二次函数中的利润问题

合集下载

二次函数——利润问题

二次函数——利润问题

利润问题(二次函数应用题)
1、某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-2x)件,应如何定价才能使定价利润最大?最大利润是多少元?
2、某商店经营一种小商品,进价为2元,据市场调查,销售单价是13元时,平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件.
(1)设每件商品定价为x元时,销售量为y件,求出y与x的函数关系式;(2)若设销售利润为s,写出s与x的函数关系式;
(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?
3、某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?
4、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售2件。

(1)设每件衬衫降价x元,平均每天可售出y件,写出y与x的函数关系式;(2)每件衬衫降价多少元时,商场平均每天盈利最多?
5、某商场销售一批产品零件,进价货为10元,若每件产品零件定价20元,则可售出10件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件产品零件每降价2元,商场平均每天可多售8件。

(1)设每件产品零件降价x元,平均每天可售出y件,写出y与x的函数关系式___________________。

(2)每件产品利润降价多少元时,商场盈利最多?。

专题08 二次函数实际应用中的利润问题(解析版)-【压轴必考】

专题08 二次函数实际应用中的利润问题(解析版)-【压轴必考】

专题08 二次函数实际应用中的利润问题 经典例题例1.某电商销售某种商品一段时间后,发现该商品每天的销售量y (单位:千克)和每千克的售价x (单位:元)满足一次函数关系(如图所示),其中5080x ≤≤,(1)求y 关于x 的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?【答案】(1)y 关于x 的函数解析式为2200y x =-+;(2)该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【解析】(1)设y 关于x 的函数解析式为y kx b =+,则由图象可得()50,100和()80,40,代入得: 501008040k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩,∴y 关于x 的函数解析式为2200y x =-+; (2)设该电商每天所获利润为w 元,由(1)及题意得:()()240220022808000w x x x x =--+=-+-,∴-2<0,开口向下,对称轴为702b x a=-=, ∴5080x ≤≤,∴当70x =时,w 有最大值,即为22702807080001800w =-⨯+⨯-=; 答:该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.例2.合肥百货大楼以进价120元购进某种新商品,在5月份试销阶段发现,在售价不低于130元的情况下每件售价(元)与商品的日销量(件)始终存在下表中的数量关系:(1)请你观察上面表格中数据的变化规律,填写表中的a 值为(2)若百货大楼该商品柜组想日盈利达到1600元,应将售价定为多少元?(3)柜组售货员小李发现销售该种商品m 件与n 件的利润相同,且m n ≠,请直接写出m 与n 所满足的关系式.【答案】(1)20;(2)160元;(3)m +n =80【解析】(1)∴130+70=200,135+65=200,140+60=200,∴每件的售价与产品的日销量之和为200,∴a =200-180=20,故答案为:20;(2)由(1)知:当每件产品每涨价1元时,日销售量减少1件,设每件产品定价为x 元(x >120),则产品的日销量为(200-x )元,依题意得:(x -120)(200-x )=1600,整理得:x 2-320x +25600=0,解得:x 1=x 2=160.答:每件产品定价为160元时,每日盈利可达到1600元;(3)由(1)知:当每件产品每涨价1元时,日销售量减少1件,∴当销售该种商品m 件时,定价为:(200-m )元,销售该种商品n 件时,定价为:(200-n )元, 由题意得:(200-m -120)m =(200-n -120)n ,整理得:(m -n )(m +n -80)=0,∴m ≠n ,∴m +n -80=0,即m +n =80.故答案为:(1)20;(2)160元;(3)m +n =80例3.某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x 元,每星期销售量为y 个.(1)请直接写出y (个)与x (元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?【答案】(1)y =-2x +220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【解析】(1)由题意可得,y =100-2(x -60)=-2x +220;(2)由题意可得,(-2x +220)(x -40)=2400,解得,170x =,280x =,∴当销售单价是70元或80元时,该网店每星期的销售利润是2400元.答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元.(3)设该网店每星期的销售利润为w 元,由题意可得w =(-2x +220)(x -40)=223008800-+-x x , 当752b x a=-=时,w 有最大值,最大值为2450, ∴当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【变式训练1】天府新区某商场开业后要经营一种新上市的文具进价为10元/件.试营销阶段发现:当销售单价是13元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件,设该商场销售这种文具每天的销售量为y 件,销售单价为x 元/件(3)1x ≥.(1)写出y 与x 之间的函数关系式;(2)设商场每天的销售利润为w (元),若每天销售量不少于150件,求商场每天的最大利润.【答案】(1)10380y x =-+;(2)1950元【解析】(1)当销售单价是13元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件,∴销售量y 件,销售单价x 元/件(13)x 之间的关系为:25010(13)10380y x x =--=-+; (2)每天销售量不少于150件,150y ∴,即10380150x -+,解得23x ,商场每天的销售利润2(10)(10)(10380)10(24)1960w x y x x x =-⋅=-⋅-+=--+,w ∴关于x 的抛物线对称轴为24x =,而100-<,开口向下,当23x 时,图象在对称轴左侧,w 随x 的增大而增大,23x ∴=时,w 最大,且w 最大值为1950,∴若每天销售量不少于150件,则商场每天的最大利润是1950元.【变式训练2】某地区在2020年开展脱贫攻坚的工作中大力种植有机蔬菜.某种蔬菜的销售单价与销售月份之间的关系如图(1)所示,每千克成本与销售月份之间的关系如图(2)所示(其中图(1)的图象是直线,图(2)的图象是抛物线).(1)求每千克蔬菜销售单价y 与销售月份x 之间的关系式;(2)判断哪个月份销售每千克蔬菜的收益最大?并求出最大收益;(3)求出一年中销售每千克蔬菜的收益大于1元的月份有哪些?【答案】(1)y =23-x +7;(2)5月出售每千克收益最大,最大为73元;(3)一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月.【解析】(1)设y kx b =+,将(3,5)和(6,3)代入得,3563k b k b +=⎧⎨+=⎩,解得237k b ⎧=-⎪⎨⎪=⎩.273y x ∴=-+; (2)设每千克成本与销售月份之间的关系式为:y =a (x -6)2+1,把(3,4)代入得,4=a (3-6)2+1,解得13a =.21(6)13y x ∴=-+,即214133y x x =-+. 收益23W =-217(413)3x x x +--+217(5)33x =--+, 103a =-<,∴当5x =时,73W =最大值.故5月出售每千克收益最大,最大为73元; (3)一年中销售每千克蔬菜的收益:23W =-217(413)3x x x +--+, 当1W =时,23-217(413)13x x x +--+=,解得:x 1=7,x 2=3, 103a =-<,x 为正整数,∴一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月. 故答案为:(1)y =23-x +7;(2)5月出售每千克收益最大,最大为73元;(3)一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月.【变式训练3】红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x (单位:元/件),月销售量为y (单位:万件).(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a 元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a 的值.【答案】(1)5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩;(2)当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)4.【解析】(1)由题意,当4050x ≤≤时,5y =,当50x >时,50.1(50)0.110y x x =--=-+,0y ≥,0.1100x ∴-+≥,解得100x ≤,综上,5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩; (2)设该产品的月销售利润为w 万元,①当4050x ≤≤时,5(40)5200w x x =-=-,由一次函数的性质可知,在4050x ≤≤内,w 随x 的增大而增大,则当50x =时,w 取得最大值,最大值为55020050⨯-=;②当50100x <≤时,2(40)(0.110)0.1(70)90w x x x =--+=--+,由二次函数的性质可知,当70x =时,w 取得最大值,最大值为90,因为9050>,所以当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元(大于50万元), 5070x ∴<≤,设该产品捐款当月的月销售利润为Q 万元,由题意得:(40)(0.110)Q x a x =---+,整理得:221400.1()390240a a Q x a +=--+-+, 140702a +>,∴在5070x <≤内,Q 随x 的增大而增大, 则当70x =时,Q 取得最大值,最大值为(7040)(0.17010)903a a ---⨯+=-,因此有90378a -=,解得4a =.【变式训练4】某企业研发了一种新产品,已知这种产品的成本为30元/件,且年销售量y (万件)与售价x (元/件)的函数关系式为()()2140,406080.6070x x y x x ⎧-+≤<⎪=⎨-+≤≤⎪⎩ (1)当售价为60元/件时,年销售量为________万件;(2)当售价为多少时,销售该产品的年利润最大?最大利润是多少?(3)若销售该产品的年利润不少于750万元,直接写出x 的取值范围.【答案】(1)20;(2)当售价为50元/件时,年销售利润最大,最大为800万元;(3)4555x ≤≤【解析】(1)=6080608020x y x y =-+=-+=当时,代入中,得.(2)设销售该产品的年利润为W 万元,当60x ≤40<时,()()()2302140250800W x x x =--+=--+.∴20<-,∴当50x =时,800W =最大当6070≤≤x 时,()()()2308055625W x x x =--+=--+∴10-<,6070≤≤x ,∴当60x =时,600W =最大∴800600>,∴当50x =时,800W =最大∴当售价为50元/件时,年销售利润最大,最大为800万元.(3)4555x ≤≤理由如下:由题意得 ()()3021407504555x x x --+≥≤≤解得:故答案为:(1)20;(2)当售价为50元/件时,年销售利润最大,最大为800万元;(3)4555x ≤≤ 课后训练1.某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y (件)与销售单价x (元)之间的函数关系式;(不需要求自变量取值范围) (2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?【答案】(1)5550y x =-+;(2)70元;(3)80元.【解析】(1)∴依题意得()150100102y x =+-⨯⨯, ∴y 与x 的函数关系式为5550y x =-+;(2)∴依题意得()504000y x -=,即()()5550504000x x -+-=,解得:170x =,290x =, ∴7090<∴当该商品每月销售利润为4000,为使顾客获得更多实惠,销售单价应定为70元;(3)设每月总利润为w ,依题意得 ()()()250555050580027500w y x x x x x =-=-+-=-+-∴50-<,此图象开口向下∴当()8008025x =-=⨯-时, w 有最大值为:258080080275004500-⨯+⨯-=(元),∴当销售单价为80元时利润最大,最大利润为4500元,故为了每月所获利润最大,该商品销售单价应定为80元.2.红星工厂研发生产某种产品,成本为3万元/吨,每天最多能生产15吨.工厂为持续发展,尝试与博飞销售公司建立产销合作关系,双方约定:合作第一个月,工厂产品仅由博飞销售公司订购代销,并每天按博飞销售公司当日订购产品数量生产,当日出厂价格y (万元/吨)与当日订购产品数量x (吨)之间的关系如图所示:(1)直接写出y 与x 的函数关系式,并写出自变量x 的取值范围;(2)红星工厂按产销合作模式生产这种产品,设第一个y (万元/吨)月单日所获利润为w (万元), ①求w (万元)与x (吨)的函数关系式;②为响应国家“乡村振兴”政策,红星工厂决定,将合作第一个月中单日所获最大利润捐赠给附近村委会.试问:工厂这次为“乡村振兴”最多捐赠多少万元?【答案】(1)9(05)4(515)x x y x -+≤≤⎧=⎨≤⎩<;(2)①w =26(05)(515)x x x x x ⎧-+≤≤⎨≤⎩<;②工厂这次为“乡村振兴”最多捐赠15万元.【解析】(1)当0≤x ≤5时,设函数关系式为:y =kx +b ,把(0,9),(5,4)代入上式,得945b k b =⎧⎨=+⎩,解得:19k b =-⎧⎨=⎩,∴y =-x +9, 当5<x ≤15时,y =4,综上所述:9(05)4(515)x x y x -+≤≤⎧=⎨≤⎩<; (2)①由题意得:w =(y -3)x =()()6(05)43(515)x x x x x ⎧-+≤≤⎪⎨-≤⎪⎩<,∴w =26(05)(515)x x x x x ⎧-+≤≤⎨≤⎩<; ②当05x ≤≤时,w =()22639x x x -+=--+,此时x =3,w 最大值=9,当515x ≤<时,w =x ,此时,x =15,w 最大值=15,综上所述:工厂这次为“乡村振兴”最多捐赠15万元.3.一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现销售量y (件)与售价x (元/件)(x 为正整数)之间满足一次函数关系:(1)求y 与x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润及此时的销售单价分别为多少元?【答案】(1)50012000y x =-+;(2)一周该商场销售这种商品获得的最大利润为54000元,销售单价分别为12元【解析】(1)设y 和x 的函数表达式为y kx b =+,则10000495005k b k b =+⎧⎨=+⎩,解得50012000k b =-⎧⎨=⎩, 故y 和x 的函数表达式为50012000y x =-+;.(2)设这一周该商场销售这种商品的利润为w 元,由题意得:3155001200006000x x ≤≤⎧⎨-+≥⎩, 解得312x ≤≤,这一周该商场销售这种商品获得利润:()()()235001200035001350036000w y x x x x x =-=-+-=-+-,∴22750055125551252w x ⎛⎫=--+≤ ⎪⎝⎭, ∴312x ≤≤,故12x =时,w 有最大值为54000,答:一周该商场销售这种商品获得的最大利润为54000元,销售单价为12元.4.夏天到了,宁波人最惦记的水果——杨梅进入成熟期,一水果店老板进行杨梅销售,已知杨梅进价为25元/千克.如果售价为30元/千克,那么每天可售出150千克:如果售价为32元/千克,那么每天可售出130千克.经调查发现:每天销售盘y (千克)与售价x (元/千克)之间存在一次函数关系.(1)求出y 关于x 的一次函数关系式;(2)若杨梅售价不得高于36元/千克,该店主销售杨梅每天要获得960元的毛利润,则销售单价应定为多少元/千克?(毛利润=销售额-进货成本〉(3)设杨梅每天销售的毛利润为W 元,当杨梅的售价定为多少元/千克时,每天销售获得的毛利润最大?最大毛利润是多少元?【答案】(1)y=-10x+450;(2)33元/千克;(3)售价定为35元/千克时,每天销售获得的毛利润最大,最大毛利润是1000元.【解析】(1)∴每天销售量y(千克)与售价x(元/千克)之间存在一次函数关系,∴设y=kx+b,∴x=30时,y=150,x=32时,y=130,则1503013032k bk b=+⎧⎨=+⎩,解得:10450kb=-⎧⎨=⎩,∴y关于x的一次函数关系式:y=-10x+450;(2)设销售单价应定为x元/千克,由题意得:(x-25)(-10x+450)=960,解得:x=37或x=33,∴杨梅售价不得高于36元/千克,∴x=37不合题意,∴x=33,答:销售单价应定为33元/千克;(3)设杨梅的售价定为m元/千克时,每天销售获得的毛利润最大,则W=(m-25)(-10m+450)=-10m2+700m-11250=-10(m-35)2+1000,∴-10<0,∴当m=35时,W有最大值,最大值1000元,答:杨梅的售价定为35元/千克时,每天销售获得的毛利润最大,最大毛利润是1000元.5.某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y(单位:万件)与销售单价x(单位:元)之间有如下表所示关系:(1)根据表中的数据,在图中描出实数对(,)x y所对应的点,并画出y关于x的函数图象;(2)根据画出的函数图象,求出y关于x的函数表达式;(3)设经营此商品的月销售利润为P(单位:万元).①写出P关于x的函数表达式;②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不.得超过...进价的200%,则此时的销售单价应定为多少元? 【答案】(1)图象见解析;(2)216y x =-+;(3)①222032P x x =-+-;②销售单价应定为3元.【解析】(1)y 关于x 的函数图象如图所示:(2)由(1)可设y 与x 的函数关系式为y kx b =+,则由表格可把()()4,8,5,6代入得:4856k b k b +=⎧⎨+=⎩,解得:216k b =-⎧⎨=⎩,∴y 与x 的函数关系式为216y x =-+; (3)①由(2)及题意可得:()()()22221622032P x y x x x x =-=--+=-+-;∴P 关于x 的函数表达式为222032P x x =-+-;②由题意得:2200x ≤⨯%,即4x ≤,∴22203210x x -+-=,解得:123,7x x ==,∴3x =; 答:此时的销售单价应定为3元.。

二次函数利润最大问题

二次函数利润最大问题

1. (2011湖南怀化,16,3)出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =________元时,一天出售该种手工艺品的总利润y 最大.【答案】4【思路分析】总利润=单件产品利润×销售数量,因此y =x (8-x )=-(x -4)2+16,当x =4时,总利润y 有最大值16.【方法规律】①了解总利润的计算方法;②运用配方法求二次三项式的最值是解本题的难点;③解实际问题,要考虑所求的解是否符合实际意义.【易错点分析】配方过程易出现错误.【关键词】二次函数,二次函数与实际问题.【推荐指数】★★★☆☆【题型】常规题1. (2011广东佛山,24,10)商场对某种商品进行市场调查,1至6月份该种商品的销售情况如下:①销售成本p (元/千克)与销售月份x 的关系如图所示:②销售收入q (元/千克)与销售月份x 满足q=-32x+15 ③销售量m (千克)与销售月份x 满足m=100x+200.试解决以下问题:(1)根据图形,求与p 与x 之间的函数关系式:(2)求该种商品每月的销售利润y (元)与销售月份X 的函数关系式,并求出哪个月的销售利润最大?【答案】解:(1)根据图形可知;p 与x 之间的关系符合一次函数.故可设为p=kx+b ,并有946k b k b =+⎧⎨=+⎩解得110k b =-⎧⎨=⎩故p 与x 的函数关系式为p=-x +10.(2)根据题意,月销售利润y=(q-p)m=[(-32x+15)-(-x+10)](100x+200),化简得y=-50x²+400x+10000,所以4月份销售利润最大。

【思路分析】(1)观察图象,可以判断p 与x 之间的关系符合一次函数,于是设出其解析式,选取其中两组点坐标,利用待定系数法求解.(2)依题意,有月销售利润y=(q-p)m ,进而可以得到二次函数,并利用二次函数的性质求解.【方法规律】利用对问题的转化和待定系数法,结合函数性质求解.【易错点分析】对于(2)容易错误地认为销售利润y=pm.【关键词】一次函数、二次函数的应用 【难度】★★★★☆ 【题型】好题、综合题.3. (2011湖北荆州,23,10分)(本题满分10分)2011年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定民农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系.16p (元/千克)x (月份) 49o型 号金 额Ⅰ型设备 Ⅱ型设备 投资金额x (万元)x 5 x 2 4 补贴金额y (万元) y 1=kx(k≠0)2 y 2=ax 2+bx(a≠0) 2.4 3.2 (1)分别求出1y 和2y 的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.【答案】解:(1)由题意得:①5k =2,k =52 ∴x y 521= ②⎩⎨⎧=+=+2.34164.224b a b a ,解之得:⎪⎪⎩⎪⎪⎨⎧=-=5851b a ,∴x x y 585122+-= (2)设购Ⅱ型设备投资t 万元,购Ⅰ型设备投资(10-t )万元,共获补贴Q 万元 ∴t t y 524)10(521-=-=,t t y 585122+-= 529)3(5158515242221+--=+--=+=t t t t y y Q ∴当t =3时,Q 有最大值为529,此时10-t =7(万元) 即投资7万元购Ⅰ型设备,投资3万元购Ⅱ型设备,共获最大补贴5.8万元.【思路分析】第(1)小题考查学生求函数解析式的能力,坡度设置合理,学生上手容易,只需根据函数的解析式,直接代入就可求出,对于(2)主要考查了学生自己用函数关系表示题目中的数量关系,并进一步求二次函数的极值的方法.【方法规律】掌握待定系数法求解析式的基本方法,以及求二次函数最值的方法,即当ab x 2-=时,y 有最大(小)值a b ac 442-. 【易错点分析】对于第(2)不能正确列出函数关系式【关键词】待定系数法求函数解析式 二次函数的极值【推荐指数】★★★☆☆【题型】常规题 好题4. (2011湖北随州,23,12分)我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x 万元,可获得利润()216041100P x =--+(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x 万元,可获利润()()299294101001601005Q x x =--+-+(万元) ⑴若不进行开发,求5年所获利润的最大值是多少?⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?⑶根据⑴、⑵,该方案是否具有实施价值?【答案】解:⑴当x =60时,P 最大且为41,故五年获利最大值是41×5=205万元. ⑵前两年:0≤x ≤50,此时因为P 随x 增大而增大,所以x =50时,P 值最大且为40万元,所以这两年获利最大为40×2=80万元.后三年:设每年获利为y ,设当地投资额为x ,则外地投资额为100-x ,所以y =P +Q =()216041100x ⎡⎤--+⎢⎥⎣⎦+2992941601005x x ⎡⎤-++⎢⎥⎣⎦=260165x x -++=()2301065x --+,表明x =30时,y 最大且为1065,那么三年获利最大为1065×3=3495万元,故五年获利最大值为80+3495-50×2=3475万元.⑶有极大的实施价值.【思路分析】(1)由代数式()216041100P x =--+可知当x =60时,可获得利润最大值,即可求出5年所获利润的最大值;3495万元.所以有实施价值.(2)前两年得利润加上后三年的利润再除去前两年每年拨出的利润50万元即可.(3)不开发5年所获利润的最大值是205万元;若按规划实施,5年所获利润(扣除修路后)的最大值是3475元,有极大的实施价值.【方法规律】二次函数的实际应用问题的解题关键是理解题意,找到合适函数;取得最大值,是解此题的关键,还要注意后三年的最大值的求解方法,要考虑其它的费用.【易错点分析】配方时易出现计算错误.6. (2011江苏常州,26,7分)某商店以6元/千克的价格购进某干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售,这批干果销售结束后,店主从销售统计中发现:甲级干果与乙级干果在销售过程中每天都有销售量,且在同一天卖完;甲级干果从开始销售至销售的第x 天的总销售量1y (千克)与x 的关系为2140y x x =-+;乙级干果从开始销售至销售的第t 天的总销售量2y (千克)与t 的关系为22y at bt =+,且乙级干果的前三天的销售量的情况见下表:t 1 2 32y21 44 69 (1)求a 、b 的值.(2)若甲级干果与乙级干果分别以8元/千克和6元/千克的零售价出售,则卖完这批干果获得的毛利润为多少元?(3)此人第几天起乙级干果每天的销售量比甲级干果每天的销售量至少多千克?(说明:毛利润=销售总金额-进货总金额.这批干果进货至卖完的过程中的损耗忽略不计.)【答案】(1)选取表中两组数据,如当t=1时,y 2=21当t=2时,y 2=44;分别代入22y at bt =+,得⎩⎨⎧+=+=ba b a 244421,解得a=1,b=20. (2)设甲级干果与乙级干果n 天销完这批货.则1140204022=+++-n n n n ,即60n=1140,解之得n=19,当n=19时,1399y =,2y =741.毛利润=399×8+741×6-1140×6=798(元).(3)第n 天甲级干果的销售量为-2n+41,第n 天乙级干果的销售量为2n+19.(2n+19)-(-2n+41)≥6解之得n≥7.【思路分析】(1)选取表中两组数据,求得a=1,b=20.(2)设n 天消完这批货,根据“甲级干果销售量+乙级干果销售量=总量”可求出n ,计算出销售量,从而可求出毛利润.(3)用前n 天的销售量减去前(n-1)天的销售量,即可求出甲、乙两种干果第n 天的的销售量,从而可列出不等式求解.【方法规律】本题第(1)问考查利用待定系数法,求二次函数关系式;(2)、(3)需要根据题目中提供的有关信息建立数学模型,进而解决问题.【易错点分析】第n 天的销售量会直接用总的销售量除以天数,从而导致错误.【关键词】待定系数法、二次函数【推荐指数】★★★☆☆【题型】应用题7. (2011江苏徐州,25,8分)某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.(1)请写出每月销售该商品的利润y (元)与单价上涨x (元)间的函数关系式;(2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?【答案】(1)y=(x -60)[300-10(x -80)]=(x -60)(300-10x+800)=(x -60)(1100-10x )=210170066000x x -+-即y=210170066000x x -+-(2)y=210170066000x x -+-=210(85)6250x --+.因为-10<0,所以当x =85时,y 有最大值,y 最大值=6250.即单价定为85元时,每月销售商品的利润最大,最大利润为6250元.【思路分析】(1)上涨x 元后,所销售的件数是[300-10(x -80)];每件的销售利润为(x -60)所以y=(x -60)[300-10(x -80)],整理得y=210170066000x x -+-;(2)根据二次函数的配方法可以求得最大利润.【方法规律】本题是综合考查二次函数的最值问题,需要熟悉二次函数的相关基本概念和配方法即可解题.要注意解题过程的完整性.【易错点分析】每件销售利润=每件销售收入-每件购进成本,这里销售利润只与进价 60元,不要把利润与定价80直接联系起来误把利润写成(x -80)元.【关键词】二次函数的应用.【推荐指数】★★★★★9. (2011山东菏泽,20,9分)我市一家电子计算器专卖店每只进价13元,售价20元,多买优惠 ;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元.(1) 求一次至少买多少只,才能以最低价购买?(2) 写出该专卖店当一次销售x (只)时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;(3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少?【答案】解:(1)设一次购买x 只,才能以最低价购买,则有:0.1(x -10)=20-16,解这个方程得x =50;答:一次至少买50只,才能以最低价购买.(2) 220137(001[(2013)0.1(10)]8(1050)101613=3(50)x x x x y x x x x x x x x -=⎧⎪⎪=---=-+⎨⎪⎪-⎩<≤1)<<≥. (说明:因三段图象首尾相连,所以端点10、50包括在哪个区间均可)(3)将21810y x x =-+配方得21(40)16010y x =--+,所以店主一次卖40只时可获得最高利润,最高利润为160元.(也可用公式法求得)【思路分析】(1)由题意知最低价是16元,则可优惠4元,凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,可设一次购买x 只,才能以最低价购买,则可列方程0.1(x -10)=20-16求解;(2)由题意可知分3种情况,当0<x ≤10时不优惠,当10<x <50时,每多买1只,所买的全部计算器每只就降低0.10元,当x ≥50时,每只都是最低价16元;(3)当只数在10至50只之间时,y 是x 的二次函数,求出最大值即可.【方法规律】本题是考查学生用方程,函数的思想解决实际问题,本题关键要想到由自变量的取值不同分情况讨论.【易错点分析】学生不易想到分类讨论的思想【关键词】一元一次方程,函数,分类讨论【推荐指数】★★★★☆【题型】、新题,好题,难题10.(2011山东泰安,28 ,10分)某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为每件25元时,可卖出105件,而售价每上涨1元,就少卖5元.(1)当售价定为每件30元时,一个月可获利多少元?(2)当倍价定为每件多少元时,一个月的获利最大?最大利润是多少元?【答案】(1)获利:(30-20)[105-5(30-25)]=800(元)(2)设售价为每件x 元时,一个月的获利为y 元由题意,得:y =(x -20)[105-5(30-25)]=-5x 2+330x -4600=-5(x -33)2+845当x =33时,y 的最大值是845故当售价为定价格为33元时,一个月获利最大,最大利润是845元.【思路分析】(1)可根据题意列出算术,并进行计算;(2)根据题意列出二次函数关系式,用配方法求得最值.【方法规律】考查了有理数的运算,二次函数最值的求法,运用了配方法求二次函数的最大值.【易错点分析】 最值时,凭直觉求得;列错算式.【关键词】二次函数的最值【推荐指数】★☆☆【题型】常规题.11. (2011山东潍坊,22,10分)2010年上半年,某种农产品受不良炒作的影响,价格一路上扬,8月初国家实施调控措施后,该农产品的价格开始回落.其中,1月份至7月份,该农产品的月平均价格y 元/千克与月份x 呈一次函数关系;7月份至12月份,月平均价格元/千克与月份x 呈二次函数关系.已知1月、7月、9月和12月这四个月的月平均价格分别为8元/千克、26元/千克、14元/千克、11元/千克.(1)分别求出当1≤x ≤7和7≤x ≤12时,y 关于x 的函数关系式;(2)2010年的12个月中,这种农产品的月平均价格哪个月最低?最低为多少?(3)若以12个月份的月平均价格的平均数为年平均价格,月平均价格高于年平均价格的月份有哪些?【解】(1)当17x ≤≤时,设y kx m =+,将点(1,8)、(7,26)分别代入y kx m =+,得8,726.k m k m +=⎧⎨+=⎩解之,得5,3.m k =⎧⎨=⎩ ∴函数解析式为35y x =+.当712x ≤≤时,设2y ax bx c =++,将(7,26)、(9,14)、(12,11)分别代入2y ax bx c =++,得: 49726,81914,1441211.a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩解之,得1,22,131.a b c =⎧⎪=-⎨⎪=⎩∴函数解析式为222131y x x =-+.(2)当17x ≤≤时,函数35y x =+中y 随x 的增大而增大,∴当1x =最小值时,3158y =⨯+=最小值.当712x ≤≤时,()22221311110y x x x =-+=-+, ∴当11x =时,10y =最小值.所以,该农产品平均价格最低的是1月,最低为8元/千克.(3)∵1至7月份的月平均价格呈一次函数,∴4x =时的月平均价格17是前7个月的平均值.将8x =,10x =和11x =分别代入222131y x x =-+,得19y =,11y =和10y =. ∴后5个月的月平均价格分别为19,14,11,10,11. ∴年平均价格为17719141110114615.3123y ⨯+++++==≈(元/千克). 当3x =时,1415.3y =<,∴4,5,6,7,8这五个月的月平均价格高于年平均价格.【思路分析】(1)当1≤x ≤7时,y 与x 间成一次函数关系,当7≤x ≤12时,y 与x 间成二次函数关系,运用待定系数法可求出相应的函数关系式.(2)分别结合一次函数与二次函数的性质,可确定在(1)中所求得的两个函数解析式中y 的最小值,由此可以进行分析判断.(3)要求年平均价格,需要知道该年月平均价格的和,由于1月份至7月份月平均价格呈一次函数,所以可取4x =时的月平均价格作为前7个月的平均值,在后5个月中,9月和12月的月平均价格一直,而其余3个月(8月,10月,11 月)的月平均价格可利用(1)中所求得的函数解析式求得.求出年平均价格后,把每月的平均价格与之相比即可作出判断.【规律总结】对于分段函数,在确定函数解析式时,要根据自变量的取值范围确定相对应的函数值,运用待定系数法确定函数解析式,利用函数解析式确定函数的最值时,要充分利用相应函数的性质.【易错点分析】计算量较大,在具体计算时易出现数据错误.【关键词】待定系数法,一次函数,二次函数,最值问题,平均数【推荐指数】★★★★☆【题型】新题,易错题13. (2011重庆,25,10分)某企业为重庆计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y 1(元)与月份x (1≤x ≤9,且x 取整数)之间的函数关系如下表:月份x 1 2 3 45 6 7 8 9 价格y 1(元/件) 560 580 600620 640 660 680 700 720 随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y 2(元)与月份x (10≤x ≤12,且x 取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=-0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1 a%.这样,在保证每月上万件配件销量的前提下,完成1至5月的总利润1700万元的任务,请你参考以下数据,估算出a 的整数值.(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025) 【解】(1)y1与x之间的函数关系式为y1=20x+540,y2与x之间满足的一次函数关系式为y2=10x+630.(2)去年1至9月时,销售该配件的利润w=p1(1000-50-30-y1)=(0.1x+1.1)(1000−50−30−20x−540)=(0.1x+1.1)(380−20x)=-2x2+160x+418=-2( x-4)2+450,(1≤x≤9,且x取整数)∵-2<0,1≤x≤9,∴当x=4时,w最大=450(万元);去年10至12月时,销售该配件的利润w=p2(1000-50-30-y2)=(-0.1x+2.9)(1000-50-30-10x-630)=(-0.1x+2.9)(290-10x)=( x-29)2,(10≤x≤12,且x取整数),当10≤x≤12时,∵x<29,∴自变量x增大,函数值w减小,∴当x=10时,w最大=361(万元),∵450>361,∴去年4月销售该配件的利润最大,最大利润为450万元.(3)去年12月份销售量为:-0.1×12+0.9=1.7(万件),今年原材料的价格为:750+60=810(元),今年人力成本为:50×(1+20﹪)=60(元),由题意,得5×[1000(1+a﹪)-810-60-30]×1.7(1-0.1a﹪)=1700,设t= a﹪,整理,得10t2-99t+10=0,解得t=99940120,∵972=9409,962=9216,而9401更接近9409.∴9401=97.∴t1≈0.1或t2≈9.8,∴a1≈10或a2≈980.∵1.7(1-0.1a ﹪)≥1,∴a 2≈980舍去,∴a ≈10.答:a 的整数值为10.【思路分析】(1)用待定系数法求一次函数关系式;(2)分时间段求出销售该配件的利润w 关于的函数,再求出各自的最大值,最后通过比较求出去年12个月中利润的最大值;(3) 根据1至5月的总利润1700万元列一元二次方程,通过一元二次方程的解找出符合条件的答案.【方法规律】本题主要考查了用待定系数法求一次函数解析式、列代数式求二次函数的解析式,列一元二次方程求符合条件的解、二次函数的最值、合理估算等代数知识,采用了先局部后整体的思维策略解决问题,用到了待定系数法、方程思想、函数思想等数学思想方法,是一道综合性较强的题目.【易错点分析】不会分析分时间段列出二次函数的解析式,不会求分段函数的最值,不会根据题意列一元二次方程.【关键词】一次函数,二次函数及最值,一元二次方程 【难度】★★★★★ 【题型】常规题,易错题,难题,新题,综合题15. (2011湖北黄冈,23,12分)我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x 万元,可获得利润()216041100P x =--+(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x 万元,可获利润()()299294101001601005Q x x =--+-+(万元) ⑴若不进行开发,求5年所获利润的最大值是多少?⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?⑶根据⑴、⑵,该方案是否具有实施价值?【答案】解:⑴当x=60时,P 最大且为41,故五年获利最大值是41×5=205万元. ⑵前两年:0≤x ≤50,此时因为P 随x 增大而增大,所以x=50时,P 值最大且为40万元,所以这两年获利最大为40×2=80万元.后三年:设每年获利为y ,设当地投资额为x,则外地投资额为100-x ,所以y=P +Q =()216041100x ⎡⎤--+⎢⎥⎣⎦+2992941601005x x ⎡⎤-++⎢⎥⎣⎦=260165x x -++=()2301065x --+,表明x=30时,y 最大且为1065,那么三年获利最大为1065×3=3495万元,故五年获利最大值为80+3495-50×2=3475万元.⑶有极大的实施价值.【思路分析】(1)根据题意把x = 60代入解析式就可以计算求出最大值;(2)根据二次函数的性质,利用其性质求解;(3)通过比较利润即可明晰何种方案的实施价值较大。

第05讲二次函数利润问题的四种题型(带答案)

第05讲二次函数利润问题的四种题型(带答案)

第05讲二次函数利润问题的四种题型题型一:“每每”的利润问题商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x元,“每每”问题的做题步骤①找出原来的销量:30件,原来的每件盈利:50元;②确定每件产品降价(或涨价)后的利润:(50-x)元;③计算出降价(或涨价)后销量的变化量:2x件;④找出降价(或涨价)后的销量,本题里有明确的“多出”字样,即为:(30+2x)件;⑤利润=每件利润×数量:=5−5+B计算注意事项①若题中要求价格为整数,而二次函数的对称轴不是整数,要用二次函数的性质取适当的整数求最值;②结果可能不唯一,例如题中要求结果为整数,而对称轴是51.5,那么51和52都可以;③看清楚题中是否有“最优惠”等条件,算出多个结果需要舍根。

【例1】商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x元,据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变,销售正常的情况下,设商场日盈利y元,求y与x的函数关系式;(3)在(2)的条件下,每件商品降价多少元时,商场日盈利最高?【答案】(1)2x ,()50x -;(2)2701500y x x =--+(3)每件商品降价35元时,商场日盈利最高.【分析】(1)每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x 元.商场日销售量增加2x 件,每件商品盈利()50x -元;(2)根据(1)得,单件利润乘以销售量等于利润,即可得到y 与x 的函数关系式;(3)由题意得:利润函数的表达式为()()50302y x x =-+,再化为顶点式得()2352725y x =-++,得,当35x =时,y 有最大值.【详解】(1)解:每天销售30件,每件盈利50元,每件商品每降价1元,商场平均每天可多售出2件,∴当降价x 元时,商场日销售量增加2x 件,每件商品盈利为()50x -元,故答案为:2x ,()50x -;(2)解:根据题意得:=50−30+2=−2−70+1500.(3)解:()22701500352725y x x x =--+=-++,当35x =时,y 有最大值,答:每件商品降价35元时,商场日盈利最高.【点睛】本题考查二次函数的销售问题,涉及到利润函数=单件利润乘以销售数量,利用二次函数的性质求最值,通常都是化为顶点式来解决问题.1.(2022·贵州遵义·三模)红星公司销售一种成本为4元/件的产品,若月销售单价不高于5元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x (单位:元/件),月销售量为y (单位:万件).(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售件产品便向大别山区捐款a 元,已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a 的值2.(2022·辽宁朝阳·模拟预测)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x元据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变,销售正常的情况下,设商场日盈利y元,求y与x的函数关系式;(3)在(2)的条件下,每件商品降价多少元时,商场日盈利最高?3.(贵州遵义·统考一模)某水果批发店销售一种优质水果,已知这种优质水果的进价为10元/千克.经市场调查发现:若售价为12元/千克时,每天的销售量为180千克;若售价每千克提高1元,每天的销售量就会减少10千克.设每天的销售量为y千克,每千克的售价为x元.请解答以下问题:(1)为让利给顾客,当这种优质水果售价为多少时,每天可获得利润960元.(2)当售价定为多少时,每天可获得最大利润,并求最大利润是多少?4.(2022·四川巴中·统考中考真题)端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元.(1)求每盒猪肉粽和豆沙粽的进价;(2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a元,销售猪肉粽的利润为w元,求该商家每天销售猪肉粽获得的最大利润.5.(2022·山东青岛·统考中考真题)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?6.(2022·贵州铜仁·统考中考真题)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:(1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?1.(2022·贵州遵义·三模)红星公司销售一种成本为4元/件的产品,若月销售单价不高于5元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售件产品便向大别山区捐款a元,已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值【答案】(1)()540500.110(50100)xyx x⎧≤≤=⎨-+<≤⎩(2)7元/件,最大利润为9万元(3)4a=【分析】(1)分4050x≤≤和50x>两种情况,根据“月销售单价每涨价1元,月销售量就减少0.1万件”即可得函数关系式,再根据0y≥求出x的取值范围;(2)在(1)的基础上,根据“月利润=(月销售单价-成本价)⨯月销售量”建立函数关系式,分别利用一次函数和二次函数的性质求解即可得;万元,先根据捐款当月的月销售单价、月销售2.(2022·辽宁朝阳·模拟预测)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x 元据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x 的代数式表示);(2)在上述条件不变,销售正常的情况下,设商场日盈利y 元,求y 与x 的函数关系式;(3)在(2)的条件下,每件商品降价多少元时,商场日盈利最高?【答案】(1)2x ,()50x -;(2)2701500y x x =--+(3)每件商品降价35元时,商场日盈利最高.【分析】(1)每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x 元.商场日销售量增加2x 件,每件商品盈利()50x -元;(2)根据(1)得,单件利润乘以销售量等于利润,即可得到y 与x 的函数关系式;(3)由题意得:利润函数的表达式为()()50302y x x =-+,再化为顶点式得()2352725y x =-++,得,当35x =时,y 有最大值.【详解】(1)解:每天销售30件,每件盈利50元,每件商品每降价1元,商场平均每天可多售出2件,∴当降价x 元时,商场日销售量增加2x 件,每件商品盈利为()50x -元,故答案为:2x ,()50x -;(2)解:根据题意得:()()250302701500y x x x x =-+=--+.(3)解:()22701500352725y x x x =--+=-++,当35x =时,y 有最大值,答:每件商品降价35元时,商场日盈利最高.【点睛】本题考查二次函数的销售问题,涉及到利润函数=单件利润乘以销售数量,利用二次函数的性质求最值,通常都是化为顶点式来解决问题.3.(贵州遵义·统考一模)某水果批发店销售一种优质水果,已知这种优质水果的进价为10元/千克.经市场调查发现:若售价为12元/千克时,每天的销售量为180千克;若售价每千克提高1元,每天的销售量就会减少10千克.设每天的销售量为y 千克,每千克的售价为x 元.请解答以下问题:(1)为让利给顾客,当这种优质水果售价为多少时,每天可获得利润960元.(2)当售价定为多少时,每天可获得最大利润,并求最大利润是多少?【答案】(1)当这种优质水果售价为18元时,每天可获得利润960元(2)当售价定为20元时,每天可获得最大利润,最大利润是1000元【分析】(1)先根据题意求得销量与售价的关系,然后根据销量乘以每千克的利润等于总利润,列出一元二次方程,解方程即可求解;(2)设利润为w ,根据题意列出二次函数,根据二次函数的性质即可求解.【详解】(1)解:设每天的销售量为y 千克,每千克的售价为x 元,根据题意得,()180121010300y x x =--⨯=-+,()()1010300960x x --+=,解得:1218,22x x ==,∵为让利给顾客,∴18x =,答:当这种优质水果售价为18元时,每天可获得利润960元;(2)解:设利润为w ,则()()()22101030010400300010201000w x x x x x =--+=-+-=--+,∴20x =时,w 最大,最大利润是1000元,答:当售价定为20元时,每天可获得最大利润,最大利润是1000元.【点睛】本题考查了一元二次方程的应用,二次函数的应用,根据题意列出方程和函数关系式是解题的关键.4.(2022·四川巴中·统考中考真题)端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元.(1)求每盒猪肉粽和豆沙粽的进价;(2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a 元,销售猪肉粽的利润为w 元,求该商家每天销售猪肉粽获得的最大利润.【答案】(1)每盒猪肉粽的进价为40元,每盒豆沙粽进价为30元(2)1800元【分析】(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,根据猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元列出方程组,解出即可.(2)根据当50a =时,每天可售出100盒,每盒猪肉粽售价为a 元时,每天可售出猪肉粽()100250a --⎡⎤⎣⎦盒,列出二次函数关系式,再化成顶点式即可得解.(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,由题意得:102100x y x y -=⎧⎨+=⎩解得:4030x y =⎧⎨=⎩∴每盒猪肉粽的进价为40元,每盒豆沙粽进价为30元.(2)(40)[1002(50)]w a a =---22(70)1800a =--+.∴当70a =时,w 最大值为1800元.∴该商家每天销售猪肉粽获得的最大利润为1800元.【点睛】本题主要考查了二元一次方程组的实际应用以及二次函数的实际应用,根据题意列出相应的函数关系式是解此题的关键.5.(2022·山东青岛·统考中考真题)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y (元/千克)与购进数量x (箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?【答案】(1)0.28.4y x =-+(110x ≤≤且x 为整数).(2)李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.【分析】(1)根据题意列出8.20.2(1)y x =--,得到结果.(2)根据销售利润=销售量⨯(售价-进价),利用(1)结果,列出销售利润w 与x 的函数关系式,即可求出最大利润.【详解】(1)解:由题意得8.20.2(1)y x =--0.28.4x =-+∴批发价y 与购进数量x 之间的函数关系式是0.28.4y x =-+(110x ≤≤,且x 为整数).(2)解:设李大爷销售这种水果每天获得的利润为w 元则[120.5(1)]10w x y x=---⋅[120.5(1)(0.28.4)]10x x x=----+⋅2341x x=-+∵30a =-<园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:(1)求每天销量y (吨)与批发价x (千元/吨)之间的函数关系式,并直接写出自变量x 的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?【答案】(1)220y x =-+,4 5.5x ≤≤(2)将批发价定为每吨5.5千元时,每天获得的利润最大,最大利润是31.5千元.【分析】(1)根据题意直接写出y 与x 之间的函数关系式和自变量的取值范围;(2)根据销售利润=销售量×(批发价-成本价),列出销售利润w (元)与批发价x (千元/吨)之间的函数关系式,再依据函数的增减性求得最大利润.(1)解:根据题意得()()12242204 5.5y x x x =--=-+≤≤,所以每天销量y (吨)与批发价x (千元/吨)之间的函数关系式220y x =-+,自变量x 的取值范围是4 5.5x ≤≤(2)解:设每天获得的利润为w 千元,根据题意得()()222202224402(6)32w x x x x x =-+-=-+-=--+,∵20-<,∴当6x <,W 随x 的增大而增大.∵4 5.5x ≤≤,∴当 5.5x =时,w 有最大值,最大值为22 5.563231.5-⨯-+=(),∴将批发价定为每吨5.5千元时,每天获得的利润最大,最大利润是31.5千元.【点睛】本题考查二次函数应用,解题的关键是读懂题意,列出函数关系式.题型二:二次函数和一次函数综合的利润问题【例2】2022年春,新冠肺炎有所蔓延,市场对口罩的需求量仍然较大.某公司销售一种进价为12元/袋的口罩,其销售量y (万袋)与销售价格x (元/袋)的变化如表:价格x (元/袋)…14161820…销售量y(万袋)…5432…另外,销售过程中的其他开支(不含进价)总计6万元.(1)根据表中数据变化规律及学过的“一次函数、二次函数、反比例函数”知识,请判断销售量y (万袋)与价格x (元/袋)满足什么函数?并求出y 与x 之间的函数表达式;(2)设该公司销售这种口罩的净利润为w (万元),当销售价格定为多少元时净利润最大,最大值是多少?,可判断该函数是一次函数;设1.(2022·贵州遵义·校考一模)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)3035404550日销售量p(千克)6004503001500(1)请直接写出p与x之间的函数关系式:(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.2.(2021·四川德阳·二模)某工厂制作A、B两种手工艺品,B每件获利比A多105元,制作16件A与制作2件B获利相同.(1)制作一件A和一件B分别获利多少元;(2)工厂安排65人制作A,B两种手工艺品,每人每天制作2件A或1件B.现在在不增加工人的情况下,增加制作C工艺品.已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A,C两种手工艺品的数量相等,设每天安排x人制作B,y人制作A.写出y与x之间的函数关系式;(3)在(1)(2)的条件下,每天制作B不少于5件.当每天制作B为5件时,每件B获利不变,若B每增加1件,则当天平均每件B获利减少2元,已知C每件获利30元,求每天制作三种手工艺品可获得的总利润W(元)的最大值及相应x的值.3.(2022·辽宁大连·校考模拟预测)新冠肺炎疫情后期,我县某药店进了一批口罩,成本价为2元/个,投入市场销售,其销售单价不低于成本,按物价局规定销售利润率不高于80%.经一段时间调查,发现每天销售量y(个)与销售单价x(元/个)之间存在一次函数关系,且有两天数据为:销售价定为2.3元,每天销售1080个;销售价定为2.5元,每天销售1000个.(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围.(2)如果该药店销售口罩每天获得800元的利润,那么这种口罩的销售单价应定为多少元?(3)设每天的总利润为w元,当销售单价定为多少元时,该药店每天的利润最大?最大利润是多少元?1.(2022·贵州遵义·校考一模)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p (千克)与销售价格x (元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x (元/千克)3035404550日销售量p (千克)600450300150(1)请直接写出p 与x 之间的函数关系式:(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a 元(a >0)的相关费用,当40≤x ≤45时,农经公司的日获利的最大值为2430元,求a 的值.【答案】(1)301500p x =-+(2)这批农产品的销售价格定为40元,才能使日销售利润最大(3)a 的值为2.【分析】(1)首先根据表中的数据,可猜想y 与x 是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)根据题意列出日销售利润w 与销售价格x 之间的函数关系式,根据二次函数的性质确定最大值即可;(3)根据题意列出日销售利润w '与销售价格x 之间的函数关系式,并求得抛物线的对称轴,再分两种情况进行讨论,依据二次函数的性质求得a 的值.【详解】(1)解:由表格的数据可知:p 与x 成一次函数关系,设函数关系式为p=kx+b ,则3060040300k b k b +=⎧⎨+=⎩,解得:k=-30,b=1500,∴p=-30x+1500,∴所求的函数关系为p=-30x+1500;(2)解:设日销售利润w=p (x-30)=(-30x+1500)(x-30),即223024004500030(40)3000w x x x =-+-=--+,∵-30<0,∴当x=40时,w 有最大值3000元,故这批农产品的销售价格定为40元,才能使日销售利润最大;(3)解:日获利w '=p (x-30-a )=(-30x+1500)(x-30-a ),即230(240030)(150045000)w x a x a '=-++-+,作16件A与制作2件B获利相同.(1)制作一件A和一件B分别获利多少元;(2)工厂安排65人制作A,B两种手工艺品,每人每天制作2件A或1件B.现在在不增加工人的情况下,增加制作C工艺品.已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A,C两种手工艺品的数量相等,设每天安排x人制作B,y人制作A.写出y与x之间的函数关系式;(3)在(1)(2)的条件下,每天制作B不少于5件.当每天制作B为5件时,每件B获利不变,若B每增加1件,则当天平均每件B获利减少2元,已知C每件获利30元,求每天制作三种手工艺品可获得的总利润W(元)的最大值及相应x的值.3.(2022·辽宁大连·校考模拟预测)新冠肺炎疫情后期,我县某药店进了一批口罩,成本价为2元/个,投入市场销售,其销售单价不低于成本,按物价局规定销售利润率不高于80%.经一段时间调查,发现每天销售量y (个)与销售单价x (元/个)之间存在一次函数关系,且有两天数据为:销售价定为2.3元,每天销售1080个;销售价定为2.5元,每天销售1000个.(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)如果该药店销售口罩每天获得800元的利润,那么这种口罩的销售单价应定为多少元?(3)设每天的总利润为w 元,当销售单价定为多少元时,该药店每天的利润最大?最大利润是多少元?【答案】(1)4002000(2 3.6)y x x =-+≤≤(2)3元(3)3.5元,900元【分析】(1)设y 与x 之间的函数关系式为y kx b =+,用待定系数法可得y 与x 之间的函数关系式为4002000y x =-+,根据销售单价不低于成本,按物价局规定销售利润率不高于80%,可得2 3.6x ≤≤;(2)根据题意得:()()24002000800x x --+=,即可解得答案;(3)由题意得:()()24002000w x x =--+,整理计算,再利用二次函数的性质可得答案.【详解】(1)设y 与x 之间的函数关系式为y kx b =+,将销售价定为2.3元,每天销售1080个;销售价定为2.5元,每天销售1000个代入得:2.310802.51000k b k b +=⎧⎨+=⎩,解得4002000k b =-⎧⎨=⎩,y ∴与x 的函数关系式为4002000y x =-+,销售单价不低于成本,按物价局规定销售利润率不高于80%,22280%x x ≥⎧∴⎨-≤⨯⎩,解得2 3.6x ≤≤,()40020002 3.6y x x ∴=-+≤≤;(2)根据题意得:()()24002000800x x --+=,整理得:27120x x -+=,解得:13x =,24(x =不合题意,舍去),答:如果每天获得800元的利润,销售单价应定为3元;(3)由题意得:()()24002000w x x =--+240028004000w x x =+-()2400712.2512.254000w x x =--+--2400( 3.5)900w x =--+4000-< ,∴抛物线开口向下,w 有最大值,3.5x ∴=时,w 最大值是900,答:销售单价定为3.5元时,每天的利润最大,最大利润是900元.【点睛】本题考查一元二次方程及二次函数的应用,解题关键是读懂题意,找到等量关系列方程和函数关系是.题型三:二次函数和分段函数综合的利润问题①写分段函数解析式是要明确自变量的取值范围;②要分段求利润的最值,再比较两段之间的最大值;③注意自变量的范围和结果的取舍。

二次函数的应用(1)利润问题高品质版

二次函数的应用(1)利润问题高品质版
二次函数的应用(1) 利润问题
何时获得最大利润
问题一:某商场销售一批衬衫,平均每天 可以售出20件, 每件赢利40元,为了扩大销售,增加盈利,尽快减少库存, 商场决定采取适当的降价措施,经过市场调查发现,如果 每件衬衫每降价1元,商场平均每天可以多售出2件。求每 件衬衫降价多少元时,商场平均每天赢利最多? 问题二:某商场将进价40元一个的某种商品按50元一个售 出时,能卖出500个.商场想采用提高售价的方法来增加利 润。已知这种商品每个涨价1元,销量减少10个,为赚得最 大利润,售价定为多少?最大利润是多少?
总利润=单利数量
单利=售价- 进价
请想一想:(1)问题解决的过程 是怎样的? (2)是否售价越高或越低,利润越小?
何时橙子总产量最大
某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一 些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵 树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵 就会少结5个橙子. (1)问题中有那些变量?其中哪些是自变量?哪些是因量? (2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平 均每棵树结多少个橙子?
(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式.
(4)种多少棵橙子树,可以使果园橙子的总产量最多? (5)增种多少棵橙子,可以使橙子的总产量在60400个以上?
练 某商店经营T恤衫,已知成批购进时单价是 习 2.5元.根据市场调查,销售量与单价满足如下 1 关系:在一时间内,单价是13.5元时,销售量是
若你是商店经理,你需要多长时间定出这 个销售单价?
作业
P26练习第2 题,P34第10题
谢谢大家,再会!
结束寄语
•生活是数学的源泉.

二次函数最大利润求法经典

二次函数最大利润求法经典

一、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价2元,每星期少卖出20件。

商品的进价为每件40元,如何定价才能使利润最大?分析:此题用到的数量关系是:〔1〕利润=售价-进价〔2〕销售总利润=单件利润×销售数量问题1:售价为x 元时,每件的利润可表示为 〔x-40〕问题2:售价为x 元,售价涨了多少元?可表示为 〔x-60〕问题3:售价为x 元,销售数量会减少,减少的件数为 -60202x ⨯ 〔件〕 问题4:售价为x 元,销售数量为y 〔件〕,那么y 与x 的函数关系式可表示为-60300202x y =-⨯=30010(60)x --=10900x -+因为0600x x ⎧⎨-≥⎩ 自变量x 的取值X 围是 60x ≥问题4:售价为x 元,销售数量为y 〔件〕,销售总利润为W 〔元〕,那么W 与x 的函数关系式为(40)W x y =-⋅=(40)(10900)x x --+=210130036000x x -+-问题5:售价为x 元,销售总利润为W 〔元〕时,可获得的最大利润是多少?因为 (40)W x y =-⋅=(40)(10900)x x --+=210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦ =210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元二、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每降价2元,每星期可多卖出40件,商品的进价为每件40元,如何定价才能使利润最大?分析:此题用到的数量关系是:〔1〕利润=售价-进价〔2〕销售总利润=单件利润×销售数量问题1:售价为x 元时,每件的利润可表示为 〔x-40〕问题2:售价为x 元,售价降了多少元?可表示为 〔60-x 〕问题3:售价为x 元,销售数量会增加,增加的件数为 60402x -⨯ 〔件〕 问题4:售价为x 元,销售数量为y 〔件〕,那么y 与x 的函数关系式可表示为60300402x y -=+⨯=30020(60)x +-=201500x -+因为0600x x ⎧⎨-≥⎩所以,自变量x 的取值X 围是 060x ≤≤问题4:售价为x 元,销售数量为y 〔件〕,销售总利润为W 〔元〕,那么W 与x 的函数关系式为(40)W x y =-⋅=(40)x -〔201500x -+〕=220230060000x x -+-问题5:售价为x 元,销售总利润为W 〔元〕时,可获得的最大利润是多少?因为 (40)W x y =-⋅=(40)x -〔201500x -+〕=220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ =211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元三、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价2元,每星期少卖出20件;每降价2元,每星期可多卖出40件,商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,即:〔1〕涨价时,虽然销售数量减少了,但是每件的利润增加了,所以可以使销售过程中的总利润增加〔2〕降价时,虽然每件的利润减少了,但是销售数量增加了,所以同样可以使销售过程中的总利润增加此题用到的数量关系是:〔1〕利润=售价-进价〔2〕销售总利润=单件利润×销售数量根据题目内容,完成以下各题:1、涨价时〔1〕售价为x 元,销售数量为y 〔件〕,那么y 与x 的函数关系式可表示为-60300202x y =-⨯=30010(60)x --=10900x -+因为0600x x ⎧⎨-≥⎩ 自变量x 的取值X 围是 60x ≥〔2〕售价为x 元,销售数量为y 〔件〕,销售总利润为W 〔元〕,那么W 与x 的函数关系式为1(40)W x y =-⋅=(40)(10900)x x --+=210130036000x x -+-〔3〕售价为x 元,销售总利润为W 〔元〕时,可获得的最大利润是多少? 1W =(40)(10900)x x --+=210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦ =210(65)4225036000x --+-=210(65)6250x --+2、降价时:〔1〕售价为x 元,销售数量为y 〔件〕,那么y 与x 的函数关系式可表示为60300402xy -=+⨯=30020(60)x +-=201500x -+因为0600x x ⎧⎨-≥⎩所以,自变量x 的取值X 围是 060x ≤≤〔2〕售价为x 元,销售数量为y 〔件〕,销售总利润为W 〔元〕,那么W 与x 的函数关系式为2W =(40)x -y=(40)x -〔201500x -+〕=220230060000x x -+-〔3〕售价为x 元,销售总利润为W 〔元〕时,可获得的最大利润是多少?因为2W =(40)x -〔60300402x-+⨯〕=(40)x -〔201500x -+〕=220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=211520()66125600002x --+-=220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元此题解题过程如下:解:设售价为x 元,利润为W〔1〕涨价时,1W =(40)x -〔300 --60202x ⨯〕 =(40)(10900)x x --+=210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦ =210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元〔2〕降价时,2W =(40)x -〔300+60402x -⨯〕 =(40)x -〔201500x -+〕=220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ =211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元综上所述,售价为65元或售价为57.5元时,都可得到最大利润,最大利润分别为6250元或6125元。

二次函数与最大利润问题解题技巧

二次函数与最大利润问题解题技巧

二次函数与最大利润问题解题技巧
1. 先了解二次函数的一般式和标准式。

2. 确定题目中涉及的自变量和因变量,并建立解题模型。

3. 求出二次函数的极值点,即最大或最小值点,这可以通过求导或配方法等方式得到。

4. 判断极值点是否为最大值点,如果是,则说明达到最大利润;如果不是,则需根据实际情况进行分析。

5. 最后通过代入数值验证答案是否正确。

举例:
某企业生产一种产品,售价为x元,该企业总成本为:
C(x)=10000+200x+0.02x²元,求该企业的最大利润及最大利润
的售价。

1. 一般式:y=ax²+bx+c;标准式:y=a(x-h)²+k。

2. 总利润P(x)=R(x)-C(x),其中,R(x)为总收入,C(x)为总成本。

因此,P(x)=x(100-0.02x)-10000-200x-0.02x²=-(0.02x²-
80x+10000)。

3. 求P(x)的极值点:P'(x)=-0.04x+80=0,得到x=2000,表示产量在2000时利润最大。

4. 检查2000是否为最大值点,此处可以通过求P''(x)判断。

P''(x)=-0.04<0,说明x=2000时是P(x)的最大值点。

5. 最大利润为P(2000)=-(0.02×2000²-80×2000+10000)=96000元,最大利润的售价为200元。

二次函数的实际应用利润问题

二次函数的实际应用利润问题

y=(60+x)(300-10x)-40(300-10x) (0≤X≤30)
即 y10x210x06000
精选ppt
10
y10x210x06000 (0≤X≤30)
x2ba5时, y最大值 1052 100560006250
所以,当定价为65元时,利润最大,最大利润为6250元
y\元
6250 6000
若生产厂家要求每箱售价在45—55元之间。 如何定价才能使得利润最大?(为了便于计 算,要求每箱的价格为整数)
精选ppt
13
有一经销商,按市场价收购了一种活蟹1000千克, 放养在塘内,此时市场价为每千克30元。据测算,此后 每千克活蟹的市场价,每天可上升1元,但是,放养一天 需各种费用支出400元,且平均每天还有10千克蟹死去, 假定死蟹均于当天全部售出,售价都是每千克20元(放 养期间蟹的重量不变).
际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买
进商品需付40(300-10x)元,因此,得利润
y 6 0 x3 010 x8 43 0 010 x8
1x2 8 6x0 60(0≤0 x≤200 )
当 答x:定2价ba为5358时1 , y元最时大,利18润最53大2,6最0大53 利6润0为060605005元0 3
请大家带着以下几个问题读题
(1)题目中有几种调整价格的方法?
(2)题目涉及到哪些变量?哪一个量是 自变量?哪些量随之发生了变化?
精选ppt
9
某商品现在的售价为每件60元,每星期 可卖出300件,市场调查反映:每涨价1 元,每星期少卖出10件;每降价1元,每 星期可多卖出18件,已知商品的进价为 每件40元,如何定价才能使利润最大?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.3 二次函数中的利润问题
教学目标
1.会求二次函数y =ax 2+bx +c 的最小(大)值.
2.能够从实际问题中抽象出二次函数关系,并运用二次函数及性质解决最小(大)值等实际问题.
3.根据不同条件设自变量x 求二次函数的关系式.
教学重点
1.根据不同条件设自变量x 求二次函数的关系式.
2.求二次函数y =ax 2+bx +c 的最小(大)值.
教学难点
将实际问题转化成二次函数问题.
教学过程
一、导入新课
二次函数y=ax2+bx+c(a ≠0)的性质:顶点式,对称轴和顶点坐标公式:
♦ 利润=售价-进价.
♦ 总利润=每件利润×销售数量.
二、探究新知
1、日用品何时获得最大利润
♦ 1.某商店购进一批单价为20元的日用品,如果以单价30元销售,.44222
a b ac a b x a y -+⎪⎭⎫ ⎝⎛+=a
b x 2-= ⎪⎪⎭⎫ ⎝⎛--a b a
c a b 44,22
那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?
♦ 设销售价为x 元(x ≥30元), 利润为y 元,则

探究2:某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?
教师引导学生阅读问题,理清自变量和变量.在这个探究中,某商品调整,销量会随之变化.调整的价格包括涨价和降价两种情况.
(1)我们先看涨价的情况.
设每件涨价x 元,每星期则少卖l0x 件,实际卖出(300-l0x )件,销售额为(60 + x ) (300-l0x )元,买进商品需付40(300-10x )元.因此,所得利润y =(60+x )(300-l0x )一40(300-l0x ),
即y =-l0x 2+100x +6 000.
列出函数解析式后,教师引导学生怎样确定x 的取值范围呢? 由300-l0x ≥0,得x ≤30.再由x ≥0,得0≤x ≤30.
根据上面的函数,可知:
当x =5时,y 最大,也就是说,在涨价的情况下,涨价5元,即定价65元时,利润最大,最大利润是6250元.
(2)我们再看降价的情况.
设每件降价x 元,每星期则多卖20x 件,实际卖出(300+20x )件,销售额为(60-x ) (300+20x )元,买进商品需付40(300+20x )元.因此,所得利润
y =(60-x )(300+20x )-40(300+20x ),

y =-20x 2+100x +6 000.
怎样确定x 的取值范围呢?
由降价后的定价(60-x )元,不高于现价60元,不低于进价40元可得0≤x ≤20.
当x =2.5时,y 最大,也就是说,在降价的情况下,降价2.5元,()()[]
202040020---=x x y 20000
140202-+-=x x ().450035202
+--=x
即定价57.5元时,利润最大,最大利润是6125元.
由(1)(2)的讨论及现在的销售状况,你知道应如何定价能使利润最大了吗?
学生最后的出答案:综合涨价和降价两种情况及现在的销售状况可知,定价65元时,利润最大.
解决这类题目的一般步骤
(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;
(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值.
三、巩固练习
3、旅行社何时营业额最大
某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?
4、直击中考
(2010·荆门中考)某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件.
(1)假设每件商品降低x元,商店每天销售这种小商品的利润是y 元,请你写出y与x之间的函数关系式,并注明x的取值范围;(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入-购进成本)四、小结
(1)这节课学习了用什么知识解决哪类问题?
(2)解决问题的一般步骤是什么?应注意哪些问题?(3)你学到了哪些思考问题的方法?。

相关文档
最新文档