as the SGMII interface. The BCM5464S can act as a 1-GHz。

media converter by both supporting SerDes fiber and copper line interfaces simultaneously.很显然SerDes接口仅仅具备1000Mbps数据收发功能,不支持速率的自适应,那么上一版本我们认为的“SerDes”接口是如何进行速率协商的呢?结果发现是我们没有正确的区分SerDes和SGMII,SGMII接口才是支持10/100/1000M速率自协商的。

端口协商原理与故障排查指南

端口协商原理与故障排查指南

端口协商类故障排查指导2010-8-20福建星网锐捷网络有限公司版权所有侵权必究修订记录目录1电口自协商技术 (4)1.1交换机电口的工作能力 (4)1.2双绞线线序与MIDX (4)1.3自协商原理 (5)1.4自协商注意事项 (7)1.4.1并行检测注意事项 (7)1.4.2交叉线问题 (7)1.4.3千兆电口强制 (8)2光口互联技术 (9)2.1光口互联标准 (9)3经常遇见的故障及处理思路 (10)3.1电口端口互联常见故障 (10)3.1.1端口无法UP (10)3.1.2端口UP但速率、双工不匹配 (11)3.1.3端口UP后不稳定,丢包 (11)3.1.4端口UP后重启后又无法UP (12)3.2光口互联常见故障 (13)3.3光口与电口通过光电转换器互联故障 (14)4端口协商疑难杂症故障处理思路 (15)5端口协商类故障处理案例 (18)5.1S3760和S21电口模块对接强制千兆,无法UP (18)5.2S6806和烽火光传输设备对接端口无法UP (19)1 电口自协商技术1.1 交换机电口的工作能力在基于双绞线的以太网上,可以存在许多种不同的运做模式,在速度上有10M,100M 不等,在双工模式上有全双工和半双工等,如果对每个接入网络的设备进行配置,则必然是一项很繁重的工作,而且不容易维护。

于是,人们提出了自动协商技术来解决这种矛盾。

需要注意的是,自动协商只运行在基于双绞线的以太网上,是一种物理层的概念。

在锐捷的产品,电口具有的能力包括1000BASE-T全双工和半双工模式,100BASE-TX 全双工和半双工模式,以及10BASE-T的全双工和半双工模式;各种速率和模式下,均支持开启流量控制和关闭流量控制,现在的交换机1000M电口基本都支持10M/100M/1000M自协商。

以上技术的双绞线最大传输距离为100M1.2 双绞线线序与MIDX注:“橙白”是指浅橙色,或者白线上有橙色的色点或色条的线缆,绿白、棕白、蓝白亦同直通线(Straight-through):二端都使用相同的线序,通常业界都使用T568B标准;交叉线(Cross-over):一端使用T568A线序,另一端则使用T568B线序;直通线、交叉线主要应用于设备间的互联,在ISO、EIA/TIA等多个标准组织中定义了相应的设备:DTE(Data Terminal Equipment):数据终端设备,又称物理设备,提供或接收数据,如计算机、终端等都包括在内;DCE(Data Communications Equipment):数据通信设备或电路连接设备,提供建立、保持和终止联接的功能,如调制解调器,交换机等。

格林威尔光纤收发器说明书

格林威尔光纤收发器说明书

一、FT3-CFE-AAAHB卡式光纤收发器1.1.110/100M自适应光纤收发器业务盘(FT3-FE)FT3-FE业务盘是GFT2000的插卡式用户盘之一。

主要完成电口以太网到光口以太网的媒质转换。

电口提供10/100M以太网接口,光口100M全双工模式。

1.1.1.1FT3-FE前面板图5-12 FT3-FE面板1.1.1.2指示灯说明1.1.1.3FT3-FE拨码开关FT3-FE的可以通过拨码开关S1对以太网电口进行设置图5-13 拨码开关位置拨码开关含义□AutoEn/ AutoDis 拨到OFF时FT3-FE与连接设备通过自动协商确定速率和全半双工,此时开关2,3位无效。

当AutoEn/ AutoDis 拨到ON时通过2,3位开关确定FT3-FE的速率和全半双工。

□Full/Half设置以太网电接口的全双工□100M/10M设置以太网电接口的速率□Soft/ Hard拨到OFF时以太网电接口由网管软件配置,Soft/ Hard拨到ON时以太网电接口由第1-3位拨码开关配置。

注意:对于非网管型的FT3-FE第4位开关无效,以太网电接口的设置由第1-3位拨码开关配置。

拨码开关速查表1.1.1.4光接口安装FT3-FE的光口有双纤双向工作方式和单纤双向工作方式两种不同的光口,其连接方式略有不同。

双纤双向工作时,采用SC方式,其中,TX:光信号输出口;RX: 光信号输入口。

输入输出光纤不能接反,否则设备无法正常工作。

单纤双向工作时,采用SC直出方式,两端设备均应将光纤连接在标识为“TX”的光接口上,“RX”接口无效。

FT3-FE光接口为SC连接口。

安装时先拧下SC接口上的塑料保护帽,然后按SC接口下标注“TX”和“RX”连接相应的光纤,输入输出光纤不能接反。

光纤接头应保持清洁,否则会引入衰耗,影响设备传输距离。

如果传输光纤接头有污物,可用干净的棉花蘸无水乙醇擦拭。

注:激光对眼睛会造成伤害,安装设备时请不要正视光口和光纤插头。

自协商问题导致局域网电路丢包故障分析

自协商问题导致局域网电路丢包故障分析

自协商问题导致局域网电路丢包故障分析作者:张宜爱王辉刘晓良来源:《科技创新导报》 2012年第29期张宜爱王辉刘晓良(中国联通烟台分公司山东烟台 264000)摘要:本文主要是中国联通烟台分公司解决实际业务开通时遇到的丢包故障。

通过理论基础分析,发现了故障点,最终解决问题。

关键词:自协商全双工半双工中图分类号:T P393.1 文献标识码:A文章编号:1674-098X(2012)10(b)-0054-011 概述烟台日报社新开至海阳日报社一条百兆SDH 电路,电路开通后一直出现丢包现象。

2 网络拓扑(见图1)3 故障现象考虑可能是中间某一段速率、双工匹配的问题,发现市日报社的千兆电口交换机是自适应模式,而光收发器是强制百兆模式。

将交换机的千兆电口改为强制百兆全双工后问题解决。

4 原因分析设备一个设为自适应一个设为了强制百兆,导致自适应的设备协商成了半双工状态。

为什么会协商成半双工状态,以及为什么双工不匹配就会导致丢包?下面详细解释一下:以太网拥有自协商(Au t o-Ne got i at ion)能力,但是经常出现这样的问题:当一端打开自协商,另一端关闭自协商的情况下,协商结果和我们期望的不同。

例如:连接好的A、B 两个端口。

当A端口打开自协商,B 端口关闭自协商且配置为10 0 M 全双工时,在A 口得到的协商结果是10 0 M 半双工。

而我们一般希望A 口也协商成B 端口的最大能力,即10 0 M 全双工。

自协商实际上我们可以把它看作成一种主动地协商方式, 具有这种功能的设备会主动与对方协商, 并且等待对端返回协商结果, 它不仅能够协商两端的工作速度是10M , 还是10 0M 还是10 0 0M , 而且还可以协商两端工作的双工方式是半双工还是全双工。

自协商通过和对端交换一种F L P(Fa s t L i n k Plu s e) 的特殊Fr ame,里面包含了自己这端可以支持的工作组合方式( 速度/ 双工方式), 对端收到之后和自己可以支持的工作组合方式相比较选择一种最佳的工作方式。

自协商浅析

自协商浅析

网口自协商以太网相信大家不会陌生,因为以太网是当今现有局域网采用的最通用的通信协议标准,使用非常广泛。

有一定网络知识的朋友,可能会知道以太网有半双工和全双工两种工作模式,而且全双工模式比半双工模式要好。

那么这两种模式具体有什么区别呢?以太网设备之间的双工模式又是如何进行协商的呢?下面为大家详细介绍。

一、全双工和半双工的概念1、全双工(Full Duplex)是在微处理器与外围设备之间采用发送线和接受线各自独立的方法,可以使数据在两个方向上同时进行传送操作。

指在发送数据的同时也能够接收数据,两者同步进行,这好像我们平时打电话一样,说话的同时也能够听到对方的声音。

2、半双工(Half Duplex)所谓半双工就是指一个时间段内只有一个动作发生,举个简单例子,一条窄窄的马路,同时只能有一辆车通过,当目前有两量车对开,这种情况下就只能一辆先过,等到头儿后另一辆再开,这个例子就形象的说明了半双工的原理。

早期的对讲机、以及早期集线器等设备都是基于半双工的产品。

随着技术的不断进步,最近10年制造的网卡、交换机、路由器都支持全双工模式。

半双工的网络设备已经逐渐退出历史舞台。

二、全双工和半双工以太网的特点1、半双工以太网1)任意时刻只能接收数据或者发送数据。

2)采用CSMA/CD访问机制。

3)有最大传输距离的限制。

2、全双工以太网1)同一时刻可以接收和发送数据。

2)传输数据帧的效率大大提高,最大吞吐量达到双倍速率。

3)全双工从根本上解决了以太网的冲突问题,以太网从此告别CSMA/CD。

4)消除了半双工的物理距离限制。

三、以太网的自动协商1、自动协商的目的最早的以太网都是10M半双工的,所以需要CSMA/CD等一系列机制保证系统的稳定性。

随着技术的发展,出现了全双工,接着又出现了100M,以太网的性能大大改善。

但是随之而来的问题是:如何保证原有以太网络和新以太网的兼容?于是,提出了自动协商技术来解决这种矛盾。

自动协商的主要功能就是使物理链路两端的设备通过交互信息自动选择同样的工作参数。

GE电口速率自协商问题(SGMII SERDES)

GE电口速率自协商问题(SGMII SERDES)

GE电口速率自协商问题1、问题描述在某上行扣板的调试过程中,发现上行GE电口与其它GE电口设备对接时,速率都为1000M时,电口可以正常link;但是当与速率强制为100/10M设备对接时,电口不能正确协商,端口link不上。

2、原因分析电口使用已比较成熟,与以前使用过的单板设计架构也没有太大差异,但是为何会出现此问题呢?开始的时候,大家一致认为是软件配置将速率强制成了1000M,但是经过核对,排除了“软件配置问题”。

难道是硬件问题?首先对比一下上个版本的硬件设计,硬件连接如下图:硬件连接图(1)出现问题版本硬件设计,硬件连接如下图:硬件连接图(2)上面的这些接口,都是大家比较熟悉的,硬件设计为了兼容前一版本的上行扣板,在底板上增加了SerDes芯片,使底板出SerDes接口上行。

考虑降成本因素,采用了价格较低TLK1201芯片。

分别分析TLK1201的对外接口。

首先分析SerDes接口,SerDes接口是大家所较熟悉的,“SerDes”接口自协商大家看来是没有任何问题,但是学习了一下“SerDes”接口,却发现和我们平时的理解有些差异。

查阅bcm5464芯片资料,描述如下:SerDes: 1000 Mbps operation。

The SerDes interface shares the same differential data pin as the SGMII interface. The BCM5464S can act as a 1-GHz。

media converter by both supporting SerDes fiber and copper line interfaces simultaneously.很显然SerDes接口仅仅具备1000Mbps数据收发功能,不支持速率的自适应,那么上一版本我们认为的“SerDes”接口是如何进行速率协商的呢?结果发现是我们没有正确的区分速率自协商的。

华为FDD_LTE_eNodeB MML数据配置

华为FDD_LTE_eNodeB MML数据配置

华为LTE_eNodeB MML数据配置指导宿迁分公司网络公司运维部耿涛2014年11月一、数据配置的基本步骤华为LTE基站设备与爱立信W网类似,也是用管理对象MO来描述的。

在各网元中,MO代表某种资源,该资源可以是物理实体如“电调天线”,也可以是逻辑实体或协议对象如“UTRAN邻区关系”。

无论是物理实体资源还是逻辑实体资源,都是通过参数相关联。

用户可通过设置MO参数来配置MO,MO状态可通过MO参数呈现出来。

MOM是系统资源的管理视图,面向用户。

用户可以通过增加、删除和修改MO来管理基站。

NE是基站管理对象模型中的根节点,是系统管理功能的入口。

NE对象将各无线接入制式管理功能和与无线接入制式无关的公共资源管理功能聚合在一起作为一个整体进行操作维护。

对于eNodeB来说,NE由NodeB MO和eNodeBFunction MO组成。

Node是制式功能对象之外的公共资源及管理功能的根节点。

eNodeBFunction对象是LTE无线接入制式管理功能对应的根节点。

NodeB MO包含传输和设备MO。

对于eNodeB数据配置,在结构上和爱立信W网本调也很类似,分为三个部分:1、基站的基本数据,包含eNodeB设备数据、运营商信息时间时钟等等。

2、传输数据,包含端口属性及IP地址路由信息S1/X2链路信息及OM通道QoS设置VLAN等。

3、无线数据,包含扇区/小区信息邻区信息等。

下面就用贺工发过来的MML近端调整脚本解释下各个步骤和配置参数含义。

该MML 脚本为DBS3900 FDD 2T4R S111配置,与宿迁绝大多数基站配置相同。

注释部分用红字标出。

在eNodeB近端WEBLMT调测时需要先关闭DHCP开关,离开站点时打开DHCP开关SET DHCPSW: SWITCH=DISABLE; 设置远端维护通道的自动建立开关,如果未设置为禁用,则调整时远端维护通道中断,会用现有的传输配置尝试修改。

一、基本数据配置应用配置ADD ENODEBFUNCTION: eNodeBFunctionName="eNodeBTest-1000", ApplicationRef=1, eNodeBId=1000;该命令为增加eNodeB,eNodeBFunctionName为eNodeB名称,ApplicationRef为引用的应用标识,对于eNodeB,引用的应用必须存在,且应用类型必须为eNodeB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

GE电口速率自协商问题
作者:xxxxxxxxx
案例来源:单板调试
关键词:GE电口、自协商
1、问题描述
在某上行扣板的调试过程中,发现上行GE电口与其它GE电口设备对接时,速率都为1000M时,电口可以正常link;但是当与速率强制为100/10M设备对接时,电口不能正确协商,端口link不上。

2、原因分析
电口使用已比较成熟,与以前使用过的单板设计架构也没有太大差异,但是为何会出现此问题呢?开始的时候,大家一致认为是软件配置将速率强制成了1000M,但是经过核对,排除了“软件配置问题”。

难道是硬件问题?
首先对比一下上个版本的硬件设计,硬件连接如下图:
硬件连接图(1)
出现问题版本硬件设计,硬件连接如下图:
硬件连接图(2)
上面的这些接口,都是大家比较熟悉的,硬件设计为了兼容前一版本的上行扣板,在底板上增加了SerDes芯片,使底板出SerDes接口上行。

考虑降成本因素,采用了价格较低TLK1201芯片。

分别分析TLK1201的对外接口。

首先分析SerDes接口,SerDes接口是大家所较熟悉的,“SerDes”接口自协商大家看来是没有任何问题,但是学习了一下“SerDes”接口,却发现和我们平时的理解有些差异。

查阅bcm5464芯片资料,描述如下:
SerDes: 1000 Mbps operation。

The SerDes interface shares the same differential data pin as the SGMII interface. The BCM5464S can act as a 1-GHz。

media converter by both supporting SerDes fiber and copper line interfaces simultaneously.
很显然SerDes接口仅仅具备1000Mbps数据收发功能,不支持速率的自适应,那么上一版本我们认为的“SerDes”接口是如何进行速率协商的呢?结果发现是我们没有正确的区分SerDes和SGMII,SGMII接口才是支持10/100/1000M速率自协商的。

区别如下:
SGMII和SerDes管脚是复用的,SGMII及SerDes接口示意图如下:
SerDes接口只占用RXD/TXD两根收发数据线;SGMII(Serial GMII)接口占用TXD/RXD
收发数据线以及一个可选择时钟信号。

如果MAC和PHY芯片都带时钟,则可以不需要单独
的时钟信号,只需一对收发差分信号即可。

Bcm5695支持SerDes和SGMII,bcm5464s芯片具有从接收数据中恢复时钟的能力,故SGMII接口模式时,不需要单独的接收时钟。

这样从外部接口看,不管SGMII还SerDes都
是“SerDes”接口,所以实际应用中很容易忽略他们之间的差异,而很容易理解为外部
连接对了,什么都OK。

TLK1201芯片是支持SerDes接口,并且有时钟恢复能力,但是与之连接的是一款PHY (bcm5464s)芯片,双方都不能提供时钟源,故不支持SGMII接口,只能配置成SerDes
模式,所以速率只支持1000M。

问题到此似乎也完全找到了,但是再认真看看另一侧的TBI接口,我们发现也发生了
同样的错误。

查阅bcm5650芯片资料,描述如下:
The BCM5650/BCM5651 interfaces to external physical media interface devices using GMII/TBI interface. GMII mode allows the GE port to interface to external PHYs supporting the GMII specification for 10/100/1000 Mbps operation.
TBI mode allows the GE port to directly connect to external SerDes for 1000BASE-X operation.
如上所述,TBI接口同样仅仅具备1000Mbps数据收发功能,不支持速率的自适应。


它同样很容易与另一个与它复用管脚的接口弄混淆——GMII。

GMII与TBI信号对比:
如上表所示,GMII与TBI管脚完全兼容,通过模式选择可以选择合适的模式;但它们两者之中只有GMII才支持10/100/1000M速率。

而TLK1201芯片同样仅仅支持TBI模式,而不能配置为GMII模式,故最终速率只能支持1000M。

众所周知,自协商中的仲裁机制就是在自协商完后,通过优先级解决方案使自协商的两端获得最大最合适的能力配置。

当我们的设备与非1000M速率电口对接时,速率协商结果无效,即端口速率不能适应到协商的结果,从而端口link不上。

3、结论和解决方法
如上面原因分析中所述,SerDes和TBI接口仅仅支持数据速率1000M,如果规格需要
速率自协商,就只能通过修改硬件才能解决。

4、经验总结
1、首先简单列举下平时常见的以太网GE接口自协商情况,以使用最多的Broadcom芯片为代表:
注:Gigabit(1000 Mbps)只配置成Full-duplex 工作模式
速率1000M工作时,一般都是配置成Full工作模式;如上表所示,TBI/RTBI、SerDes接口一般工作在1000/Full模式下,大多用于Fiber模式。

2、简单列举下几个常用的MAC/PHY/SerDes支持的接口,大家可以做个简单对比:
3、一点心得:如前面所述,同样性质的两个错误竟然在大量人员参与的原理图检视中没有发现,或许是开发及检视人员的大意,但是至少说明我们对这些接口的模棱两可的理解。

本来这样的问题在系统设计时就不应该出现,但是还是出现了,说明我们对某些知识细节的掌握还欠缺和以及对知识的大意。

希望这个小小的案例能给大家一点点的启发,不要再跌在细节上。

5、CHECKLIST
1、理解SerDes与SGMII、TBI与GMII的差异,SerDes、TBI接口只支持固定数据速率1000M,不支持速率的自协商,设计和审查时需要注意。

相关文档
最新文档