实验二--弗兰克-赫兹实验

合集下载

北京大学物理实验报告:弗兰克-赫兹实验(docx版)

北京大学物理实验报告:弗兰克-赫兹实验(docx版)

弗兰克-赫兹实验【实验目的】(1) 了解弗兰克-赫兹实验用伏-安证明原子存在能级的原理和方法(2) 学习用伏-安法测量非线性器件(3) 学习微电流的测量【仪器用具】仪器名参数F-H-II 弗兰克赫兹实验仪∅F-H-II 弗兰克赫兹实验仪微电流放大器10−7档F-H-II 弗兰克赫兹实验仪电源组V F 0~5V2.5级V G1K 0~5V 2.5级V G2P 0~15V2.5级Victor VC9806+数字万用表200 mV档±(0.5%+4)【实验原理】(1)原子的受激辐射玻尔的氢原理理论指出,原子只能较长久地停留在一些稳定状态(称为定态)。

这些定态的能量(称为能级)是不连续分布的,其中能级最低的状态称为基态。

原子在两个定态之间发生跃迁时,要吸收或发射一定的能量,该能量等于两个定态之间的能量差ΔE mn=E m−E n原子在能级之间的跃迁可以通过有一定能量的电子与原子碰撞交换能量来实现。

初速度为零的电子经过电势差U0加速获得能量eU0,当这些电子与稀薄气体(例如汞)发生碰撞,就会发生能量交换。

当电子能量满足eU0=ΔE mn便会使得原子从E n被激发到E m,电子能量被吸收。

(2)弗兰克-赫兹实验图 1 弗兰克-赫兹装置示意图图1是弗兰克-赫兹实验装置示意图。

图中左侧为弗兰克-赫兹管(F-H管),它是一种密封的玻璃管,其中充有稀薄的原子量较大的汞或惰性气体原子。

在这里灯丝用来对阴极K加热,使其发射热电子。

灯丝电压U F越高,阴极K发射的电子流也就越大。

第一栅极G1的主要作用是消除空间电荷对阴极电子发射的影响。

第二栅极G2的作用是在G2和K之间形成对电子加速的静电场。

发射的电子穿过栅极G2达到极板P,形成板流I P。

板流I P的大小由微电流测试仪进行测量。

在板极P 和G2之间加有一反向电压,它对电子减速,使经过碰撞后动能非常低的电子折回。

由热阴极发射的电子初速度为零,受加速电场V G2K作用,V G2K较低时,电子能量小于原子的激发能,电子与汞原子只能发生弹性碰撞。

弗兰克-赫兹实验实验报告

弗兰克-赫兹实验实验报告

课程名称:大学物理实验(二)
实验名称:弗兰克-赫兹实验
图2.1 弗兰克-赫兹管原理图
设氩原子的基态能量为E1,第一激发态的能量为E2
E2−E1。

初速度为零的电子在电位差为U的加速电场作用下具有能量则电子与氩原子只能发生弹性碰撞,二者之间几乎没有能量转移。

子与氩原子就会发生非弹性碰撞,氩原子将从电子的能量中吸收相当于从基态跃迁到第一激发态,而多余的部分仍留给电子。

位差为U0则
eU0=E2−E1
图3.1弗兰克-赫兹仪实物图
对应的V G2是内部的锯齿电压,作用是急速电压自动变化。

对应于示波器观测模
I P(×10-8A)
U G2(×
图6.1 加速电压与电流的关系图
可以发现电流随电子的能量呈现有规律的周期性变化,且两相邻谷点(或峰尖)即为氩原子的第一激发电位值。

同时,可以读出峰谷的横坐标值。

峰的横坐标值如下表:
表6.1 加速电压与电流的关系图的峰横坐标记录表
第二个峰X3第三个峰X5第四个峰X7第五个峰X9
2.90 4.08 5.25 6.46
表6.2 加速电压与电流的关系图的锋横坐标记录表
第二个谷X4第三个谷X6第四个谷X8第五个谷X10
3.52
4.66
5.84 7.04
算出氩原子的第一激发电位。

物理实验之弗兰克-赫兹实验

物理实验之弗兰克-赫兹实验

物理实验之弗兰克-赫兹实验弗兰克-赫兹实验是物理学中的经典实验之一。

它的目的是研究原子的结构。

据研究,原子是由电子,质子和中子组成的。

迄今为止,人们已经知道了原子的结构和组成;然而,在20世纪初,这个问题仍然是未解决的。

弗兰克-赫兹实验为研究原子组成和结构的理论提供了重要的实验证据,并为导致量子力学的发展做出了巨大的贡献。

弗兰克-赫兹实验是由德国物理学家弗兰克和赫兹于1914年在法兰克福大学进行的。

该实验的设备是一个长长的玻璃管,该管内部有空气和水银蒸气。

两个电极置于管的两端,并且通过这些电极施加电压。

电压的值非常小,只有几伏特,这足以使大约1cm的空气分子缩短350倍的距离,从而使它们成为离子。

离子化后的分子可以很容易地被带电的电子撞击,从而被激发和解离。

当电流流经玻璃管时,可以看到荧光在管内产生。

这些荧光在玻璃管的长度方向上呈现出明显的不均匀性,因此称其为荧光不稳定的阶梯状。

最初,弗兰克和赫兹发现,当电压过低时,无论电压增加了多少,都看不到荧光的变化;而当电压增加到一定程度时,荧光的形式突然发生了变化。

随着电压的增加,荧光不再呈现出阶梯状,而是变成了均匀的条纹。

这种现象表明,在一定范围内,电压对原子的结构产生了明显的影响。

进一步的研究表明,当电压增加到一定水平时,玻璃管里的荧光又重新呈现出了阶梯形状。

这是因为这时电子的能量已经足够大,能够克服空气分子中的电子吸收势垒,从而到达下一个空能态。

电流在这种情况下变成了一个突发的脉冲,因为所有的电子都同时跳到了相同的能量级。

弗兰克-赫兹实验揭示了原子结构的本质,并为发展量子力学及以后的能量及频率论发展奠定了基础。

该实验对现代物理学的发展产生了深远的影响。

今天,该实验被广泛用于研究原子结构、半导体和太阳能电池等领域,为人们理解自然界和改进技术带来极大的帮助。

弗兰克赫兹实验

弗兰克赫兹实验

2-2弗兰克—赫兹实验【实验简介】1913年丹麦物理学家玻尔在卢瑟福原子核模型的基础上,结合普朗克量子理论,提出了原子能级的概念并建立了原子模型理论,成功地解释了原子的稳定性和原子的线状光谱理论。

该理论指出,原子处于稳定状态时不辐射能量,当原子从高能态(能量E m)向低能态(能量E n)跃迁时才辐射。

辐射能量满足∆E = E m-E n 对于外界提供的能量,只有满足原子跃迁到高能级的能级差,原子才吸收并跃迁,否则不吸收。

1914年德国物理学家弗兰克和赫兹用慢电子穿过汞蒸气的实验,测定了汞原子的第一激发电位,从而证明了原子分立能态的存在。

后来他们又观测了实验中被激发的原子回到正常态时所辐射的光,测出的辐射光的频率很好地满足了玻尔理论。

弗兰克—赫兹实验的结果为玻尔理论提供了直接证据。

玻尔因其原子模型理论获1922年诺贝尔物理学奖,而弗兰克与赫兹的实验也于1925年获诺贝尔物理学奖。

【实验目的】1、测量氩原子的第一激发电位;证实原子能级的存在,加深对原子结构的了解;2、了解在微观世界中,电子与原子的碰撞和能量交换过程几率及影响因素。

【预习思考题】1.理解电子与原子碰撞能量交换过程的微观图像。

2.熟悉玻尔理论物理模型。

【实验仪器】DH4507智能型弗兰克-赫兹实验仪,示波器DH4507智能型弗兰克-赫兹实验仪由四组程控直流稳压电源、微电流检测器和单片机控制器组成。

有手动和自动两种工作模式。

DH4507智能型实验仪可手动逐点测绘处爬坡曲线,也可在慢速自动扫描情况下在示波器上观察爬坡曲线。

DH4507智能型弗兰克-赫兹实验仪主要技术指标:①弗兰克-赫兹管:氩气;4电极;谱峰(谷)数量≥6;管子寿命≥3000小时;②四路程控电源(四位显示):灯丝电压 DC 0~5.9V ,1A ,最小步进电压值:0.1V ,最大步进电压值1V ;第一栅压:DC 0~7.9V ,10mA ,最小步进电压值0.1V ,最大步进电压值1V ;拒斥电压:DC 0~9.9V ,10mA ,最小步进电压值0.1V ,最大步进电压值1V ;第二栅压:DC 0~85.3V ,5mA ,最小步进电压值0.2V ,最大步进电压值10V 。

实验 弗兰克—赫兹实验

实验  弗兰克—赫兹实验

99实验 弗兰克—赫兹实验1914年弗兰克(F .Franck )和赫兹(G .Hertz )在研究气体放电现象中低能电子与原子间相互作用时,在充汞的放电管中发现:透过汞蒸气的电子流随电子的能量呈现有规律的周期性变化,间隔为4.9eV 并拍摄到与能量4.9eV 相对应的光谱线2537Å。

对此,他们提出了原子中存在的“临界电势”的概念:当电子能量低于与临界电势相应的临界能量时,电子与原子碰撞是弹性的,而当能量达到这一临界能量时,碰撞过程由弹性变为非弹性,电子把这份特定的能量转移给原子使之受激,原子退激时再以特定的频率为光量子形式辐射出来,电子损失的能量ΔE 与光量子能量及光子频率的关系为 ΔE = eV = h νF-H 实验证实了原子内部能量是量子化的,为玻尔于1913年发表的原子理论提供了坚实的实验基础。

1920年弗兰克及其合作者对原先实验装置作了改进提高了分辨率测得了汞的除4.9eV 以外的较高激发能级和电离能级,进一步证实了原子内部能量是量子化的。

1925年弗兰克和赫兹共同获得诺贝尔物理学奖。

通过这一实验可以了解原子内部能量量子化的情况,扩大弹性碰撞和非弹性碰撞的知识,学习和体验弗兰克和赫兹研究气体放电现象中低能电子和原子间相互作用的试验思想和实验方法。

实验原理根据玻尔理论原子只能处在某一些状态,每一状态对应一定的能量,其数值彼此是分立的,原子在能级间进行跃迁时吸收或发射确定频率的光子,当原子与一定能量的电子发生碰撞可以使原子从低能跃迁到高能级(激发)如果是基态和第一激发态之间的跃迁则有: eV 1=21m e v 2 = E 1 - E 0 电子在电场中获得的动能和原子碰撞时交给原子,原子从基态跃迁到第一激发态V 1称为原子第一激发电势(位)。

进行F-H 实验通常使用的碰撞管是充汞的。

这是因为汞是原子分子,能级较为简单,汞是一种易于操纵的物质,常温下是液体,饱和蒸气压很低,加热就可改变它的饱和蒸气压,汞的原子量较大和电子作弹性碰撞时图1 F-H 实验线路连接图几乎不损失动能,汞的第一激发能级较低— 4.9eV,因此只需几十伏电压就能观察到多个峰值,当然除充汞蒸气以外,还常用充惰性气体如氖、氩等的,这些碰撞管温度对气压影响不大,在常温下就可以进行实验。

弗兰克赫兹实验报告文库

弗兰克赫兹实验报告文库

一、实验背景弗兰克-赫兹实验是由德国物理学家W.弗兰克和G.赫兹于1914年进行的,该实验旨在研究电子在电场作用下的运动规律,并证明原子能级的存在。

实验通过测量电子与原子碰撞时的能量交换,揭示了原子内部结构的量子化特性。

二、实验目的1. 测量氩原子的第一激发电势,证明原子能级的存在;2. 加深对量子化概念的认识;3. 学习电子与原子碰撞微观过程与宏观物理量相结合的实验设计方法。

三、实验原理1. 原子能级理论:根据玻尔理论,原子只能长时间地处于一些稳定的状态,称为定态。

原子在这些状态时,不发射或吸收能量;各定态有一定的能量,其数值是彼此分隔的。

原子的能量只能从一个定态跃迁到另一个定态。

2. 电子与原子碰撞:当电子在电场作用下加速时,会获得动能。

当具有一定能量的电子与原子碰撞时,会发生能量交换。

若电子传递给原子的能量恰好等于原子从一个定态跃迁到另一个定态所需的能量,则原子会被激发。

3. 激发电势:原子从一个定态跃迁到另一个定态所需的能量称为激发电势。

在本实验中,测量氩原子的第一激发电势,即从基态跃迁到第一激发态所需的能量。

四、实验装置1. 夫兰克-赫兹管:由阴极、阳极、栅极和充有氩气的真空管组成。

阴极发射电子,阳极接收电子,栅极控制电子流。

2. 加速电压:通过调节加速电压,使电子在电场作用下获得不同动能。

3. 电流计:测量电子流过夫兰克-赫兹管时的电流。

4. 数据采集系统:用于记录电流与加速电压的关系。

五、实验步骤1. 将夫兰克-赫兹管接入实验电路,调整加速电压,使电子获得不同动能。

2. 测量电子流过夫兰克-赫兹管时的电流,记录数据。

3. 改变加速电压,重复步骤2,得到一系列电流与加速电压的关系曲线。

4. 分析数据,确定氩原子的第一激发电势。

六、实验结果与分析1. 实验结果显示,电流与加速电压的关系曲线呈阶梯状。

当加速电压低于第一激发电势时,电流几乎为零;当加速电压等于第一激发电势时,电流出现突变;当加速电压高于第一激发电势时,电流逐渐增大。

弗兰克赫兹实验报告

弗兰克赫兹实验报告

一、实验名称:弗兰克-赫兹实验二、实验目的:(1) 用实验的方法测定汞或者氩原子的第一激发电位,从而证明原子分立态的存在; (2) 练习使用微机控制的实验数据采集系统。

三、实验原理:根据波尔的原子模型理论, 原子中一定轨道上的电子具有一定的能量。

当原子吸收或者放出电 磁辐射时或者当原子与其他粒子发生碰撞时, 原子状态会发生改变。

改变过程中原子的能量变 化不是任意的,而是受到波尔理论的两个基本假设的制约,即定态假设和频率定则。

由波尔理论可知, 处于基态的原子发生状态改变时, 其所需能量不能小于该原子从基态跃迁 到第一受激态时所需的能量, 这个能量称作临界能量。

当电子与原子碰撞时, 如果电子能量 小于临界能量,则发生弹性碰撞;若电子能量大于临界能量,则发生非弹性碰撞。

这时,电 子赋予原子以临界能量,剩余能量仍由电子保留。

本仪器采用 1 只充氩气的四极管,其工作原理图如下:当灯丝(H)点燃后,阴极(K)被加热,阴极上的氧化层即有电子逾出(发射电子),为消 除空间电荷对阴极散射电子的影响, 要在第一栅极 (G ) 、阴极之间加之一电压 U (一栅、 阴电压) 。

如果此时在第二栅极 (G 2 ) 、阴极间也加之一电压 U G2K (二栅、 阴电压), 发射的电子在电场的作用下将被加速而取得越来越大的能量。

起始阶段,由于较低,电子的能量较小,即使在运动过程中与电子相碰撞(为弹性碰撞)只 有弱小的能量交换。

这样,穿过 2 栅的电子到达阳极(A) [也惯称板极]所形成的电流(I ) 板流(习惯叫法,即阳极电流)将随2 栅的电压 U 的增加而增大,当 U 达到氩原子的第 一激发电位(11.8V)时,电子在2 栅附近与氩原子相碰撞(此时产生非弹性碰撞)。

电子把 加速电场获得的全部能量传递给了氩原子, 使氩原子从基态激发到第一激发态, 而电子本身 由于把全部能量传递给了氩原子, 它即使穿过 2 栅极, 也不能克服反向拒斥电场而被折回 2 栅极。

弗兰克赫兹实验原理和结论

弗兰克赫兹实验原理和结论

弗兰克赫兹实验原理和结论
弗兰克赫兹实验是由德国物理学家詹姆斯·弗兰克和恩里科·赫兹于1914年共同进行的实验,它提供了关于原子结构的重要信息,特别是关于原子能级的存在。

实验原理:
1.实验装置:弗兰克-赫兹实验主要使用了一个玻璃管,其中充满了氢气或汞蒸气,这个管被分为两个电极区域。

2.电压加速电子:通过在管中施加电压,电子被加速并从一个电极移向另一个电极。

在途中,它们与气体分子碰撞。

3.测量电流:当电子通过管中的气体时,会发生多次弹性碰撞。

当电子的能量达到某个特定值时,它们会与气体分子发生非弹性碰撞,失去能量。

这一过程导致了电流的突然减小。

4.能级跃迁:当电子能量达到一定值时,它们可以克服气体分子的束缚,进入下一个能级。

这些能级的跃迁导致了电流的突然减小,因为电子被从原有的路径上移开。

实验结论:
1.能级存在:弗兰克-赫兹实验提供了关于原子内能级的首次实验证据。

实验证明,原子内存在离散的能级,而电子在这些能级之间跃迁。

2.能量量子化:实验证明了能量的量子化概念。

电子的能量不是连续的,而是以离散的量子形式存在,这支持了量子理论的发展。

3.波粒二象性:实验结果也支持了电子的波粒二象性。

电子表现出波动性和粒子性,这是量子力学的基本原理之一。

弗兰克-赫兹实验的成功对于后来量子力学的发展产生了深远的影响,它为揭示原子结构的奇妙世界打下了基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二--弗兰克-赫兹实验
云南大学物理实验教学中心
实验报告
课程名称:普通物理实验
实验项目:实验二弗兰克-赫兹实验
学生姓名:马晓娇学号:20131050137 物理科学技术学院物理系 2013 级天文菁英班专业
指导老师:张远宪
试验时间:2015 年11月 20 日 13 时 00 分至 15 时 00 分
实验地点:物理科学技术学院
实验类型:教学 (演示□验证□综合□设计□) 学生科研□课外开放□测试□其它□
一、实验目的
1. 了解弗兰克—赫兹实验的原理和方法,测定汞的第一激发电位,验证原子能
级的存在;
2. 练习使用微机控制的实验数据采集处理系统;
二、实验原理
玻尔的原子模型指出:原子是由原子核和核外电子组成的。

原子核位于原子的中心,电子沿着以核为中心的各种不同直径的轨道运动。

对于不同的原子,在轨道上运动的电子分布各不相同。

在一定轨道上运动的电子,具有对应的能量。

当一个原子内的电子从低能量的轨道跃迁到较高能量的轨道时,该原子就处于一种受激状态。

如图l所示,若轨道上为正常状态,则电子从轨道Ⅰ跃迁到轨道Ⅱ时,该原子处于第一激发态;电子跃迁到轨道Ⅲ,原子处于第二激发态。

图中,E1、E2、E3分别是与轨道l、Ⅱ、Ⅲ相对应的能量。

当原子状态改变时,伴随着能量的变化。

若原子从低能级En态跃迁到高能级Em态,则原子需吸收一定的能量△E:
V(1)
E Em En
=-
原子状态的改变通常有两种方法:一是原子吸收或放出电磁辐射;二是原子与其他粒子发生碰撞而交换能量。

本实验利用慢电子与氩原子相碰撞,使氩原子从正常状态跃迁到第一激发态,从而证实原子能级的存在。

由玻尔理论可知,处于正常状态的原子发生状态改变时,所需能量不能小于该原子从正常状态跃迁到第一激发态所需的能量,这个能量称临界能量。

当电子与原子相碰撞时,如果电子能量小于临界能量,则电子与原子之间发生弹性碰撞,电子的能量几乎不损失。

如果电子的能量大于临界能量,则电子与原子发生非弹性碰撞,电子把能量传递给原子,所传递的能量值恰好等于原子两个状态间的能量差,而其余的能量仍由电子保留。

电子获得能量的方法是将电子置于加速电场中加速。

设加速电压为U,则经过加速后的电子具有能量eU,e是电子电量。

当电压等于Ug时,电子具有的能量恰好能使原子从正常状态跃迁到第一激发态.因此称Ug为第一激发电势。

弗兰克一赫兹实验的实验原理图如图1所示。

电子与原子的碰撞是在充满氩气的F—H管(弗兰克一赫兹管)内进行的。

F-H管包括灯丝附近的阴极K,两个栅极G1、G2.板极A。

第一栅极G1靠近阴极K,目的在于控制管内电子流的大小,以抵消阴极附近电子云形成的负电势的影响。

当F—H管中的灯丝通电时,加热阴极K,由阴极K发射初速度很小的电子。

在阴极K与栅极G2之问加上一个可调的加速电势差VG2,它能使从阴极K发射出的电子朝栅极G2加速。

由于阴极K到栅极G2之间的距离比较大,在适当的气压下,这些电子有足够的空间与氩原子发生碰撞。

在栅极G与板极A之问加一个拒斥电压VG2,当电子从栅极
G2进入栅极G2与板极A 之问的空间时,电子受到拒斥电压VG2产生的电场的作用而减速,能量小于e VG2的电子将不能到达板极A 。

图1
当加速电势差VG2由零逐渐增大时,板极电流IP 也逐渐增大,此时.电子与氩原子的碰撞为弹性碰撞。

当VG2增加到等于或稍大于氩原子的第一激发电势Ug 时,在栅极G2附近.电子的能量可以达到临界能量,因此,电子在这个区域与原子发生非弹性碰撞,电子几乎把能量全部传递给氩原子,使氩原子激发。

这些损失了能量的电子就不能克服拒斥电场的作用而到达板极A ,因此板极电流IP 将下降。

如果继续增大加速电压VG2,则在栅极前较远处,电子就已经与氩原子发生了非弹性碰撞,几乎损失了全部能量。

但是,此时电子仍受到加速电场的作用,因此,通过栅极后,电子仍具有足够的能量克服拒斥电场的作用而到达板极A ,所以。

板极电流IP 又开始增大。

当加速电压VG2增加到氩原子的第一激发电位Ug 的2倍时,电子和氩原子在阴极K 和栅极G2之问的一半处发生第一次弹性碰撞,在剩下的一半路程中,电子重新获得激发氩原子所需的能量,并且在栅极G 。

附近发生第二次非弹性碰撞,电子再次几乎损失全部能量,因此,电子不能克服拒斥电场的作用而到达板极A .板极电流IP 又一次下降。

由以上分析可知,当加速电压VG2满足式(2) :
2
VG nUg (2)
时,板极电流IP 就会下降。

板极电流IP 随加速电压VG2的变化关系如图2所示。

从图中可知,两个相邻的板极电流IP 的峰值所对应的加速电压的差值是11.5V 。

这个电压等于氩原子的第一激发电势。

图2 IP-VG2曲线图
三、实验仪器
F H H -- 弗兰克-赫兹实验仪、计算机
四、实验内容及步骤
在进行测量之前,需要对冲汞的弗兰克-赫兹管加热,温度可调节。

当弗兰克-赫兹管面板上的温度指示灯变红色时即可调节灯丝电压 1.6F V V = 、控制栅电压
1 2.6G K V V =和减速栅
2 1.0G K V V =。

1、 联机测量
(1) 进入实验:按照弗兰克-赫兹实验仪面板上的电路图进行电路连接,打开电源
(2) 开始实验 A 、输入实验参数 B 、采集数据 2、 手动测量
将“扫描选择”调到“手动”档进入手动测量模式。

观测数字电压显示窗口,不断调节扫描电压,从电流表中读取相应的电流,记录数据,绘制曲线。

3、 用步骤1的方法分别测量为140°C 、160°C 、190°C 时的P a I U - 曲线,研究其差异,并在实验报告中说明造成其差异的原因
五、实验数据
实验指导老师签名 学生签名
实验指导老师填写
1、实验记录是否完整准确□
2、有无涂改抄袭现象□
六、数据处理
Franck-Hertz 图
各峰值之间的差为 12345630.217.912.341.230.91152.741.211.565.252.712.577.765.212.590.777.713U v v v
U v v v U v v v U v v v U v v v U v v v ∆=-=∆=-=∆=-=∆=-=∆=-=∆=-=
故Ar 的第一激发电位为:
123456
6
12.31111.512.512.51312.16U U U U U U U v v v v v V U v
∆+∆+∆+∆+∆+∆∆=
+++++∆==
七、习题
1、为什么
P a
I U -呈周期性变化?
当2
KG 间电压2G K
U 逐渐增加时,电子在
2
KG 空间被加速而取得越来越多的
能量。

当电子取得的能量较低时,与氩原子碰撞不足以影响氩原子的内部能量,板极电流
A
I 将随
2G K
U 的增加而增加。


2
KG 间加速电压达到氩原子的第一激发
电位时,电子在栅极附近2
G 与原子碰撞,将自己的能量传递给原子,使原子从
基态被激发到第一激发态。

而电子失去几乎全部动能,这些电子将不能克服拒斥电场而到达板极A ,板极电流
A
I 开始下降。

继续升高加速电压UG2K ,电子获
得的动能亦有所增加,这时电子即使在2
KG 空间与氩原子相碰撞损失大部分能
量,仍留有足够能量可以克服拒斥电场而达到板极A ,因而板极电流A
I 又开始
回升。

因此,凡在
2G K g
U nU = 的地方板极电流都会相应下降。

2、灯丝电压、控制栅电压、拒斥电压的改变对实验结果有何影响,如何解释? (1)灯丝电压对实验曲线的影响:灯丝电压越高,曲线位置越高。

这是因为升
高灯丝电压,灯丝温度将升高,电子更容易受激发逸出,因此相比低灯丝电压时,参与碰撞的电子密度高。

这样检流计检测到的电流就要大一些,从而出现曲线位置随灯丝电压增大而升高的情况。

(2)控制栅电压对实验曲线的影响:发逸出,,参与碰撞的电子密度高。

这样检流计检测到的电流就要大一些,会出现曲线位置随灯丝电压增大而升高的情
况。

第一栅极电压的影响1 G K U
为K 附近一个小的正向电压,用于驱散附在热阴极上电子云的作用。

增大此电压,将有利于电子逸出进入2KG 空间,使曲
线位置上移。

(3)拒斥电压对实验曲线的影响:阴极拒斥电压用于加热灯丝,升高灯丝电压,灯丝温度将升高,电子更容易受激发逸出,参与碰撞的电子密度高。

这样检流计检测到的电流就要大一些,会出现曲线位置随灯丝电压增大而升高的情况。

八、误差分析
(1)读取电流时,由于仪器的自身元件问题,电流并不稳定,所以读取时不能读得很精确。

(2)在测量Hg的激发电压时,跨度电压为0.5V,在取到的数据峰值处,不一定是真实的峰值。

所以也会产生误差。

(3)一起元件,以及激发态原子的不稳定性,都可能造成误差。

九、实验结论
本实验通过研究电子碰撞氩原子能量交换过程,论证了原子能级的存在,从而证明了玻尔原子理论。

并测得了氩原子的第一激发电位。

教师评语:
签字:备注:。

相关文档
最新文档