二次函数实际应用(利润问题)
二次函数的实际的应用之利润最大值、面积最值问题

30k b 400
k 20
, 解之得 :
,
40k b 200
b 1000
即一次函数表达式为 y 20x 1000 (30 x 50) .
⑵ P (x 20) y ( x 20)( 20 x 1000)
20 x 2 1 4 0 x0 2 0 0 0 0
∵ a 20 0 ∴ P 有最大值.
当x
1400
35 时, Pmax 4500 (元)
[ 练习 ] :1.某商品现在的售价为每件 60 元,每星期可卖出 300 件,市场调查反映:每涨价 1 元,每星期 少卖出 10 件;每降价 1 元,每星期可多卖出 20 件,已知商品的进价为每件 40 元,如何定价才能使利润
最大? 解:设涨价(或降价)为每件
x 元,利润为 y 元,
y1 为涨价时的利润, y 2 为降价时的利润 则: y1 (60 40 x)( 300 10x)
商品定价一类利润计算公式: 经常出现的数据: 商品进价;商品售价;商品销售量;涨价或降价;销售量变化;其他
成本。 总利润 =总售价 -总进价 - 其他成本 =单位商品利润 ×总销售量-其他成本 单位商品利润 =商品定价-商品进价 总售价 =商品定价 ×总销售量;总进价 =商品进价×总销售量
[ 例 1]:某电子厂商投产一种新型电子厂品, 每件制造成本为 18 元,试销过程中发现, 每月销售量 y (万
所以,销售单价定为 25 元或 43 元,
将
z =-2x
2
+136x-1800
2
配方,得 z=-2 ( x-34 ) +512 ,
因此, 当销售单价为 34 元时, 每月能获得最大利润, 最大利润是 512 万元;
实际问题与二次函数利润问题

1.谈谈这节课你的收获. 2.总结解这类最大利润问题的一般步骤:
(1)列出二次函数的解析式,并根据自 变量的实际意义,确定自变量的取值范围;
(2)在自变量的取值范围内,运用公式 法或通过配方求出二次函数的最大值或最 小值.
1.(2010·包头中考)将一条长为20cm的铁丝剪成两
段,并以每一段铁丝的长度为周长各做成一个正方形,则 这两个正方形面积之和的最小值是 25 或12.5cm2.
请大家带着以下几个问题读题:
(1)题目中有几种调整价格的方法?
(2)题目涉及到哪些变量?哪一个量是 自变量?哪些量随之发生了变化?
解:设每件涨价为x元时获得的总利润为y元.
y =(60-40+x)(300-10x)
(0≤x≤30)
=(20+x)(300-10x)
=-10x2+100x+6000
=-10(x2-10x-600)
=-10[(x-5)2-25-600]
=-10(x-5)2+6250
当x=5时,y的最大值是6250.
定价:60+5=65(元)
即定价65元时,利润最大,最大利润是6250元.
解:设降价x元时利润为y元,根据题意得:
y=(60-x-40) ) (300+20x) (0≤X≤20)
=(20-x)(300+20x) =-20x2+100x+6000
1.掌握商品经济等问题中的相等关系的寻找方 法,并会应用函数关系式求利润的最值; 2.会应用二次函数的性质解决实际问题.
某种品牌的电脑进价为3000元,售价3600元. 十 月份售出m台,则每台电脑的利润为 600元 , 十月份的利润为 600m元 .
二次函数的实际应用(利润最值问题)附答案

第3课时 二次函数的实际应用——最大(小)值问题[例1]:求下列二次函数的最值:(1)求函数322-+=x x y 的最值. 解:4)1(2-+=x y当1-=x 时,y 有最小值4-,无最大值.(2)求函数322-+=x x y 的最值.)30(≤≤x解:4)1(2-+=x y∵30≤≤x ,对称轴为1-=x∴当12330有最大值时;当有最小值时y x y x =-=.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 则:)10300)(4060(1x x y -+-=)60010(102---=x x 6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y (元))20300)(4060(2x x y +--= )15)(20(20+--=x x6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y (元) 综合两种情况,应定价为65元时,利润最大.[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 解:设每件价格提高x 元,利润为y 元, 则:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额? 解:设旅行团有x 人)30(≥x ,营业额为y 元, 则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x 当55=x ,30250max =y (元)答:当旅行团的人数是55人时,旅行社可以获得最大营业额.[例3]: 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表: 若日销售量y 是销售价x 的一次函数. ⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?解:⑴设一次函数表达式为b kx y +=.则1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,•即一次函数表达式为40+-=x y .⑵ 设每件产品的销售价应定为x 元, 所获销售利润为w 元y x w )10(-=)40)(10(+--=x x400502-+-=x x225)25(2+--=x当25=x ,225max =y (元)答:产品的销售价应定为25元时,每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点: ⑴在“当某某为何值时,什么最大(或最小、最省)”的设问中,•“某某”要设为自变量,“什么”要设为函数;⑵求解方法是依靠配方法或最值公式,而不是解方程. 3.(2006十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x )存在如下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少? ⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案). 解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值.当35)20(21400=-⨯=x 时,4500max =P (元)(或通过配方,4500)35(202+--=x P ,也可求得最大值)答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x 16)35(12≤-≤x ∴31≤x •≤34或36≤x≤39.作业布置: 1.二次函数1212-+=x x y ,当x=_-1,_时,y 有最_小_值,这个值是23-. 2.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为12--=x y (只写一个),此类函数都有_大_值(填“最大”“最小”).3.不论自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是29>m ,此时关于一元二次方程2x 2-6x +m =0的解的情况是_有解_(填“有解”或“无解”)解:29)23(22-+-=m x y ∵0)23(22≥-x ,要使0>y ,只有029>-m ∴29>m4.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L 是 4.5米 .解:当05.3=y 时,21 3.55y x =-+05.3= 45.052⨯=x ,5.1=x 或5.1-=x (不合题意,舍去)5.在距离地面2m 高的某处把一物体以初速度V 0(m/s )竖直向上抛出,•在不计空气阻力的情况下,其上升高度s (m )与抛出时间t (s )满足:S=V 0t-12gt 2(其中g 是常数,通常取10m/s 2),若V 0=10m/s ,则该物体在运动过程中最高点距离地面__7_m .解:t t s 1052+-=5)1(52+--=t当1=t 时,5max =s ,所以,最高点距离地面725=+(米).6.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究表明,晴天 在某段公路上行驶上,速度为V (km/h )的汽车的刹车距离S (m )可由公式S=1100V 2确定;雨天行驶时,这一公式为S=150V 2.如果车行驶的速度是60km/h ,•那么在雨天 行驶和晴天行驶相比,刹车距离相差_36_米.7.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_5_元,最大利润为_625_元.解:设每件价格降价x 元,利润为y 元, 则:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x 当5=x ,625max =y (元)答:价格提高5元,才能在半个月内获得最大利润.8.如图,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m) .解:设9)8(2+-=x a y ,将点A )1,0(代入,得81-=a12819)8(8122++-=+--=x x x y令0=y ,得09)8(812=+--=x y98)8(2⨯=-x268±=x ,)0,268(+C ,∴5.242688≈++=OC (米)9.(20XX 年青岛市)在20XX 年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年(1)在如图的直角坐标系内,作出各组有序数对(x ,y )所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式; (2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大?解:(1)由图象可知,y 是x 的一次函数,设y=kx+b ,• ∵点(•25,2000),(24,2500)在图象上,∴200025500,:25002414500k bk k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 , ∴y=-500x+14500.(2)P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元.10.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式; (2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)? 解:(1)由题意知:p=30+x,(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x 元.∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000. (3)设总利润为W 元则:W=Q -1000×30-400x=-10x 2+500x=-10(x 2-50x) =-10(x -25)2+6250.当x=25时,总利润最大,最大利润为6250元. 答:这批蟹放养25天后出售,可获最大利润.11.(2008湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少? (3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? 解:)802)(20()20(+--=-=x x w x y)40)(20(2---=x x)80060(22+--=x x 200)30(22+--=x 160012022-+-=x x当30=x ,200max =y (元)(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元. (3) 150200)30(22=+--x ,25)30(2=-x28351>=x (不合题意,舍去)252=x答:该农户想要每天获得150元的销售利润,销售价应定为25元.12.(2008河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元.试确定的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?解:(1)甲地当年的年销售额为万元;.(2)在乙地区生产并销售时,年利润.由,解得或.经检验,不合题意,舍去,.(3)在乙地区生产并销售时,年利润,将代入上式,得(万元);将代入,得(万元).,应选乙地.。
专题08 二次函数实际应用中的利润问题(解析版)-【压轴必考】

专题08 二次函数实际应用中的利润问题 经典例题例1.某电商销售某种商品一段时间后,发现该商品每天的销售量y (单位:千克)和每千克的售价x (单位:元)满足一次函数关系(如图所示),其中5080x ≤≤,(1)求y 关于x 的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?【答案】(1)y 关于x 的函数解析式为2200y x =-+;(2)该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【解析】(1)设y 关于x 的函数解析式为y kx b =+,则由图象可得()50,100和()80,40,代入得: 501008040k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩,∴y 关于x 的函数解析式为2200y x =-+; (2)设该电商每天所获利润为w 元,由(1)及题意得:()()240220022808000w x x x x =--+=-+-,∴-2<0,开口向下,对称轴为702b x a=-=, ∴5080x ≤≤,∴当70x =时,w 有最大值,即为22702807080001800w =-⨯+⨯-=; 答:该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.例2.合肥百货大楼以进价120元购进某种新商品,在5月份试销阶段发现,在售价不低于130元的情况下每件售价(元)与商品的日销量(件)始终存在下表中的数量关系:(1)请你观察上面表格中数据的变化规律,填写表中的a 值为(2)若百货大楼该商品柜组想日盈利达到1600元,应将售价定为多少元?(3)柜组售货员小李发现销售该种商品m 件与n 件的利润相同,且m n ≠,请直接写出m 与n 所满足的关系式.【答案】(1)20;(2)160元;(3)m +n =80【解析】(1)∴130+70=200,135+65=200,140+60=200,∴每件的售价与产品的日销量之和为200,∴a =200-180=20,故答案为:20;(2)由(1)知:当每件产品每涨价1元时,日销售量减少1件,设每件产品定价为x 元(x >120),则产品的日销量为(200-x )元,依题意得:(x -120)(200-x )=1600,整理得:x 2-320x +25600=0,解得:x 1=x 2=160.答:每件产品定价为160元时,每日盈利可达到1600元;(3)由(1)知:当每件产品每涨价1元时,日销售量减少1件,∴当销售该种商品m 件时,定价为:(200-m )元,销售该种商品n 件时,定价为:(200-n )元, 由题意得:(200-m -120)m =(200-n -120)n ,整理得:(m -n )(m +n -80)=0,∴m ≠n ,∴m +n -80=0,即m +n =80.故答案为:(1)20;(2)160元;(3)m +n =80例3.某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x 元,每星期销售量为y 个.(1)请直接写出y (个)与x (元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?【答案】(1)y =-2x +220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【解析】(1)由题意可得,y =100-2(x -60)=-2x +220;(2)由题意可得,(-2x +220)(x -40)=2400,解得,170x =,280x =,∴当销售单价是70元或80元时,该网店每星期的销售利润是2400元.答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元.(3)设该网店每星期的销售利润为w 元,由题意可得w =(-2x +220)(x -40)=223008800-+-x x , 当752b x a=-=时,w 有最大值,最大值为2450, ∴当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【变式训练1】天府新区某商场开业后要经营一种新上市的文具进价为10元/件.试营销阶段发现:当销售单价是13元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件,设该商场销售这种文具每天的销售量为y 件,销售单价为x 元/件(3)1x ≥.(1)写出y 与x 之间的函数关系式;(2)设商场每天的销售利润为w (元),若每天销售量不少于150件,求商场每天的最大利润.【答案】(1)10380y x =-+;(2)1950元【解析】(1)当销售单价是13元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件,∴销售量y 件,销售单价x 元/件(13)x 之间的关系为:25010(13)10380y x x =--=-+; (2)每天销售量不少于150件,150y ∴,即10380150x -+,解得23x ,商场每天的销售利润2(10)(10)(10380)10(24)1960w x y x x x =-⋅=-⋅-+=--+,w ∴关于x 的抛物线对称轴为24x =,而100-<,开口向下,当23x 时,图象在对称轴左侧,w 随x 的增大而增大,23x ∴=时,w 最大,且w 最大值为1950,∴若每天销售量不少于150件,则商场每天的最大利润是1950元.【变式训练2】某地区在2020年开展脱贫攻坚的工作中大力种植有机蔬菜.某种蔬菜的销售单价与销售月份之间的关系如图(1)所示,每千克成本与销售月份之间的关系如图(2)所示(其中图(1)的图象是直线,图(2)的图象是抛物线).(1)求每千克蔬菜销售单价y 与销售月份x 之间的关系式;(2)判断哪个月份销售每千克蔬菜的收益最大?并求出最大收益;(3)求出一年中销售每千克蔬菜的收益大于1元的月份有哪些?【答案】(1)y =23-x +7;(2)5月出售每千克收益最大,最大为73元;(3)一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月.【解析】(1)设y kx b =+,将(3,5)和(6,3)代入得,3563k b k b +=⎧⎨+=⎩,解得237k b ⎧=-⎪⎨⎪=⎩.273y x ∴=-+; (2)设每千克成本与销售月份之间的关系式为:y =a (x -6)2+1,把(3,4)代入得,4=a (3-6)2+1,解得13a =.21(6)13y x ∴=-+,即214133y x x =-+. 收益23W =-217(413)3x x x +--+217(5)33x =--+, 103a =-<,∴当5x =时,73W =最大值.故5月出售每千克收益最大,最大为73元; (3)一年中销售每千克蔬菜的收益:23W =-217(413)3x x x +--+, 当1W =时,23-217(413)13x x x +--+=,解得:x 1=7,x 2=3, 103a =-<,x 为正整数,∴一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月. 故答案为:(1)y =23-x +7;(2)5月出售每千克收益最大,最大为73元;(3)一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月.【变式训练3】红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x (单位:元/件),月销售量为y (单位:万件).(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a 元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a 的值.【答案】(1)5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩;(2)当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)4.【解析】(1)由题意,当4050x ≤≤时,5y =,当50x >时,50.1(50)0.110y x x =--=-+,0y ≥,0.1100x ∴-+≥,解得100x ≤,综上,5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩; (2)设该产品的月销售利润为w 万元,①当4050x ≤≤时,5(40)5200w x x =-=-,由一次函数的性质可知,在4050x ≤≤内,w 随x 的增大而增大,则当50x =时,w 取得最大值,最大值为55020050⨯-=;②当50100x <≤时,2(40)(0.110)0.1(70)90w x x x =--+=--+,由二次函数的性质可知,当70x =时,w 取得最大值,最大值为90,因为9050>,所以当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元(大于50万元), 5070x ∴<≤,设该产品捐款当月的月销售利润为Q 万元,由题意得:(40)(0.110)Q x a x =---+,整理得:221400.1()390240a a Q x a +=--+-+, 140702a +>,∴在5070x <≤内,Q 随x 的增大而增大, 则当70x =时,Q 取得最大值,最大值为(7040)(0.17010)903a a ---⨯+=-,因此有90378a -=,解得4a =.【变式训练4】某企业研发了一种新产品,已知这种产品的成本为30元/件,且年销售量y (万件)与售价x (元/件)的函数关系式为()()2140,406080.6070x x y x x ⎧-+≤<⎪=⎨-+≤≤⎪⎩ (1)当售价为60元/件时,年销售量为________万件;(2)当售价为多少时,销售该产品的年利润最大?最大利润是多少?(3)若销售该产品的年利润不少于750万元,直接写出x 的取值范围.【答案】(1)20;(2)当售价为50元/件时,年销售利润最大,最大为800万元;(3)4555x ≤≤【解析】(1)=6080608020x y x y =-+=-+=当时,代入中,得.(2)设销售该产品的年利润为W 万元,当60x ≤40<时,()()()2302140250800W x x x =--+=--+.∴20<-,∴当50x =时,800W =最大当6070≤≤x 时,()()()2308055625W x x x =--+=--+∴10-<,6070≤≤x ,∴当60x =时,600W =最大∴800600>,∴当50x =时,800W =最大∴当售价为50元/件时,年销售利润最大,最大为800万元.(3)4555x ≤≤理由如下:由题意得 ()()3021407504555x x x --+≥≤≤解得:故答案为:(1)20;(2)当售价为50元/件时,年销售利润最大,最大为800万元;(3)4555x ≤≤ 课后训练1.某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y (件)与销售单价x (元)之间的函数关系式;(不需要求自变量取值范围) (2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?【答案】(1)5550y x =-+;(2)70元;(3)80元.【解析】(1)∴依题意得()150100102y x =+-⨯⨯, ∴y 与x 的函数关系式为5550y x =-+;(2)∴依题意得()504000y x -=,即()()5550504000x x -+-=,解得:170x =,290x =, ∴7090<∴当该商品每月销售利润为4000,为使顾客获得更多实惠,销售单价应定为70元;(3)设每月总利润为w ,依题意得 ()()()250555050580027500w y x x x x x =-=-+-=-+-∴50-<,此图象开口向下∴当()8008025x =-=⨯-时, w 有最大值为:258080080275004500-⨯+⨯-=(元),∴当销售单价为80元时利润最大,最大利润为4500元,故为了每月所获利润最大,该商品销售单价应定为80元.2.红星工厂研发生产某种产品,成本为3万元/吨,每天最多能生产15吨.工厂为持续发展,尝试与博飞销售公司建立产销合作关系,双方约定:合作第一个月,工厂产品仅由博飞销售公司订购代销,并每天按博飞销售公司当日订购产品数量生产,当日出厂价格y (万元/吨)与当日订购产品数量x (吨)之间的关系如图所示:(1)直接写出y 与x 的函数关系式,并写出自变量x 的取值范围;(2)红星工厂按产销合作模式生产这种产品,设第一个y (万元/吨)月单日所获利润为w (万元), ①求w (万元)与x (吨)的函数关系式;②为响应国家“乡村振兴”政策,红星工厂决定,将合作第一个月中单日所获最大利润捐赠给附近村委会.试问:工厂这次为“乡村振兴”最多捐赠多少万元?【答案】(1)9(05)4(515)x x y x -+≤≤⎧=⎨≤⎩<;(2)①w =26(05)(515)x x x x x ⎧-+≤≤⎨≤⎩<;②工厂这次为“乡村振兴”最多捐赠15万元.【解析】(1)当0≤x ≤5时,设函数关系式为:y =kx +b ,把(0,9),(5,4)代入上式,得945b k b =⎧⎨=+⎩,解得:19k b =-⎧⎨=⎩,∴y =-x +9, 当5<x ≤15时,y =4,综上所述:9(05)4(515)x x y x -+≤≤⎧=⎨≤⎩<; (2)①由题意得:w =(y -3)x =()()6(05)43(515)x x x x x ⎧-+≤≤⎪⎨-≤⎪⎩<,∴w =26(05)(515)x x x x x ⎧-+≤≤⎨≤⎩<; ②当05x ≤≤时,w =()22639x x x -+=--+,此时x =3,w 最大值=9,当515x ≤<时,w =x ,此时,x =15,w 最大值=15,综上所述:工厂这次为“乡村振兴”最多捐赠15万元.3.一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现销售量y (件)与售价x (元/件)(x 为正整数)之间满足一次函数关系:(1)求y 与x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润及此时的销售单价分别为多少元?【答案】(1)50012000y x =-+;(2)一周该商场销售这种商品获得的最大利润为54000元,销售单价分别为12元【解析】(1)设y 和x 的函数表达式为y kx b =+,则10000495005k b k b =+⎧⎨=+⎩,解得50012000k b =-⎧⎨=⎩, 故y 和x 的函数表达式为50012000y x =-+;.(2)设这一周该商场销售这种商品的利润为w 元,由题意得:3155001200006000x x ≤≤⎧⎨-+≥⎩, 解得312x ≤≤,这一周该商场销售这种商品获得利润:()()()235001200035001350036000w y x x x x x =-=-+-=-+-,∴22750055125551252w x ⎛⎫=--+≤ ⎪⎝⎭, ∴312x ≤≤,故12x =时,w 有最大值为54000,答:一周该商场销售这种商品获得的最大利润为54000元,销售单价为12元.4.夏天到了,宁波人最惦记的水果——杨梅进入成熟期,一水果店老板进行杨梅销售,已知杨梅进价为25元/千克.如果售价为30元/千克,那么每天可售出150千克:如果售价为32元/千克,那么每天可售出130千克.经调查发现:每天销售盘y (千克)与售价x (元/千克)之间存在一次函数关系.(1)求出y 关于x 的一次函数关系式;(2)若杨梅售价不得高于36元/千克,该店主销售杨梅每天要获得960元的毛利润,则销售单价应定为多少元/千克?(毛利润=销售额-进货成本〉(3)设杨梅每天销售的毛利润为W 元,当杨梅的售价定为多少元/千克时,每天销售获得的毛利润最大?最大毛利润是多少元?【答案】(1)y=-10x+450;(2)33元/千克;(3)售价定为35元/千克时,每天销售获得的毛利润最大,最大毛利润是1000元.【解析】(1)∴每天销售量y(千克)与售价x(元/千克)之间存在一次函数关系,∴设y=kx+b,∴x=30时,y=150,x=32时,y=130,则1503013032k bk b=+⎧⎨=+⎩,解得:10450kb=-⎧⎨=⎩,∴y关于x的一次函数关系式:y=-10x+450;(2)设销售单价应定为x元/千克,由题意得:(x-25)(-10x+450)=960,解得:x=37或x=33,∴杨梅售价不得高于36元/千克,∴x=37不合题意,∴x=33,答:销售单价应定为33元/千克;(3)设杨梅的售价定为m元/千克时,每天销售获得的毛利润最大,则W=(m-25)(-10m+450)=-10m2+700m-11250=-10(m-35)2+1000,∴-10<0,∴当m=35时,W有最大值,最大值1000元,答:杨梅的售价定为35元/千克时,每天销售获得的毛利润最大,最大毛利润是1000元.5.某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y(单位:万件)与销售单价x(单位:元)之间有如下表所示关系:(1)根据表中的数据,在图中描出实数对(,)x y所对应的点,并画出y关于x的函数图象;(2)根据画出的函数图象,求出y关于x的函数表达式;(3)设经营此商品的月销售利润为P(单位:万元).①写出P关于x的函数表达式;②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不.得超过...进价的200%,则此时的销售单价应定为多少元? 【答案】(1)图象见解析;(2)216y x =-+;(3)①222032P x x =-+-;②销售单价应定为3元.【解析】(1)y 关于x 的函数图象如图所示:(2)由(1)可设y 与x 的函数关系式为y kx b =+,则由表格可把()()4,8,5,6代入得:4856k b k b +=⎧⎨+=⎩,解得:216k b =-⎧⎨=⎩,∴y 与x 的函数关系式为216y x =-+; (3)①由(2)及题意可得:()()()22221622032P x y x x x x =-=--+=-+-;∴P 关于x 的函数表达式为222032P x x =-+-;②由题意得:2200x ≤⨯%,即4x ≤,∴22203210x x -+-=,解得:123,7x x ==,∴3x =; 答:此时的销售单价应定为3元.。
二次函数的实际应用利润问题

先来看涨价的情况:⑴设每件涨价x元,则每星期售出商品的利润y
也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星
期少卖10x件,实际卖出(300-10x)件,销额为 (60+x)(300-10x)元,
买进商品需付 40(300-1元0因x)此,所得利润为
05
可以看出,这个函数的
图像是一条抛物线的一
部分,这条抛物线的顶
点是函数图像的最高点,
也就是说当x取顶点坐
标的横坐标时,这个函
数有最大值。由公式可
以求出顶点的横坐标.
30
x \ 元 精选ppt
11
做一做
在降价的情况下,最大利润是多少? 请你参考(1)的过程得出答案。
解:设降价x元时利润最大,则每星期可多卖18x件,实
列表分析1: 总售价-总进价=总利润 设每件涨价x元,则每件售价为(60+x)元
总售价= 单件售价×数量
(60+x)(300-10x)
总进价= 单件进价×数量
40(300-10x)
利润 6000
精选ppt
2
列表分析2: 总利润= 单件利润×数量
总利润=单件利润×数量 (60-40+x) (300-10x)
由(1)(2)的讨论及现在的销售
情况,你知道应该如何定价能
使利润最大了吗精?选ppt
12
练一练
某商场销售某种品牌的纯牛奶,已知进价 为每箱40元,市场调查发现:若每箱以50 元 销售,平均每天可销售100箱. 价格每箱降低1 元,平均每天多销售25箱 ; 价格每箱升高1 元,平均每天少销售4箱。如何定价才能使得 利润最大?
(完整版)二次函数的应用(利润问题)(答案)

二次函数的应用(利润问题)(答案)二次函数的实际应用1.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_ _元,最大利润为_ _元.2. 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?3.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?4.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?5.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量(件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.⑴求出日销售量y (件)与销售价x (元)的函数关系式; ⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?6.“健益”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元)(30 x )存在如下图所示的一次函数关系式.⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案).7.,某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据: 销售价x (元/千克) (25)24 23 22 … 销售量y (千克) … 2000 2500 3000 3500 …(1)在如图的直角坐标系内,作出各组有序数对(x ,y )所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式;(2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大?8.为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?二次函数的应用(利润问题)(答案)参考答案1解:设每件价格降价x 元,利润为y 元,则:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x 当5=x ,625max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 则)10300)(4060(1x x y -+-=)60010(102---=x x 6250)5(102+--=x 当5=x ,即:定价为65元时,6250max =y (元) )20300)(4060(2x x y +--=)15)(20(20+--=x x 6125)5.2(202+--=x 当5.2=x ,即:定价为57.5元时,6125max =y (元)综合两种情况,应定价为65元时,利润最大.3解:设每件价格提高x 元,利润为y 元,则:)20400)(2030(x x y --+=)20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y (元)答:价格提高5元,才能在半个月内获得最大利润. 4解:设旅行团有x 人)30(≥x ,营业额为y 元,则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x当55=x ,30250max =y (元)答:当旅行团的人数是55人时,可以获得最大营业额. 5解:⑴设一次函数表达式为b kx y +=. 则1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,即一次函数表达式为40+-=x y . ⑵ 设每件产品的销售价应定为x 元,所获销售利润为w 元 y x w )10(-=)40)(10(+--=x x 400502-+-=x x 225)25(2+--=x当25=x ,225max =y (元)答:销售价应定为25元时,每日获得最大销售利润为225元6解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得,即100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值. 当35)20(21400=-⨯=x 时,4500max =P (元) 答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x 16)35(12≤-≤x ∴31≤x ≤34或36≤x≤39. 7解:(1)由图象可知,y 是x 的一次函数,设y=kx+b ,•∵点(•25,2000),(24,2500)在图象上,∴200025500,:25002414500k b k k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 ,∴y=-500x+14500. (2)P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元.8.解:)802)(20()20(+--=-=x x w x y )40)(20(2---=x x )80060(22+--=x x 200)30(22+--=x 160012022-+-=x x 当30=x ,200max =y (元)(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元.(3) 150200)30(22=+--x ,25)30(2=-x 28351>=x (舍去)252=x 答:该农户想要每天获得150元的销售利润,销售价应定为25元.,应选乙地.。
二次函数的实际应用(利润问题)

建立模型
将问题抽象为二次函数模型,确定各项参数。
验证和调整
通过实际数据验证模型的准确性,并根据实际 情况进行调整和优化。
2 图像特点
二次函数的图像形状通常为抛物线,具有顶点、对称轴和开口方向等特点。
3 重要概念
二次函数的最值、最值点、零点等重要概念对利润问题的分析很有帮助。
二次函数的利润问题
利润问题是二次函数在实际应用中的一个典型问题。通过二次函数,我们可以计算出不同销量对应的利润,并 进一步分析销量与利润之间的关系。
利润的计算公式
1 收入
收入是销量乘以单价,可以表示为 R = px,其中 p 表示单价,x 表示销量。
2 成本
成本是与销量相关的固定成本和单位成本的乘积,可以表示为 C = a + bx。
3 利润
利润是收入减去成本,可以表示为 P = R - C。
二次函数在利润问题中的应用举例
例一:最大利润
根据给定的销量-利润函数,我们 可以通过分析函数的图像找到最 大利润所对应的销量。
例二:利润变化率
我们可以通过利润函数的一阶导 数(利润对销量的变化率)来分 析利润的增减情况。
例三:最佳生产量
通过分析利润函数的零点,我们 可以确定最佳生产量以最大化利 润。
最大化利润和最小化亏损
最大化利润
通过优化销量,控制成本和定价策略,我们可以最 大化企业的利润。
最小化亏损
在经营中,我们也需要考虑如何降低亏损,避免经 营困难。
求解利润最大化的方法
1
利润函数建模
将利润问题建立二次函数模型,确定各项参数。
2
图像分析
分析二次函数图像的顶点、开口方向等特点,确定最值点。
二次函数实际应用(利润问题)讲义

二次函数实际应用最大利润问题这类问题只需围绕一点来求解,那就是总利润=单件商品利润*销售数量设未知数时,总利润必然是因变量y , 而自变量可能有两种情况:1)自变量x是所涨价多少,或降价多少2)自变量x是最终的销售价格而这种题型之所以是二次函数,就是因为总利润=单件商品利润*销售数量这个等式中的单件利润里必然有个自变量x,销售数量里也必然有个自变量x,至于为什么它们各自都有一个x,后面会给出解释,那么两个含有x的式子一相乘,再打开后就是必然是一个二次的多项式,所以如果在列表达式时发现单利润里没有x,或销售数量里没有x, 那恭喜你,此题0分!下面借助例题加以理解:商场促销,将每件进价为80元的服装按原价100元出售,一天可售出140件,后经市场调查发现,该服装的单价每降低1元,其销量可增加10件现设一天的销售利润为y元,降价x元。
(1)求按原价出售一天可得多少利润?解析:总利润=单利润*数量(2)求销售利润y与降价x的的关系式解析:总利润=数量*单利润(3)商场要使每天利润为2850元并且使得玩家得到实惠,应该降价多少元?(4)要使利润最大,则需降价多少元?并求出最大利润解析:因为要是利润最大,所以需要求因变量y的最大值。
(一)涨价或降价为未知数例1、某旅社有客房120间,每间房间的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则每天出租的客房会减少6间。
不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前的日租金总收入增加多少元?变式1:某商场销售一批名牌衬衫,平均每天售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天多售出2件。
①若商场平均每天要盈利1200元,每件衬衫应降价多少元?②若每件衬衫降价x 元时,商场平均每天盈利 y元,写出y与x的函数关系式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数实际应用(利润问题)教学设计
教学目标知识技能
能根据具体问题中的数量关系,列出二次函数,体会二次函数是刻
画现实世界的有效数学模型。
数学思考
经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,
并能用二次函数对之进行描述。
解决问题
通过解决销售的最大利润等问题的过程,学会将实际问题转化成数
学问题,发展实践应用意识。
情感态度
通过用二次函数解决经济生活中的问题,体会数学知识应用的价值,
提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理
性精神的作用。
重
点
会把实际问题中的最值问题转化为二次函数的最值问题
难
点
发现问题中的函数关系。
活动流程图活动内容和目的活动1 创设情境,导入新课引发学生兴趣,导入新课。
活动2 合作交流,解读探究例一:商品涨价降价利润求法对比涨价、降价的最大利润,熟悉分析、解决最大利润问题的思路和方法,培养分类讨论思想,全面考虑问题的思想。
活动3 应用迁移,能力提升
(宾馆的利润)
探究问题中的函数关系,提高分析问题的能力。
活动4 当堂检测,试试身手
(变式训练)
当堂检测,回馈教学效果。
活动5 总结反思,归纳理顺回顾,总结,提高对知识的系统性认识。
活动6 课后练习,知识应用解决问题,巩固所学知识。
问题与情境师生行为设计意图
活动1【创设情境,导入新课】
某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?老建教师展示课件,出
示问题 .教师分步出示
问题①②③,引导学生
回答这些问题,教师步
入学生中间,及时发现
学生在解答时的不足,
加以辅导。
分组解决,小组内分别
计算涨价、降价的最大
利润,展示学生的解答
过程,教师及学生共同
评析。
师提出问题,引
导学生层层深入,思考
问题。
分步回答问题,降
低问题难度,深入
学生中间,加强师
生沟通。
通过该问题使学
生,体会分类讨论,
全面考虑问题的重
要意义
活动2【合作交流,解读探究】问题①,请一位学生回问题①②有助于学
某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.设每个房间的房价每天增加x元(x为10 的正整数倍).
⑴设一天订住的房间数为y,直接写出y 与x的函数关系式.
⑵设宾馆一天的利润为w元,求w与x 的函数关系式.
⑶一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
小结如何求二次函数的最值。
答,教师引导学生说清
所画矩形的边长,解决
问题①
教师提出问题①,学生
思考,请一位学生回答,
教师引导学生评析.
教师提出问题②、③,
引导学生得出函数解析
式,将实际问题转化成
数学问题。
教师完整板书解答过
程。
教师请一位学生回答如
何求二次函数的最值。
生理解题意,为后
面的问题进行铺
垫。
问题是②、③活动2
的中心环节,使学
生体会生活中数学
问题无处不在,生
活问题如何建立数
学模型。
教师完整板书解答
过程,有助于帮助
学生学习规范的解
题步骤。
培养良好
的学习习惯。
活动3【合作探究,针对练习】
问题:某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元(x为10 的正整数倍).
⑴设一天订住的房间数为y,直接写出y 与x的函数关系式及自变量的取值范围.
⑵设宾馆一天的利润为w元,求w与x 的函数关系式.
⑶一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?教师出示问题。
学生独立完成该题,教
师深入学生中间,了解
学生对知识的掌握情
况。
请一名学生展示自己的
解答过程,教师及学生
共同评析。
当堂了解学生的情
况,指导教师以后
的教学。
使学生体会用二次
函数解经济类应用
题的一般方法,丰
富解题经验。
活动4【当堂检测,试试身手】
某商品每件成本60元,试销阶段每件商品
的销售价x元与商品的日销售量y件之间的关系如下表,其中日销量y是销售价x的函数。
X
元
50 60 65 70 …
y
件
100 80 70 60 …
(1)请判断这种函数是一次函数、反比例函数,还是二次函数?并求出函数解析式;(2)要使每日的销售利润最大,每件商品的销售价应定为多少元?此时每日销售利润是多少?(3)要使这种商品每日的销售教师出示问题。
学生独立完成该题,教
师深入学生中间,了解
学生对知识的掌握情
况。
请一名学生展示自己的
解答过程,教师及学生
共同评析。
当堂了解学生的情
况,指导教师以后
的教学。
使学生体会用二次
函数解经济类应用
题的一般方法,丰
富解题经验。
利润不低于600元,且每件商品的利润率不得高于40﹪,那么该商品的销售价x应定为多少?请直接写出结果。
活动5某公司在成立初投入了12500元准备销售某种商品,另外又以每件40元的进价购进一批这种商品,按规定:该产品售价不得低于50元/件且不得超过150元/件,设每件商品的售价为x元,每个月的销售量为y 件,经调查,每个月的销售量y(件)于每件商品的销售价x(元)之间满足如图所示的函数关系。
(1)直接写出y于x的函数关系及自变量x 的取值范围;
(2)请说明第一个月公司是盈利还是亏损?求出当盈利最大或亏损最小的产品售价;
(3)在(2)的前提下,即在第一个月盈利最大或亏损最小时,第二个月公司重新确定产品售价,能否使两个月共盈利达11600元,若能,求出第二个月的产品售价;若不能,请说明理由。
活动6【总结反思,归纳理顺】
通过本节课的学习,大家有什么新的收获和体会?教师提出问题,学生回
答。
教师总结。
点明本节课的主题
和中心环节,使学
生巩固知识,加深
印象,对知识脉络
有更清晰的认识。