高一下学期期末数学试卷第9套真题

合集下载

2018-2019学年高一数学下学期期末试卷及答案(九)

2018-2019学年高一数学下学期期末试卷及答案(九)

2018-2019学年高一数学下学期期末试卷及答案(九)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项符合题目要求.)1.若sinα=﹣,则α为第四象限角,则tanα的值等于()A.B.﹣C.D.﹣2.已知向量=(1,1),=(1,﹣1),若=+,则=()A.(﹣1,﹣2)B.(1,2)C.(﹣1,2)D.(1,﹣2)3.已知等差数列{a n}的前n项和为S n,若S17=170,则a9的值为()A.10 B.20 C.25 D.304.已知倾斜角为θ的直线l与直线m:x﹣2y+3=0平行,则sin2θ=()A.B.C.D.5.在△ABC中,a,b,c分别为A,B,C的对边,若sinA、sinB、sinC依次成等比数列,则()A.a,b,c依次成等差数列B.a,b,c依次成等比数列C.a,c,b依次成等差数列D.a,c,b依次成等比数列6.在Rt△ABC中,已知AC=4,BC=1,P是斜边AB上的动点(除端点外),设P到两直角边的距离分别为d1,d2,则的最小值为()A.B.C.D.7.将函数f(x)=cosωx(其中ω>0)的图象向右平移个单位,若所得图象与原图象重合,则f()不可能等于()A.0 B.1 C.D.8.正项等比数列{a n}满足:a4+a3=a2+a1+8,则a6+a5的最小值是()A.64 B.32 C.16 D.8二、填空题(本大题共7小题,前4题每题6分,后3题每空4分,共36分.)9.已知tanα=2,则tan(α+)=,cos2α=,=.10.设为单位向量,其中,且,则与的夹角为,=.11.已知直线l1:ax﹣y+3=0与直线l2:(a﹣1)x+2y﹣5=0,若直线l1的斜率为2,则a=,若l1⊥l2,则a=.12.直角△ABC中,C=,AC=2.若D为AC中点,且sin∠CBD=,则BC=,tanA=.13.正实数x,y满足:x+y=xy,则x2+y2﹣4xy的最小值为.14.在平面直角坐标系xOy中,已知直线l:ax+y+3=0,点A(0,1),若直线l上存在点M,满足|MA|=2,则实数a的取值范围是.15.对任意的向量,和实数x∈[0,1],如果满足,都有成立,那么实数λ的最小值为.三.解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,角A、B、C所对应的边分别为a、b、c,且满足.(I)求角B的值;(II)若,求sinC的值.17.已知直线l:(2+m)x+(1﹣2m)y+4﹣3m=0.(1)求证:不论m为何实数,直线l恒过一定点M;(2)过定点M作一条直线l1,使夹在两坐标轴之间的线段被M点平分,求直线l1的方程.18.已知数列{a n}的前n项和为S n,且S n=2n2+n,n∈N*,等比数列{b n}满足b1=1,b4=8,n∈N*.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a n b n}的前n项和T n.19.已知函数f(x)=sin2x﹣cos2x﹣,(x∈R).(1)当x∈[﹣,]时,求函数f(x)的值域.(2)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=,f(C)=0,若向量=(1,sinA)与向量=(2,sinB)共线,求a,b的值.20.已知公差不为0的等差数列{a n}满足a2=3,a1,a3,a7成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)数列{b n}满足b n=+,求数列{b n}的前n项和S n;(Ⅲ)设c n=2n(﹣λ),若数列{c n}是单调递减数列,求实数λ的取值范围.参考答案与试题解析一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项符合题目要求.)1.若sinα=﹣,则α为第四象限角,则tanα的值等于()A.B.﹣C.D.﹣【考点】同角三角函数基本关系的运用.【分析】利用同角三角函数的基本关系式求出cosα,然后求解即可.【解答】解:sinα=﹣,则α为第四象限角,cosα==,tanα==﹣.故选:D.【点评】本题考查三角函数的化简求值,同角三角函数的基本关系式的应用,考查计算能力.2.已知向量=(1,1),=(1,﹣1),若=+,则=()A.(﹣1,﹣2)B.(1,2)C.(﹣1,2)D.(1,﹣2)【考点】平面向量的坐标运算.【分析】根据向量的运算求出向量C即可.【解答】解:∵向量=(1,1),=(1,﹣1),∴=+=﹣(1,1)+(1,﹣1)=(﹣1,﹣2),则=(﹣1,﹣2),故选:A.【点评】本题考查了平面向量的坐标运算,是一道基础题.3.已知等差数列{a n}的前n项和为S n,若S17=170,则a9的值为()A.10 B.20 C.25 D.30【考点】等差数列的前n项和.【分析】利用等差数列的前n项和公式和通项公式直接求解.【解答】解:∵等差数列{a n}的前n项和为S n,S17=170,∴=170,解得a9=10.故选:A.【点评】本题考查等差数列的第9项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.4.已知倾斜角为θ的直线l与直线m:x﹣2y+3=0平行,则sin2θ=()A.B.C.D.【考点】二倍角的正弦;直线的斜率.【分析】利用同角三角函数的基本关系求得sinθ和cosθ的值,再利用二倍角公式求得sin2θ的值.【解答】解:∵倾斜角为θ的直线l与直线m:x﹣2y+3=0平行,故有tanθ==.再根据sin2θ+cos2θ=1,θ∈[0,π),可得sinθ=,cosθ=,∴sin2θ=2sinθcosθ=,故选:B.【点评】本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.5.在△ABC中,a,b,c分别为A,B,C的对边,若sinA、sinB、sinC依次成等比数列,则()A.a,b,c依次成等差数列B.a,b,c依次成等比数列C.a,c,b依次成等差数列D.a,c,b依次成等比数列【考点】等比数列的性质.【分析】根据等比中项的性质得:sin2B=sinAsinC,由正弦定理得b2=ac,则三边a,b,c成等比数列.【解答】解:因为sinA、sinB、sinC依次成等比数列,所以sin2B=sinAsinC,由正弦定理得,b2=ac,所以三边a,b,c依次成等比数列,故选:B.【点评】本题考查等比中项的性质,以及正弦定理的应用,属于基础题.6.在Rt△ABC中,已知AC=4,BC=1,P是斜边AB上的动点(除端点外),设P到两直角边的距离分别为d1,d2,则的最小值为()A.B.C.D.【考点】基本不等式在最值问题中的应用.=S△BCD+S△ACP,即为4=d1+4d2,求得【分析】运用三角形的面积公式可得S△ABC=(d1+4d2)()展开后运用基本不等式,计算即可得到所求最小值.=S△BCD+S△ACP,【解答】解:如右图,可得S△ABCACBC=d1BC+d2AC,即为4=d1+4d2,则=(d1+4d2)()=(1+4++)≥(5+2)=×(5+4)=.当且仅当=,即d1=2d2=,取得最小值.故选:C.【点评】本题考查基本不等式在最值问题中的运用,注意运用等积法,以及乘1法,运用基本不等式求最值时,注意等号成立的条件,属于中档题和易错题.7.将函数f(x)=cosωx(其中ω>0)的图象向右平移个单位,若所得图象与原图象重合,则f()不可能等于()A.0 B.1 C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】函数图象平移个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,可求ω=6k(k∈N*),利用特殊角的三角函数值即可得解.【解答】解:由题意,所以ω=6k(k∈N*),因此f(x)=cos6kx,从而,可知不可能等于.故选:D.【点评】本题主要考查了三角函数的图象的平移,三角函数的周期定义的理解,考查技术能力,是常考题型,属于中档题.8.正项等比数列{a n}满足:a4+a3=a2+a1+8,则a6+a5的最小值是()A.64 B.32 C.16 D.8【考点】等比数列的通项公式.【分析】由已知求出q2=1+,a6+a5==(a1q+a1)++16,由此利用基本不等式的性质能求出结果.【解答】解:∵{a n}是正项等比数列,∴a1>0,q>0,∵a4+a3=a2+a1+8,∴,∴q2=1+,∴a6+a5==q2(a1q+a1+8)=(1+)[(a1q+a1)+8]=(a1q+a1)++16≥2+16=32,当且仅当时,取等号.∴a6+a5的最小值是32.故选:B.【点评】本题考查等比数列中两项和的最小值的求法,是基础题,解题时要认真审题,注意等比数列的性质及基本不等式性质的合理运用.二、填空题(本大题共7小题,前4题每题6分,后3题每空4分,共36分.)9.已知tanα=2,则tan(α+)=﹣3,cos2α=,=.【考点】两角和与差的正切函数.【分析】由已知,利用特殊角的三角函数值及两角和的正切函数公式可求tan(α+)的值,利用同角三角函数基本关系式即可计算求得cos2α,的值.【解答】解:∵tanα=2,∴tan(α+)===﹣3;cos2α====;===.故答案为:﹣3,,.【点评】本题主要考查了特殊角的三角函数值及两角和的正切函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.10.设为单位向量,其中,且,则与的夹角为60°,=.【考点】平面向量数量积的运算.【分析】根据向量的数量积公式和向量的模,计算即可.【解答】解:设与的夹角为θ,∵,且,∴(2+)=2+=2cosθ+1=2,∴cosθ=,∵0≤θ≤180°,∴θ=60°,∴2=(2+)2=4+4+=4+4×+1=7,∴=,故答案为:60°,【点评】本题主要考查向量数量积的应用,根据向量数量积先求出向量夹角是解决本题的关键,属于中档题.11.已知直线l1:ax﹣y+3=0与直线l2:(a﹣1)x+2y﹣5=0,若直线l1的斜率为2,则a=2,若l1⊥l2,则a=2或﹣1.【考点】直线的一般式方程与直线的垂直关系;直线的斜率.【分析】利用直线l1:ax﹣y+3=0的斜率为2,可求a;利用平面中的直线垂直的条件A1A2+B1B2=0,求出a的值.【解答】解:∵直线l1:ax﹣y+3=0的斜率为2,∴a=2.∵l1⊥l2,∴a(a﹣1)﹣2=0,∴(a﹣2)(a+1)=0,∴a=2或a=﹣1.故答案为:2;2或﹣1.【点评】本题考查了平面中的直线平行与垂直的应用问题,是基础题.12.直角△ABC中,C=,AC=2.若D为AC中点,且sin∠CBD=,则BC=,tanA=.【考点】三角函数中的恒等变换应用.【分析】由题意画出图象,由D为AC中点求出CD,在RT△BCD中,由题意和正弦函数求出BD,由勾股定理求出BC,在RT△BCD中,由正切函数求出tanA 的值【解答】解:由题意画出图象:∵AC=2,且D为AC中点,∴CD=1,在RT△BCD中,∵sin∠CBD=,∴,得BD=3,则BC==,在RT△BCD中,tanA===,故答案为:;.【点评】本题考查直角三角形中三角函数的定义,以及勾股定理,属于基础题.13.正实数x,y满足:x+y=xy,则x2+y2﹣4xy的最小值为﹣8.【考点】二次函数的性质.【分析】代入已知条件,化简表达式,通过配方法求解最小值即可.【解答】解:正实数x,y满足:x+y=xy,则x2+y2﹣4xy=x2+y2﹣4x﹣4y=(x﹣2)2+(y﹣2)2﹣8≥﹣8.当且仅当x=y=2时取等号.故答案为:﹣8.【点评】本题考查二次函数的性质的应用,函数的最值,考查计算能力.14.在平面直角坐标系xOy中,已知直线l:ax+y+3=0,点A(0,1),若直线l上存在点M,满足|MA|=2,则实数a的取值范围是a≤﹣或a≥.【考点】两点间距离公式的应用.【分析】求出M的轨迹,转化为直线与圆有交点,利用圆心到直线的距离小于等于半径,建立不等式,即可求出实数a的取值范围.【解答】解:设M(x,y),则∵点A(0,1),满足|MA|=2,∴M的轨迹方程为x2+(y﹣1)2=4,圆心为(0,1),半径为2.∵直线l:ax+y+3=0,点A(0,1),直线l上存在点M,满足|MA|=2,∴直线与圆有交点,∴圆心到直线的距离d=,∴a≤﹣或a≥.故答案为:a≤﹣或a≥.【点评】本题考查实数的取值范围的求法,考查直线与圆的位置关系.是中档题,15.对任意的向量,和实数x∈[0,1],如果满足,都有成立,那么实数λ的最小值为2.【考点】平面向量数量积的运算.【分析】由绝对值和向量的模的性质≤1,即为≥1,解得即可.【解答】解:当向量=时,可得向量,均为零向量,不等式成立,∵>|﹣|,∴|﹣x|≤|﹣|<||,∴≤1,则有≥1,即λ≥2那么实数λ的最小值为2,故答案为:2.【点评】本题考查最值的求法,注意运用特值法,以及恒成立思想的运用,考查向量的运算性质,属于中档题.三.解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,角A、B、C所对应的边分别为a、b、c,且满足.(I)求角B的值;(II)若,求sinC的值.【考点】正弦定理;两角和与差的正弦函数;二倍角的正弦.【分析】(I)由,利用正弦定理可得sinBsinA=,结合sinA≠0可得tanB=,且0<B<π从而可求B(II)由二倍角的余弦可得,cosA=,进而可得sinA=,sinC=sin(A+),利用和角公式展开可求.【解答】解:(I)∵.由正弦定理得,sinBsinA=,∵sinA≠0,即tanB=,由于0<B<π,所以B=.(II)cosA=,因为sinA>0,故sinA=,所以sinC=sin(A+)==.【点评】本题主要考查了利用正弦定理解三角形,二倍角公式的应用,及三角形内角和的运用,属于对基础知识的综合考查.17.已知直线l:(2+m)x+(1﹣2m)y+4﹣3m=0.(1)求证:不论m为何实数,直线l恒过一定点M;(2)过定点M作一条直线l1,使夹在两坐标轴之间的线段被M点平分,求直线l1的方程.【考点】待定系数法求直线方程;恒过定点的直线.【分析】(1)直线l解析式整理后,找出恒过定点坐标,判断即可得证;(2)由题意得到直线l1过的两个点坐标,利用待定系数法求出解析式即可.【解答】(1)证明:直线l整理得:(2x+y+4)+m(x﹣2y﹣3)=0,令,解得:,则无论m为何实数,直线l恒过定点(﹣1,﹣2);(2)解:∵过定点M(﹣1,﹣2)作一条直线l1,使夹在两坐标轴之间的线段被M点平分,∴直线l1过(﹣2,0),(0,﹣4),设直线l1解析式为y=kx+b,把两点坐标代入得:,解得:,则直线l1的方程为y=﹣2x﹣4,即2x+y+4=0.【点评】此题考查了待定系数法求直线方程,以及恒过定点的直线,熟练掌握待定系数法是解本题的关键.18.已知数列{a n}的前n项和为S n,且S n=2n2+n,n∈N*,等比数列{b n}满足b1=1,b4=8,n∈N*.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a n b n}的前n项和T n.【考点】数列的求和;等比数列;数列递推式.【分析】(1)由题意得,利用a n与S n的关系求出{a n}的通项公式,单独求出n=1时a1的值,验证其是否满足通项公式,即可求出{a n}的通项公式;利用等比数列的性质将{b n}的公比求出,即可求出其通项公式;(2)由(1)中求出的{a n}和{b n}的通项公式代入新数列中,写出新数列的通项公式,利用错位相减法求出其前n项和T n.【解答】解:由题意得:=2(n﹣1)2+(n﹣1)②,(1)因为S n=2n2+n①,所以S n﹣1=4n﹣1(n≥2);所以①﹣②得:a n=S n﹣S n﹣1当n=1时,a1=S1=3;所以a n=4n﹣1,n∈N*,又因为等比数列{b n}满足b1=1,b4=8,n∈N*,所以=8,所以q=2,所以b n=2n﹣1;(2)由(1)可知a n b n=(4n﹣1)2n﹣1,所以T n=3+7×21+11×22+…+(4n﹣5)×2n﹣2+(4n﹣1)×2n﹣1①,2T n=3×2+7×22+11×23+…+(4n﹣5)×2n﹣1+(4n﹣1)×2n②,所以①﹣②得:﹣T n=3+4×2+4×22+4×23+…+4×2n﹣1﹣(4n﹣1)×2n②,T n=5+(4n﹣5)×2n.【点评】(1)本题难度中档,解题关键在于对a n=S n﹣S n的关系熟练掌握,以﹣1及等比数列相关知识点的掌握;(2)难度中上,解题关键在于对错位相减法求数列前n项和的方法的掌握和应用.19.已知函数f(x)=sin2x﹣cos2x﹣,(x∈R).(1)当x∈[﹣,]时,求函数f(x)的值域.(2)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=,f(C)=0,若向量=(1,sinA)与向量=(2,sinB)共线,求a,b的值.【考点】三角函数中的恒等变换应用;平面向量数量积的运算;正弦函数的图象.【分析】(1)利用三角恒等变换化简f(x),根据x的取值范围,求出f(x)的取值范围,即得最值;(2)先根据f(C)=0求出C的值,再根据向量共线以及正弦、余弦定理求出a、b的值.【解答】解:(1)函数f(x)=sin2x﹣cos2x﹣=sin2x﹣﹣=sin2x﹣cos2x﹣1=sin(2x﹣)﹣1.…∵﹣≤x≤,∴,∴,从而﹣1﹣≤sin(2x﹣)﹣1≤0.则f(x)的最小值是,最大值是0.…(2),则,∵0<C<π,∴﹣<2C﹣<,∴,解得C=.…∵向量与向量共线,∴sinB=2sinA,由正弦定理得,b=2a①由余弦定理得,,即a2+b2﹣ab②由①②解得a=1,b=2.…【点评】本题考查了三角恒等变换的应用问题,也考查了平面向量的应用以及正弦余弦定理的应用问题,是综合性题目.20.已知公差不为0的等差数列{a n}满足a2=3,a1,a3,a7成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)数列{b n}满足b n=+,求数列{b n}的前n项和S n;(Ⅲ)设c n=2n(﹣λ),若数列{c n}是单调递减数列,求实数λ的取值范围.【考点】数列的求和;数列递推式.【分析】(Ⅰ)依题意,可求得数列{a n}的首项与公差,从而可求数列{a n}的通项公式;(Ⅱ)结合(Ⅰ)a n=n+1,可求得b n=2+﹣,累加即可求数列{b n}的前n 项和S n;﹣c n=2n(﹣﹣λ)<0对n∈N*都成立⇔(Ⅲ)依题意,应有c n+1﹣﹣λ<0恒成立⇔λ>,设f(n)=﹣,可求得f(n+1)﹣f(n)=,⇒f(1)<f(2)=f(3)>f(4)>f(5)>…,从而可求f(n)max,问题得到解决.【解答】解:(Ⅰ)由题知=a1a7,设等差数列{a n}的公差为d,则=a1(a1+6d),a1d=2d2,∵d≠0∴a1=2d.…又∵a2=3,∴a1+d=3,∴a1=2,d=1…∴a n=n+1.…(Ⅱ)∵b n=+=+=2+﹣.…∴S n=b1+b2+…+b n=(2+﹣)+(2+﹣)+…+(2+﹣)=2n+.…(III)c n=2n(﹣λ)=2n(﹣λ),使数列{c n}是单调递减数列,﹣c n=2n(﹣﹣λ)<0对n∈N*都成立…则c n+1即﹣﹣λ<0⇒λ>…设f(n)=﹣,f(n+1)﹣f(n)=﹣﹣+=+﹣=2++1+﹣3﹣=…∴f(1)<f(2)=f(3)>f(4)>f(5)>…当n=2或n=3时,f(n)max=,∴=所以λ>.…【点评】本题考查数列的递推,考查数列的求和,突出考查累加法求和,考查构造函数思想与等价转化思想的综合应用,考查函数的单调性与推理分析的能力,属于难题.。

高一下数学测试(九)参考答案

高一下数学测试(九)参考答案

高一下数学测试题(九)参考答案一、选择题:(本大题共12小题,每小题5分,共60分)二、填空题:(本大题共4小题,每小题5分,共20分)13. 4±|22,22x k x k k Z ππππ⎧⎫-+≤≤+∈⎨⎬⎩⎭16. 2 三、解答题:(本大题共6小题,共70分)17.解:由题意得,α为第二象限角,又22sin cos 1αα+= ……………………2分∴3sin 5α== ……………………6分 sin 3tan cos 4ααα==- ……………………10分 18.解(1)由61)2()32(=+⋅-b a b a 解得:6134422=-⋅-b b a a将 3||,4||== 代入上式解得6-=⋅b a ……………………4分(2)21436||||cos -=⨯-==b a θ, 又],0[πθ∈ 32πθ=∴ …………8分 (3)∵133)6(242)(||222222=+-⨯+=+⋅+=+=+∴13||=+b a ……………12分19.解:①. 由根与系数的关系得:⎩⎨⎧==+)2(6tan tan )1(5tan tan βαβα ………………3分 .1615tan tan 1tan tan )tan(-=-=-+=+∴βαβαβα ………………8分 ),,0(),2,0(,),,0(,,0tan ,0tan πβαπβαπβαβα∈+∈∴∈>>且又 .43πβα=+所以 ………12分20.解析:(1) x x x b a x f 2cos 1sin 2cos )(⨯+⋅=⋅= ……………………2分x x 2cos 2sin += )42sin(2π+=x ……………………6分 (2)由(1)得)42sin(2)(π+=x x f ,令42π+=x Z ,则Z y sin 2=,其单调减区间为:23222ππππ+≤≤+k Z k ,即:2324222πππππ+≤+≤+k x k , ……………8分 解之得:858ππππ+≤≤+k x k ()f x 的单调减区间为)](85,8[Z k k k ∈++ππππ ……………………12分21.解:∵在ABC △中,4sin 5A === ……………………2分12sin 13B === ……………………4分 又A BC π++= ……………………6分∴sin sin[()]C A B π=-+ =sin()A B + ……………………8分=sin cos cos sin A B A B + ……………………10分 =453125651351365⨯+⨯= ……………………12分 22.解:(1)∵2()2sin cos 2cos 3f x x x x =+-=2sin 22cos 12x x +--=sin 2cos 22x x +- …………………… 2分)24x π+- ……………………4分∴函数()f x 的最小正周期为22T ππ== ……………5分 令222,242k x k k Z πππππ-+≤+≤+∈ 得3,88k x k k Z ππππ-+≤≤+∈ ∴函数()f x 的单调增区间为[]3,()88k k k Z ππππ-++∈ ……………………8分(2)当sin(2)14x π+=-时,函数()f x 取最小值:2;……………………10分 此时22,42x k k Z πππ+=-+∈即3,8x k k Z ππ=-+∈ ∴函数()f x 取最小值时自变量x 的集合为3{|,}8x x k k Z ππ=-+∈。

高一下学期数学期末考试试卷第9套真题

高一下学期数学期末考试试卷第9套真题

高一下学期数学期末考试试卷一、单选题1. 已知,下列不等式中必成立的一个是A .B .C .D .2. 己知向量,.若,则m的值为A .B . 4C . -D . -43. 在等差数列中,已知=2, =16,则为A . 8B . 128C . 28D . 144. 为数列的前n项和,若,则的值为A . -7B . -4C . -2D . 05. 不等式的解集为A .B .C . ∪D . ∪等比数列,…的第四项等于A . -24B . 0C . 12D . 247. 的内角的对边分别是,若,,,则A .B . 2C .D . 18. 将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为()A .B .C .D .9. 在锐角中,角所对的边长分别为 .若()A .B .C .D .10. 若2x+2y=1,则x+y的取值范围是()A .B .C .D .11. 在如图的正方体中,M、N分别为棱BC和棱的中点,则异面直线AC和MN所成的角为A .B .C .D .12. “十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于 .若第一个单音的频率为f,则第八个单音的频率为()A .B .C .D .二、填空题13. 若等比数列的各项均为正数,且,则等于________.14. 已知函数在时取得最小值,则a=________.15. 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为________ .16. 已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°,若的面积为8,则该圆锥的体积为________三、解答题17. 不等式(1)若不等式的解集为或,求k的值(2)若不等式的解集为,求的取值范围18. 已知分别是内角的对边,.(1)若,求(2)若,且求的面积.19. 如图,三角形中,,是边长为l的正方形,平面底面,若分别是的中点.(1)求证:底面;(2)求几何体的体积.20. 设等差数列的公差为d,前项和为,等比数列的公比为.已知,,,.(1)求数列,的通项公式;(2)当时,记,求数列的前项和.21. 如图,在四棱锥P-ABCD中,平面PAD⊥底面ABCD,侧棱PA=PD =,底面ABCD为直角梯形,其中BC∥AD ,AB⊥AD,AD=2AB=2BC=2,O 为AD中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出值;若不存在,请说明理由.22. 为了研究某种药物,用小白鼠进行试验,发现药物在血液内的浓度与时间的关系因使用方式的不同而不同.若使用注射方式给药,则在注射后的3小时内,药物在白鼠血液内的浓度与时间t满足关系式:,若使用口服方式给药,则药物在白鼠血液内的浓度与时间t满足关系式:现对小白鼠同时进行注射和口服该种药物,且注射药物和口服药物的吸收与代谢互不干扰.(1)若a=1,求3小时内,该小白鼠何时血液中药物的浓度最高,并求出最大值?(2)若使小白鼠在用药后3小时内血液中的药物浓度不低于4,求正数a的取值范围.。

大一下学期高等数学期末试题及答案__数套

大一下学期高等数学期末试题及答案__数套

高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数z =的定义域为 (2)已知函数arctanyz x =,则z x ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()L x y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( )A. L 平行于πB. L 在π上C. L 垂直于πD. L 与π斜交 (2)设是由方程xyz =(1,0,1)-处的dz =( )A.dx dy +B.dxD.dx (3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dv Ω+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.22530d r dr dzπθ⎰⎰⎰ B.24530d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D.2252d r dr dzπθ⎰⎰⎰(4)已知幂级数12nnn n x ∞=∑,则其收敛半径( )A. 2B. 1C. 12D. (5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z +-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值5、计算曲线积分2(23sin )()y L xy x dx x e dy ++-⎰, 其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 x xy y xe '+=满足 11x y ==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy ∑+-⎰⎰,其中∑由圆锥面z =与上半球面z =所围成的立体表面的外侧 (10)'2、(1)判别级数111(1)3n n n n ∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)试卷二一.填空题(每空3分,共15分)(1)函数z =的定义域为 ; (2)已知函数xyz e =,则在(2,1)处的全微分dz = ;(3)交换积分次序,ln 1(,)e x dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,则=⎰;(5)已知微分方程20y y y '''-+=,则其通解为 . 二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设(,)z f x y =是由方程333z xyz a -=确定,则z x ∂=∂( ); A. 2yz xy z - B. 2yz z xy - C. 2xz xy z - D. 2xy z xy -(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( );A.2()x ax b e +B.2()x ax b xe +C.2()x ax b ce ++D.2()xax b cxe ++ (4)已知Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为( ); A222sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.20ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).2 B.1 C. 12 D.三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ . 7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy -+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段. 6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1nn x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰.5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃 (C )无穷 (D )振荡2、积分10⎰= .(A) ∞ (B)-∞(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。

2024届大连市第九中学数学高一下期末统考试题含解析

2024届大连市第九中学数学高一下期末统考试题含解析

2024届大连市第九中学数学高一下期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。

在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.在等差数列中,若.,则( )A .100B .90C .95D .202.已知数据1210,,,x x x ⋯,2的平均值为2,方差为1,则数据1210,,,x x x ⋯相对于原数据( ) A .一样稳定 B .变得比较稳定 C .变得比较不稳定D .稳定性不可以判断3.已知向量(1,2)a =,(4,2)b =-,则a 与b 的夹角为( ) A .6π B .3π C .512π D .2π 4.设函数()2,0()24,0x xx e e x f x x x x -⎧-≥⎪=⎨---<⎪⎩,若函数()()g x f x ax =-恰有两个零点,则实数a 的取值范围为() A .(0,2)B .(0,2]C .(2,)+∞D .[2,)+∞5.已知角α的终边经过点()1,1-,则=sin α( )A .22-B .12-C .22D .326.若某市8所中学参加中学生合唱比赛的得分用茎叶图表示(如图1),其中茎为十位数,叶为个位数,则这组数据的中位数是( )A .91B .91.5C .92D .92.57.已知,,A B C 是圆22:4O x y +=上的三点,,OA OB OC AB OA +=⋅=( ) A .6B .63C .6-D .63-8.从装有2个白球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是 A .至少有一个黑球与都是黑球 B .至少有一个黑球与至少有一个白球 C .恰好有一个黑球与恰好有两个黑球D .至少有一个黑球与都是白球9.若0b a <<,则下列结论不正确的是( ) A .22a b <B .2ab b <C .1122b a⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .2a bb a+> 10.在正方体1111ABCD A B C D -中,当点E 在线段11B D (与1B ,1D 不重合)上运动时,总有:①1AE BC ; ②平面1AA E ⊥平面11BB D D ;③AE 平面1BC D ;④1AC AE ⊥.以上四个推断中正确的是( ) A .①②B .①④C .②④D .③④二、填空题:本大题共6小题,每小题5分,共30分。

高中数学:2022-2023学年浙江省宁波市九校联考高一(下)期末数学试卷(含参考答案)

高中数学:2022-2023学年浙江省宁波市九校联考高一(下)期末数学试卷(含参考答案)

2022-2023学年浙江省宁波市九校联考高一(下)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知复数z =1+3i1−2i,则z 的共轭复数的虚部为( ) A .1B .iC .﹣iD .﹣12.(5分)在平面直角坐标系xOy 中,若角α以x 轴的非负半轴为始边,且终边过点(4,﹣3),则cos(α−π2)的值为( ) A .−35B .35C .−45D .453.(5分)设l 是一条直线,α,β是两个不同的平面,下列说法正确的是( ) A .若l ∥α,l ∥β,则α∥β B .若α⊥β,l ∥α,则l ⊥β C .若l ⊥α,l ⊥β,则α∥βD .若α∥β,l ∥α,则l ∥β4.(5分)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑.在鳖臑A ﹣BCD 中,AB ⊥平面BCD ,BC ⊥CD ,且AB =BC =CD =1,则其内切球表面积为( ) A .3πB .√3πC .(3−2√2)πD .(√2−1)π5.(5分)已知等比数列{a n }的前n 项积为T n ,若T 7>T 9>T 8,则( ) A .q <0B .a 1<0C .T 15<1<T 16D .T 16<1<T 176.(5分)如图,在棱长均为2的直三棱柱ABC ﹣A 1B 1C 1中,D 是A 1B 1的中点,过B ,C ,D 三点的平面将该三棱柱截成两部分,则顶点B 1所在部分的体积为( )A .2√33B .5√36C .√3D .7√367.(5分)在△ABC 中,P 0是边AB 的中点,且对于边AB 上任意一点P ,恒有PB →⋅PC →≥P 0B →⋅P 0C →,则△ABC 一定是( ) A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形8.(5分)十七世纪法国数学家皮埃尔•德•费马提出的一个著名的几何问题:“已知一个三角形,求作一点,使其与这个三角形的三个顶点的距离之和最小”.它的答案是:当三角形的三个角均小于120°时,所求的点为三角形的正等角中心,即该点与三角形的三个顶点的连线两两成角120°;当三角形有一内角大于或等于120°时,所求点为三角形最大内角的顶点.在费马问题中所求的点称为费马点,已知在△ABC 中,已知C =23π,AC =1,BC =2,且点M 在AB 线段上,且满足CM =BM ,若点P 为△AMC 的费马点,则PA →⋅PM →+PM →⋅PC →+PA →⋅PC →=( ) A .﹣1B .−45C .−35D .−25二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. (多选)9.(5分)下列说法正确的是( ) A .若a →∥b →,b →∥c →,则a →∥c →B .|(a →⋅b →)⋅c →|≤|a →||b →||c →|C .若a →⊥(b →−c →),则a →⋅b →=a →⋅c →D .(a →⋅b →)⋅b →=a →⋅(b →)2(多选)10.(5分)下列说法正确的是( )A .若f(x)=sinωx +2cos(ωx +π3),ω>0的最小正周期为π,则ω=2B .在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则“A >B ”是“a >b ”的充要条件C .三个不全相等的实数a ,b ,c 依次成等差数列,则2a ,2b ,2c 可能成等差数列D .△ABC 的斜二测直观图是边长为2的正三角形,则△ABC 的面积为2√6(多选)11.(5分)《几何原本》是古希腊数学家欧几里得的数学著作,其中第十一卷称轴截面为等腰直角三角形的圆锥为直角圆锥.如图,AB ,CD 是直角圆锥SO 底面圆的两条不同的直径,下列说法正确的是( )A .存在某条直径CD ,使得AD ⊥SDB .若AB =2,则三棱锥S ﹣AOD 体积的最大值为16C .对于任意直径CD ,直线AD 与直线SB 互为异面直线D .若∠ABD =π6,则异面直线SA 与CD 所成角的余弦值是√24(多选)12.(5分)已知数列{a n }中各项都小于2,a n+12−4a n +1=a n 2−3a n ,记数列{a n }的前n 项和为S n ,则以下结论正确的是( )A .任意a 1与正整数m ,使得a m a m +1≥0B .存在a 1与正整数m ,使得a m+1>34a mC .任意非零实数a 1与正整数m ,都有a m +1<a mD .若a 1=1,则S 2022∈(1.5,4)三、填空题:本题共4小题,每小题5分,共20分.13.(5分)杭州第19届亚运会会徽“潮涌”的主题图形融合了扇面、钱塘江、钱江潮头、赛道、互联网及太阳六大元素,其中扇面造型代表了江南厚重的人文底蕴.在中国历史上,历代书画家都喜欢在扇面上绘画或书写以抒情达意.一幅扇面书法作品如图所示,经测量,上、下两条弧分别是半径为30和12的两个同心圆上的弧(长度单位为cm ),侧边两条线段的延长线交于同心圆的圆心,且圆心角为2π3.若某空间几何体的侧面展开图恰好与图中扇面形状、大小一致,则该几何体的高为 .14.(5分)已知等差数列{a n },a 8=8,a 9=8+π3,则cosa 5+cosa 7cosa 6= .15.(5分)如图,在直三棱柱ABC ﹣A 1B 1C 1中,BC =CC 1=3,AC =4,AC ⊥BC ,动点P 在△A 1B 1C 1内(包括边界上),且始终满足BP ⊥AB 1,则动点P 的轨迹长度是 .16.(5分)已知向量a →,b →的夹角为π3,且a →⋅b →=3,向量c →满足c →=λa →+(1−λ)b →(0<λ<1),且a →⋅c →=b →⋅c →,记x =c →⋅a →|a →|,y =c →⋅b→|b →|,则x 2+y 2﹣xy 的最大值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)定义一种运算:(a ,b)[cd ]=ac +bd .(1)已知z 为复数,且(3,z)[z4]=7−3i ,求|z |;(2)已知x ,y 为实数,(y +sin2x ,2)[i y ]−(1,sin 2x)[sinx2√3i ]也是实数,将y 表示为x 的函数并求该函数的单调递增区间.18.(12分)今年9月,象山将承办第19届杭州亚运会帆船与沙滩排球项目比赛,届时大量的游客来象打卡“北纬30度最美海岸线”.其中亚帆中心所在地——松兰山旅游度假区每年各个月份从事旅游服务工作的人数会发生周期性的变化.现假设该景区每年各个月份从事旅游服务工作的人数可近似地用函数f (x )=40[A cos ω(x +4)+k ]来刻画.其中正整数x 表示月份且x ∈[1,12],例如x =1时表示1月份,A 和k 是正整数,ω>0.统计发现,该景区每年各个月份从事旅游服务工作的人数有以下规律: ①各年相同的月份从事旅游服务工作的人数基本相同;②从事旅游服务工作的人数最多的8月份和最少的2月份相差约160人;③2月份从事旅游服务工作的人数约为40人,随后逐月递增直到8月份达到最多. (1)试根据已知信息,确定一个符合条件的y =f (x )的表达式;(2)一般地,当该地区从事旅游服务工作的人数超过160人时,该地区就进入了一年中的旅游旺季,那么一年中的哪几个月是该地区的旅游旺季?请说明理由. 19.(12分)已知数列{a n }的前n 项和为S n ,且S n =n 2+4n ﹣3. (1)求{a n }的通项公式; (2)记b n =2n+5S n S n+1,数列{b n }的前n 项和为T n ,求T n . 20.(12分)在△ABC 中,内角A ,B 都是锐角. (1)若∠C =π3,c =2,求△ABC 周长的取值范围;(2)若sin 2A +sin 2B >sin 2C ,求证:sin 2A +sin 2B >1.21.(12分)已知边长为6的菱形ABCD ,∠ABC =π3,把△ABC 沿着AC 翻折至△AB 1C 的位置,构成三棱锥B 1﹣ACD ,且DE →=12DB 1→,CF →=13CD →,EF =√372.(1)证明:AC⊥B1D;(2)求二面角B1﹣AC﹣D的大小;(3)求EF与平面AB1C所成角的正弦值.22.(12分)已知数列{a n}中,a1=1,当n≥2时,其前n项和S n满足:S n2=a n(S n﹣1),且S n≠0,数列{b n}满足:对任意n∈N*有b1S1+b2S2+⋯+b nS n=(n−1)⋅2n+1+2.(1)求证:数列{1S n}是等差数列;(2)求数列{b n}的通项公式;(3)设T n是数列{2n−1b2n−b n}的前n项和,求证:T n<76.附:参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知复数z=1+3i1−2i,则z的共轭复数的虚部为()A.1B.i C.﹣i D.﹣1【解答】解:z=1+3i1−2i=(1+3i)(1+2i)(1−2i)(1+2i)=−1+i,则z=−1−i,其虚部为﹣1.故选:D.2.(5分)在平面直角坐标系xOy中,若角α以x轴的非负半轴为始边,且终边过点(4,﹣3),则cos(α−π2 )的值为()A.−35B.35C.−45D.45【解答】解:由三角函数定义有sinα=−3 5,所以cos(α−π2)=sinα=−35.故选:A.3.(5分)设l是一条直线,α,β是两个不同的平面,下列说法正确的是()A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若l⊥α,l⊥β,则α∥βD.若α∥β,l∥α,则l∥β【解答】解:若l∥α,l∥β,则α∥β或α与β相交,故A错误;若α⊥β,l∥α,则l⊂β或l∥β或l与β相交,故B错误;若l⊥α,l⊥β,则α∥β,故C正确;若α∥β,l∥α,则l∥β或l⊂β,故D错误.故选:C.4.(5分)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑.在鳖臑A﹣BCD中,AB⊥平面BCD,BC⊥CD,且AB=BC=CD=1,则其内切球表面积为()A.3πB.√3πC.(3−2√2)πD.(√2−1)π【解答】解:因为四面体ABCD四个面都为直角三角形,AB⊥平面BCD,BC⊥CD,所以AB⊥BD,AB⊥BC,BC⊥CD,AC⊥CD,设四面体ABCD内切球的球心为O,半径为r,则V ABCD=V O−ABC+V O−ABD+V O−ACD+V O−BCD=13r(S△ABC+S△ABD+S△ACD+S△BCD),所以r=3V ABCDS ABCD,因为四面体ABCD的表面积为S ABCD=S△ABC+S△ABD+S△ACD+S△BCD=1+√2,又因为四面体ABCD的体积V ABCD=13×12×1×1×1=16,所以r=3V ABCDS ABCD=√2−12,所以内切球表面积S=4πr2=(3−2√2)π.故选:C.5.(5分)已知等比数列{a n}的前n项积为T n,若T7>T9>T8,则()A.q<0B.a1<0C.T15<1<T16D.T16<1<T17【解答】解:因为等比数列{a n}的前n项积为T n,若T7>T9>T8,故1>a8a9,a9>1,a8<1;所以a1⋅q8>1,所以a1>0,0<q<1;所以T16=a1⋅a2⋅...⋅a15⋅a16=(a8a9)8<1,T17=a1⋅a2⋅...a16⋅a17=a917>1.故选:D.6.(5分)如图,在棱长均为2的直三棱柱ABC﹣A1B1C1中,D是A1B1的中点,过B,C,D三点的平面将该三棱柱截成两部分,则顶点B1所在部分的体积为()A .2√33B .5√36C .√3D .7√36【解答】解:如图,取A 1C 1的中点E ,连接DE ,CE ,又D 是A 1B 1的中点, ∴DE ∥B 1C 1,且DE =12B 1C 1,又B 1C 1∥BC ,且B 1C 1=BC , ∴DE ∥BC ,且DE =12BC ,∴过B ,C ,D 三点的平面截该三棱柱的截面为梯形BCED , ∴所求体积为:V 三棱柱ABC−A 1B 1C 1−V 三棱台A 1DE−ABC =12×2×2×√32×2−13×(12×1×1×√32+12×2×2×√32+√√34×√3)×2 =2√3−7√36=5√36. 故选:B .7.(5分)在△ABC 中,P 0是边AB 的中点,且对于边AB 上任意一点P ,恒有PB →⋅PC →≥P 0B →⋅P 0C →,则△ABC 一定是( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .等腰三角形【解答】解:以AB 所在直线为x 轴,以AB 的中点为原点,建立如图所示的直角坐标系,设AB =4, 则A (﹣2,0),B (2,0),C (a ,b ),P (0,0),P 0(x ,0),所以PB →=(2﹣x ,0),PC →=(a ﹣x ,b ),P 0B →=(2,0),P 0C →=(a ,b ), 因为恒有PB →⋅PC →≥P 0B →⋅P 0C →,则(2﹣x )(a ﹣x )≥(2a , 整理得x 2﹣(a +2)x ≥0恒成立,故Δ=(a +2)2≤0,即a =﹣2,此时BA ⊥AC , 所以∠A =90°,所以△ABC 为直角三角形. 故选:A .8.(5分)十七世纪法国数学家皮埃尔•德•费马提出的一个著名的几何问题:“已知一个三角形,求作一点,使其与这个三角形的三个顶点的距离之和最小”.它的答案是:当三角形的三个角均小于120°时,所求的点为三角形的正等角中心,即该点与三角形的三个顶点的连线两两成角120°;当三角形有一内角大于或等于120°时,所求点为三角形最大内角的顶点.在费马问题中所求的点称为费马点,已知在△ABC 中,已知C =23π,AC =1,BC =2,且点M 在AB 线段上,且满足CM =BM ,若点P 为△AMC 的费马点,则PA →⋅PM →+PM →⋅PC →+PA →⋅PC →=( ) A .﹣1B .−45C .−35D .−25【解答】解:因为C =23π,AC =1,BC =2,所以由余弦定理可得AB =√AC 2+CB 2−2AC ⋅CBcosC =√7,由正弦定理可得AC sinB =ABsinC,即sinB =ACsinC AB =1×√32√7=√2114,又B 为锐角,所以cosB =√1−sin 2B =5√714,设CM =BM =x ,则CM 2=CB 2+BM 2﹣2CB •BM cos C ,即x 2=4+x 2−10√77x , 解得x =2√75,即BM =25AB , 所以AM =35AB =3√75,则S △AMC =35S △ABC =35×12×1×2×√32=3√310,又cos ∠AMC =AM 2+CM 2−AC22AM⋅CM =6325+2825−12×3√75×2√750, 则∠AMC 为锐角,所以△AMC 的三个内角均小于120°, 则P 为三角形的正等角中心,所以S △AMC =12|PA →|⋅|PM →|sin 2π3+12|PM →|⋅|PC →|sin 2π3+12|PA →|⋅|PC →|sin 2π3=√34(|PA →|⋅|PM →|+|PM →|⋅|PC →|+|PA →|⋅|PC →|)=3√310, 所以|PA →|⋅|PM →|+|PM →|⋅|PC →|+|PA →|⋅|PC →|=65,所以PA →⋅PM →+PM →⋅PC →+PA →⋅PC →=|PA →|⋅|PM →|cos 2π3+|PM →|⋅|PC →|cos 2π3+|PA →|⋅|PC →|cos 2π3=−12(|PA →|⋅|PM →|+|PM →|⋅|PC →|+|PA|⋅|PC|)=−12×65=−35.故选:C .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. (多选)9.(5分)下列说法正确的是( ) A .若a →∥b →,b →∥c →,则a →∥c →B .|(a →⋅b →)⋅c →|≤|a →||b →||c →|C .若a →⊥(b →−c →),则a →⋅b →=a →⋅c →D .(a →⋅b →)⋅b →=a →⋅(b →)2【解答】解:对于A ,当b →=0→时,满足a →∥b →,b →∥c →,不能得出a →∥c →,选项A 错误;对于B ,|(a →•b →)c →|=|(|a →||b →|cos <a →,b →>|c →|)|≤|a →||b →||c →|,当且仅当a →与b →共线时取“=”,所以选项B 正确;对于C ,a →⊥(b →−c →)时,a →•(b →−c →)=0,即a →⋅b →=a →⋅c →,选项C 正确;对于D ,(a →•b →)•b →是数乘向量,与b →共线的向量,a →•(b →)2也是数乘向量,与a →共线的向量,所以等式不成立,选项D 错误. 故选:BC .(多选)10.(5分)下列说法正确的是( )A .若f(x)=sinωx +2cos(ωx +π3),ω>0的最小正周期为π,则ω=2B .在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则“A >B ”是“a >b ”的充要条件C .三个不全相等的实数a ,b ,c 依次成等差数列,则2a ,2b ,2c 可能成等差数列D .△ABC 的斜二测直观图是边长为2的正三角形,则△ABC 的面积为2√6【解答】解:对于A ,f (x )=sin ωx +2cos (ωx +π3)=(1−√3)sin ωx +cos ωx =√5−2√3sin (ωx +φ),其中tan φ=11−3=−1+√32,若f (x )的最小正周期为π,则ω=2ππ=2,选项A 正确; 对于B ,△ABC 中,A >B 得出a >b ,充分性成立,a >b 也能得出A >B ,必要性成立,是充要条件,选项B 正确;对于C ,若2a ,2b ,2c 成等差数列,则2•2b =2a +2c ,所以2=2a ﹣b +2c ﹣b ,所以a ﹣b =c ﹣b =0,即a =b =c ,所以选项C 错误;对于D ,△ABC 的斜二测直观图是边长为2的正三角形,则△ABC 的面积为2√2S 直观图=2√2×√34×22=2√6,选项D 正确. 故选:ABD .(多选)11.(5分)《几何原本》是古希腊数学家欧几里得的数学著作,其中第十一卷称轴截面为等腰直角三角形的圆锥为直角圆锥.如图,AB ,CD 是直角圆锥SO 底面圆的两条不同的直径,下列说法正确的是( )A .存在某条直径CD ,使得AD ⊥SDB .若AB =2,则三棱锥S ﹣AOD 体积的最大值为16C .对于任意直径CD ,直线AD 与直线SB 互为异面直线D .若∠ABD =π6,则异面直线SA 与CD 所成角的余弦值是√24【解答】解:对A 选项,∵SD 在底面的射影为CD ,而CD 与AD 夹角始终为锐角, ∴AD 与AD 不垂直,∴根据三垂线定理可知AD 与SD 不垂直,∴A 选项错误; 对B 选项,若AB =2,则三棱锥S ﹣AOD 的高为SO =1,当AO ⊥DO 时,三角形AOD 的面积取得最大值为12×1×1=12,此时三棱锥S ﹣AOD 体积取得最大值为13×12×1=16,∴B 选项正确;对C 选项,∵AB ,CD 是直角圆锥SO 底面圆的两条不同的直径, ∴根据异面直线的判定定理可知:对于任意直径CD ,直线AD 与直线SB 互为异面直线,∴C 选项正确; 对D 选项,若∠ABD =π6,则∠AOD =π3,设圆锥的底面圆半径为r ,∴SA →⋅OD →=(OA →−OS →)⋅OD →=OA →⋅OD →−OS →⋅OD →=r ×r ×cos π3−0=r 22,又易知|SA →|=√2r ,|OD →|=r ,∴cos <SA →,OD →>=SA →⋅OD →|SA →||OD →|=r 22√2r×r=√24,∴异面直线SA 与CD 所成角的余弦值是√24,∴D 选项正确. 故选:BCD .(多选)12.(5分)已知数列{a n }中各项都小于2,a n+12−4a n +1=a n 2−3a n ,记数列{a n }的前n 项和为S n ,则以下结论正确的是( )A .任意a 1与正整数m ,使得a m a m +1≥0B .存在a 1与正整数m ,使得a m+1>34a mC .任意非零实数a 1与正整数m ,都有a m +1<a mD .若a 1=1,则S 2022∈(1.5,4)【解答】解:对于选项A :因为a n+12−4a n+1=a n 2−3a n ,所以(a n +1﹣4)a n +1=(a n ﹣3)a n ,整理得a n +1=(a n −3)a na n+1−4,所以a n a n +1=(a n −3)a n2a n+1−4≥0,故选项A 正确;对于选项B :不妨设f (x )=x 2﹣4x ,因为a n+12−4a n+1=a n 2−4(34a n )≥(34a n )2−4(34a n ),可得f(a n+1)≥f(34a n ),而f ′(x )=2x ﹣4=2(x ﹣2),当x <2时,f ′(x )<0,f (x )单调递减; 当x >2时,f ′(x )>0,f (x )单调递增,所以对于任意正整数n ,都有a n+1≤34a n ,故选项B 错误;对于选项C :由A 可知所有a n 同号,①当a 1=0 时,对于任意正整数n ,都有a n =0;②当0<a 1<2时,0<a n <2,a n+12−4a n +1=a n 2−3a n >a n 2−4a n ,所以f (a n +1)>f (a n ),又函数f (x )在(﹣∞,2)上单调递减, 所以对于任意正整数n ,都有a n +1<a n ;③当a 1<0时,a n+12−4a n +1=a n 2−3a n >a n 2−4a n ,所以f (a n +1)<f (a n ),又函数f (x )在(﹣∞,2)上单调递减,所以对于任意正整数n ,都有a n +1>a n ,故选项C 正确; 对于选项D :因为对于任意正整数n ,都有a n+1≤34a n ,当a 1=1时,a n ≤(34)n ﹣1,所以S 2022≤∑ 2022k=1(34)k ﹣1=1−(34)20221−34=4[1﹣(34)2022]<4,因为当a 1=1时,0<a n ≤1,又a 22−4a 2+2=0,解得a 2=2−√2>12,所以S 2022>S 2>32,则S2022∈(1,5,4),故选项D正确;故选:AD.三、填空题:本题共4小题,每小题5分,共20分.13.(5分)杭州第19届亚运会会徽“潮涌”的主题图形融合了扇面、钱塘江、钱江潮头、赛道、互联网及太阳六大元素,其中扇面造型代表了江南厚重的人文底蕴.在中国历史上,历代书画家都喜欢在扇面上绘画或书写以抒情达意.一幅扇面书法作品如图所示,经测量,上、下两条弧分别是半径为30和12的两个同心圆上的弧(长度单位为cm),侧边两条线段的延长线交于同心圆的圆心,且圆心角为2π3.若某空间几何体的侧面展开图恰好与图中扇面形状、大小一致,则该几何体的高为12√2.【解答】解:设一个圆锥的侧面展开图是半径为30,圆心角为2π3的扇形,设该圆锥的底面半径为r,所以2πr=2π3×30,可得r=10,因此该圆锥的高为h=√302−102=20√2,故侧面展开图是半径为12,圆心角为2π3的扇形的圆锥的高为1230ℎ=25×20√2=8√2,因此若某几何体的侧面展开图恰好与图中扇面形状、大小一致,则该几何体的高为20√2−8√2=12√2.故答案为:12√2.14.(5分)已知等差数列{a n},a8=8,a9=8+π3,则cosa5+cosa7cosa6=1.【解答】解:等差数列{a n},a8=8,a9=8+π3,所以公差d=a9﹣a8=π3,则cosa5+cosa7cosa6=cos(a6−π3)+cos(a6+π3)cosa6=2cosa6cosπ3cosa6=1.故答案为:1.15.(5分)如图,在直三棱柱ABC﹣A1B1C1中,BC=CC1=3,AC=4,AC⊥BC,动点P在△A1B1C1内(包括边界上),且始终满足BP ⊥AB 1,则动点P 的轨迹长度是125.【解答】解:在直三棱柱ABC ﹣A 1B 1C 1中,BC =CC 1=3,AC =4,AC ⊥BC ,建立如图所示的坐标系, 由题意可知A (4,0,0),B (0,3,0),C (0,0,0),B 1(0,3,3),设P (x ,y ,3), 则BP →=(x ,y ﹣3,3),AB 1→=(﹣4,3,3),BP ⊥AB 1, 可得:﹣4x +3y ﹣9+9=0,即4x ﹣3y =0. 直线A 1B 1的方程:3x +4y =12,{3x +4y =124x −3y =0,可得x =3625,y =4825,所以D (3625,4825), 动点P 的轨迹为线段C 1D ,长度为:√(3625)2+(4825)2=12×525=125. 故答案为:125.16.(5分)已知向量a →,b →的夹角为π3,且a →⋅b →=3,向量c →满足c →=λa →+(1−λ)b →(0<λ<1),且a →⋅c →=b →⋅c →,记x =c →⋅a →|a →|,y =c →⋅b→|b →|,则x 2+y 2﹣xy 的最大值为 278 .【解答】解:设OA →=a →,OB →=b →,OC →=c →,∵a →⋅b →=|a →||b →|cos π3=3,∴|a →||b →|=6,∵向量c →满足c →=λa →+(1−λ)b →(0<λ<1), ∴C 在线段AB 上, 设∠AOC =α,则∠BOC =π3−α, 则x =c →⋅a →|a →|=|c →|cos α,y =c →⋅b →|b →|=|c →|cos(π3−α),∴34|c →|2≤34×(3√22)2x 2+y 2﹣xy =|c →|2cos 2α+|c →|2cos 2(π3−α)−|c →|cosα⋅|c →|cos(π3−α)=|c →|2[cos 2α+(12cosα+√32sinα)2−cosα(12cosα+√32sinα)]=|c →|2(cos 2α+12cos 2α+√32sinαcosα+34sin 2α−12cos 2α−√32sinαcosα)=34|c →|2, 在△ABO 中,由余弦定理有:|AB|2=|a →|2+|b →|2−2|a →||b →|cos π3=|a →|2+|b →|2−|a →||b →|≥2|a →||b →|−|a →||b →|=|a →||b →|=6, ∴|AB|≥√6,当且仅当|a →|=|b →|时等号成立, ∵a →⋅c →=b →⋅c →,∴(a →−b →)⋅c →=0,∴BA →⊥OC →, ∴S △OAB =12|AB|×|OC|=12|OA|×|OB|sin π3,∴|OC|=6×√32|AB|≤3√3√6=3√22,即|c →|≤3√22,∴x 2+y 2﹣xy =34|c →|2≤34×(3√22)2=278.故答案为:278. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)定义一种运算:(a ,b)[cd ]=ac +bd .(1)已知z 为复数,且(3,z)[z4]=7−3i ,求|z |;(2)已知x,y为实数,(y+sin2x,2)[iy]−(1,sin2x)[sinx2√3i]也是实数,将y表示为x的函数并求该函数的单调递增区间.【解答】解:(1)设z=a+bi,由题意可得,(3,z)[z4]=3z+4z=3(a+bi)+4(a﹣bi)=7a﹣bi=7﹣3i,故a=1,b=3,所以|z|=√10;(2)由题意可得,原式=2y﹣sin x+(y+sin2x﹣2√3sin²x)i是实数,所以y+sin2x﹣2√3sin2x=0,即y=﹣sin2x+2√3sin²x=√3(1﹣cos2x)﹣sin2x=﹣2sin(2x+π3)+√3,所以当2kπ+π2≤2x+π3≤2kπ+3π2,k∈Z时,sin(2x+π3)单调递减,此时函数y单调递增,解得kπ+π12≤x≤kπ+7π12,k∈Z,即单调增区间为[kπ+π12,kπ+7π12](k∈z).18.(12分)今年9月,象山将承办第19届杭州亚运会帆船与沙滩排球项目比赛,届时大量的游客来象打卡“北纬30度最美海岸线”.其中亚帆中心所在地——松兰山旅游度假区每年各个月份从事旅游服务工作的人数会发生周期性的变化.现假设该景区每年各个月份从事旅游服务工作的人数可近似地用函数f (x)=40[A cosω(x+4)+k]来刻画.其中正整数x表示月份且x∈[1,12],例如x=1时表示1月份,A 和k是正整数,ω>0.统计发现,该景区每年各个月份从事旅游服务工作的人数有以下规律:①各年相同的月份从事旅游服务工作的人数基本相同;②从事旅游服务工作的人数最多的8月份和最少的2月份相差约160人;③2月份从事旅游服务工作的人数约为40人,随后逐月递增直到8月份达到最多.(1)试根据已知信息,确定一个符合条件的y=f(x)的表达式;(2)一般地,当该地区从事旅游服务工作的人数超过160人时,该地区就进入了一年中的旅游旺季,那么一年中的哪几个月是该地区的旅游旺季?请说明理由.【解答】解:(1)根据三条规律,可知该函数为周期函数,且周期为12. 由此可得,T =2πω=12,得ω=π6; 由规律②可知,f (x )max =f (8)=40(A cos2π+k )=40A +40k , f (x )min =f (2)=40(A cos π+k )=﹣40A +40k , 由f (8)﹣f (2)=80A =160,得A =2;又当x =2时,f (2)=40[2cos ω(2+4)+k ]=80•cos π+40k =40, 解得k =3.综上可得,f (x )=80cos (π6x +2π3)+120符合条件.(2)由条件,80cos (π6x +2π3)+120>160,可得cos (π6x +2π3)>12,则2k π−π3<π6x +2π3<2k π+π3,k ∈Z ,∴12k ﹣6<x <12k ﹣2,k ∈Z .∵x ∈[1,12],x ∈N *,∴当k =1时,6<x <10,故x =7,8,9,即一年中的7,8,9三个月是该地区的旅游“旺季”. 19.(12分)已知数列{a n }的前n 项和为S n ,且S n =n 2+4n ﹣3. (1)求{a n }的通项公式; (2)记b n =2n+5S n S n+1,数列{b n }的前n 项和为T n ,求T n . 【解答】解:(1)由S n =n 2+4n ﹣3, 可得n =1时,a 1=S 1=5﹣3=2,当n ≥2时,a n =S n ﹣S n ﹣1=n 2+4n ﹣3﹣(n ﹣1)2﹣4(n ﹣1)+3, 化简可得a n =2n +3(n ≥2), 所以a n ={2,n =12n +3,n ≥2且n ∈N ∗;(2)b n =2n+5S n S n+1=2n+5(n 2+4n−3)(n 2+6n+2)=1n 2+4n−3−1n 2+6n+2,可得T n =12−19+19−118+...+1n 2+4n−3−1n 2+6n+2=12−1n 2+6n+2=n 2+6n 2n 2+12n+4. 20.(12分)在△ABC 中,内角A ,B 都是锐角. (1)若∠C =π3,c =2,求△ABC 周长的取值范围;(2)若sin 2A +sin 2B >sin 2C ,求证:sin 2A +sin 2B >1.【解答】解:(1)由正弦定理有:a sinA=b sinB=c sinC=√32=4√33, ∴a =4√33sinA ,b =4√33sinB , ∴a +b =4√33sinA +4√33sinB =4√33sinA +4√33sin(2π3−A) =4√33sinA +4√33(√32cosA +12sinA) =2√3sinA +2cosA =4sin(A +π6),∵内角A ,B 都是锐角,∴{0<A <π20<2π3−A <π2,∴π6<A <π2, ∴π3<A +π6<2π3, ∴sin(A +π6)∈(√32,1],∴a +b ∈(2√3,4], ∴a +b +c ∈(2+2√3,6],∴△ABC 周长的取值范围为(2+2√3,6]; (2)∵sin 2A +sin 2B >sin 2C , 由正弦定理得:a 2+b 2>c 2, 由余弦定理:cos C =a 2+b 2−c 22ab>0,∵C ∈(0,π),∴C 为锐角, ∵A ,B 都是锐角,∴A +B >π2,∴0<π2−B <A <π2,∴sinA >sin(π2−B)=cosB >0,∴sin 2A +sin 2B >cos 2B +sin 2B =1, ∴sin 2A +sin 2B >1.21.(12分)已知边长为6的菱形ABCD ,∠ABC =π3,把△ABC 沿着AC 翻折至△AB 1C 的位置,构成三棱锥B 1﹣ACD ,且DE →=12DB 1→,CF →=13CD →,EF =√372.(1)证明:AC ⊥B 1D ;(2)求二面角B 1﹣AC ﹣D 的大小; (3)求EF 与平面AB 1C 所成角的正弦值.【解答】解:(1)证明:取AC 中点O ,连接OB 1,OD , 因为菱形ABCD ,∠AB 1C =π3,所以△ACB 1,△ACD 为等边三角形, 所以OB 1⊥AC ,OD ⊥AC ,又因为OB 1,OD ⊂面OB 1D ,OB 1∩OD =O , 所以AC ⊥面OB 1D , 因为B 1D ⊂面OB 1D , 所以AC ⊥B 1D .(2)因为DE →=12DB 1→,CF →=13CD →,所以FE →=FB 1→+B 1E →=CB 1→−CF →+12B 1D →=CB 1→−13CD →+12(CD →−CB 1→)=16CD →+12CB 1→,平方得,FE →2=(16CD →+12CB 1→)2=136CD →2+16|CD →||CB 1→|cos∠B 1CD +14CB 1→2,即374=136×36+16×6×6cos∠B 1CD +14×36,解得cos ∠B 1CD =−18,在△B 1CD 中,由余弦定理得,B 1D ²=C B 12+CD ²﹣2CB 1•CD cos ∠B 1CD =36+36﹣2×6×6×(−18)=81,所以B 1D =9,由(1)可知,∠DOB 1 是二面角B 1﹣AC ﹣D 的平面角,在等边△AB1C中B1O=B1Csin60°=3√3,同理OD=3√3,在△B1OD中,由余弦定理得,cos∠B1OD=B1O2+DO2−B1D22B1D⋅DO=27+27−812×27=−12,因为0<∠B1OD<π,所以∠B1OD=2π3,即二面角B1﹣AC﹣D的大小2π3.(3)取B1E中点G,连接CG,则E是GD靠近G的三等分点,则EF∥CG,所以CG与平面AB1C所成角即为所成角,在平面DOB1中,作GK⊥B1O,因为AC⊥面OB1D,GK⊂面OB1D,所以AC⊥GK,又因为AC,B1O⊂面AB1C,AC∩B1O=O,所以GK⊥面AB1C,所以∠GCK是CG与平面AB1C所成角,在△DOB1中,∠OB1D=∠ODB1=π6,B1G=14B1D=94,所以GK=12B1G=98,在ΔDCB1中,由△DEF∽△DGC,得EFCG=DEDG=23,CG=32×√372=3√374,所以sin∠GCK=GKCG=983√374=3√3774,所以EF与平面AB1C所成角的正弦值为3√37 74.22.(12分)已知数列{a n}中,a1=1,当n≥2时,其前n项和S n满足:S n2=a n(S n﹣1),且S n≠0,数列{b n}满足:对任意n∈N*有b1S1+b2S2+⋯+b nS n=(n−1)⋅2n+1+2.(1)求证:数列{1S n}是等差数列;(2)求数列{b n}的通项公式;(3)设T n是数列{2n−1b2n−b n}的前n项和,求证:T n<76.【解答】解:(1)证明:由S n2=a n(S n﹣1)得S n2=(S n﹣S n﹣1)(S n﹣1),化简得S n S n﹣1+S n﹣S n﹣1=0,由于S n≠0,所以又有1+1S n−1−1S n=0,即1S n−1S n−1=1,又1S1=1a1=1,所以{1S n}是以1为首项,1为公差的等比数列;(2)结合(1)可得1S n=1+(n﹣1)=n,所以有b1+2b2+…+nb n=(n﹣1)•2n+1+2,又有b1+2b2+…+nb n+(n+1)b n+1=n•2n+2+2,二式相减得(n+1)b n+1=(n+1)•2n+1,即b n+1=2n+1,所以当n≥2有b n=2n,又b1=2,符合上式,所以b n=2n;(3)结合(2)可知2n−1b2n−b n=2n−122n−2n<2n−122n−22n−1=2n−122n−1,所以T n<12+323+525+⋯+2n−122n−1,设Q n=12+323+525+⋯+2n−122n−1,则14Q n=123+325+527+⋯+2n−122n+1,二式相减得34Q n=12+2×(123+125+⋯+122n−1)−2n−122n+1=12+14×(1−(14)n−1)1−14−2n−122n+1,即Q n=23+49(1−(14)n−1)−432n−122n+1,又2n−122n+1>0,所以Q n随着n的增大而增大,当n→+∞,Q n→23+49=109,10 9<76.所以T n<。

高一(下学期)期末考试数学试卷

高一(下学期)期末考试数学试卷

高一(下学期)期末考试数学试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、多选题1.下列抽样方法是简单随机抽样的是( )A .某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B .用抽签的方法产生随机数C .福利彩票用摇奖机摇奖D .规定凡买到明信片最后四位号码是“6637”的人获三等奖 2.若直线a 平行于平面α,则下列结论正确的是( ) A .a 平行于α内的有限条直线 B .α内有无数条直线与a 平行 C .直线a 上的点到平面α的距离相等 D .α内存在无数条直线与a 成90°角3.设a ,b ,l 为不同的直线,α,β,γ为不同的平面,下列四个命题中错误的是( ) A .若//a α,a b ⊥,则b α⊥ B .若αγ⊥,βγ⊥,l αβ=,则l γ⊥C .若a α⊂,//a β,b β⊂,//b α,则//αβD .若αβ⊥,l αβ=,A α∈,AB l ⊥,则AB β⊥4.小王于2017年底贷款购置了一套房子,根据家庭收入情况,小王选择了10年期每月还款数额相同的还贷方式,且截止2021年底,他没有再购买第二套房子.如图是2018年和2021年小王的家庭收入用于各项支出的比例分配图:根据以上信息,判断下列结论中正确的是( ) A .小王一家2021年用于饮食的支出费用跟2018年相同 B .小王一家2021年用于其他方面的支出费用是2018年的3倍 C .小王一家2021年的家庭收人比2018年增加了1倍 D .小王一家2021年用于房贷的支出费用与2018年相同5.已知正方体1111ABCD A B C D -的棱长为2,点F 是棱1BB 的中点,点P 在四边形11BCC B 内(包括边界)运动,则下列说法正确的是( )A .若P 在线段1BC 上,则三棱锥1P AD F -的体积为定值B .若P 在线段1BC 上,则DP 与1AD 所成角的取值范围为,42ππ⎡⎤⎢⎥⎣⎦C .若//PD 平面1AD F ,则点PD .若AP PC ⊥,则1A P 与平面11BCC B二、单选题6.已知a ,b ,c 是三条不同的直线,α,β是两个不同的平面,⋂=c αβ,a α⊂,b β⊂,则“a ,b 相交“是“a ,c 相交”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件7.某校有男生3000人,女生2000人,学校将通过分层随机抽样的方法抽取100人的身高数据,若按男女比例进行分层随机抽样,抽取到的学生平均身高为165cm ,其中被抽取的男生平均身高为172cm ,则被抽取的女生平均身高为( ) A .154.5cmB .158cmC .160.5cmD .159cm8.从二面角内一点分别向二面角的两个面引垂线,则这两条垂线所夹的角与二面角的平面角的关系是( ) A .互为余角B .相等C .其和为周角D .互为补角9.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图,估计这次测试中数学成绩的平均分、众数、中位数分别是( )A .73.3,75,72B .72,75,73.3C .75,72,73.3D .75,73.3,7210.对于数据:2、6、8、3、3、4、6、8,四位同学得出了下列结论:甲:平均数为5;乙:没有众数;丙:中位数是3;丁:第75百分位数是7,正确的个数为( ) A .1B .2C .3D .411.为了贯彻落实《中共中央国务院全面加强新时代大中小学劳动教育的意见》的文件精神,某学校结合自身实际,推出了《植物栽培》《手工编织》《实用木工》《实用电工》《烹饪技术》五门校本劳动选修课程,要求每个学生从中任选三门进行学习,学生经考核合格后方能获得该学校荣誉毕业证,则甲、乙两人的选课中仅有一门课程相同的概率为( ) A .325B .15C .310 D .3512.已知正四棱柱ABCD - A 1B 1C 1D 1中 ,AB=2,CC 1=E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A.2BCD .1三、填空题13.如图,在棱长为1的正方体1111ABCD A B C D -中,点E 、F 、G 分别为棱11B C 、1CC 、11D C 的中点,P 是底面ABCD 上的一点,若1A P ∥平面GEF ,则下面的4个判断∶点P∶线段1A P ;∶11A P AC ⊥;∶1A P 与1B C 一定异面.其中正确判断的序号为__________.14.甲、乙两同学参加“建党一百周年”知识竞赛,甲、乙获得一等奖的概率分别为14、15,获得二等奖的概率分别为12、35,甲、乙两同学是否获奖相互独立,则甲、乙两人至少有1人获奖的概率为___________.15.数据1x ,2x ,…,8x 平均数为6,标准差为2,则数据126x -,226x -,…,826x -的方差为________. 16.将正方形ABCD 沿对角线AC 折起,并使得平面ABC 垂直于平面ACD ,直线AB 与CD 所成的角为__________.四、解答题17.如图,在直三棱柱111ABC A B C -中,1,AB BC AA AB ⊥=,G 是棱11A C 的中点.(1)证明:1BC AB ⊥;(2)证明:平面1AB G ⊥平面1A BC .18.甲、乙两台机床同时生产一种零件,在10天中,两台机床每天生产的次品数分别为: 甲:0,0,1,2,0,0,3,0,4,0;乙:2,0,2,0,2,0,2,0,2,0. (1)分别求两组数据的众数、中位数;(2)根据两组数据平均数和标准差的计算结果比较两台机床性能.19.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)2030,,[)3040,,,[]8090,,并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[)4050,内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.20.某学校招聘在职教师,甲、乙两人同时应聘.应聘者需进行笔试和面试,笔试分为三个环节,每个环节都必须参与,甲笔试部分每个环节通过的概率依次为113224,,,乙笔试部分每个环节通过的概率依次为311422,,,笔试三个环节至少通过两个才能够参加面试,否则直接淘汰;面试分为两个环节,每个环节都必须参与,甲面试部分每个环节通过的概率依次为2132,,乙面试部分每个环节通过的概率依次为4354,,若面试部分的两个环节都通过,则可以成为该学校的在职教师.甲、乙两人通过各个环节相互独立. (1)求甲未能参与面试的概率;(2)记乙本次应聘通过的环节数为X ,求(3)P X =的值;(3)记甲、乙两人应聘成功的人数为Y ,求Y 的的分布列和数学期望21.如图,在三棱锥P -ABC 中,PA ⊥平面,ABC AB AC =,,M N 分别为,BC AB 的中点,(1)求证:MN //平面P AC (2)求证:平面PBC ⊥平面P AM22.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,其对角线AC 与BD 相交于点O ,1160A AB A AD BAD ∠=∠=∠=,13AA =,2AB =.(1)证明:1A O ⊥平面ABCD ; (2)求三棱锥11C A BD -的体积.参考答案:1.BC【分析】由题意,根据简单随机抽样的定义,可得答案.【详解】对于A ,此为分层抽样;对于B ,此为随机数表法;对于C ,此为简单随机抽样;对于D ,此为系统抽样. 故选:BC. 2.BCD【分析】根据直线与平面平行的性质即可判断.【详解】因为直线a 平行于平面α,所以a 与平面α内的直线平行或异面,选项A 错误;选项B ,C ,D 正确.故选:BCD. 3.ACD【分析】选项ACD ,可借助正方体构造反例;选项B ,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥,可证明l m ⊥,l n ⊥,即得证.【详解】A 选项:取11//A C 平面ABCD ,1111AC B D ⊥,但是11B D 不垂直于平面ABCD ,命题A 错误. B 选项:设a αγ⋂=,b βγ=,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥.因为αγ⊥,βγ⊥,所以m α⊥,n β⊥,又l α⊆,l β⊆,所以l m ⊥,l n ⊥,所以l γ⊥.命题B 正确. C 选项:11//A B 平面ABCD ,//CD 平面11ABB A ,但平面ABCD 与平面11ABB A 不平行,命题C 错误. D 选项:平面ABCD ⊥平面11ABB A ,交线为AB ,1B ∈平面11ABB A ,1B C AB ⊥,但1B C 与平面ABCD 不垂直,命题D 错误. 故选:ACD4.BD【分析】由题意,根据扇形统计图的性质,可得答案.【详解】对于A ,小王一家2021年用于饮食的支出比例与跟2018年相同,但是由于2021年比2018年家庭收入多,∶小王一家2021年用于饮食的支出费用比2018年多,故A 错误;对于B ,设2018年收入为a ,∶相同的还款数额在2018年占各项支出的60%,在2021年占各项支出的40%,∶2021年收入为:0.6 1.50.4aa =,∶小王一家2021年用于其他方面的支出费用为1.512%0.18a a ⨯=,小王一家2018年用于其他方面的支出费用为0.06a ,∶小王一家2021年用于其他方面的支出费用是2018年的3倍,故B 正确;对于C ,设2018年收入为a ,则2021年收入为:0.6 1.50.4aa =,故C 错误; 对于D ,小王一家2021年用于房贷的支出费用与2018年相同,故D 正确. 故选:BD . 5.ACD【分析】A. 如图,当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,分析得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN =D. 点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB 1,所以1A P 与平面11BCC B=所以该选项正确. 【详解】A. 如图,因为11//,BC AD AD ⊂平面1,AFD 1BC ⊄平面1,AFD 所以1//BC 平面1,AFD 所以当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,因为11//,BC AD 所以DP 与1AD 所成角就是DP 与1BC 所成的角(锐角或直角),当点P 在1,B C 时,由于∶1BDC 是等边三角形,所以这个角为3π,当1DP BC 时,这个角为2π,由图得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN ,由于//DM AF ,AF ⊂平面1AFD ,DM ⊄平面1AFD ,所以//DM 平面1AFD ,同理可得//MN 平面1AFD ,又,DM MN ⊂平面DMN ,DMMN M =,所以平面//DMN 平面1AFD ,所以//DP 平面1AFD ,MN ==P 选项正确;D.如图,由题得1A P 与平面11BCC B 所成角为11A PB ∠,1112tan A PB PB ∠=,即求1PB 的最小值,因为,PC AP PC AB ⊥⊥,,,AP AB A AP AB ⋂=⊂平面ABP ,所以PC ⊥平面ABP ,所以PC BP ⊥,所以点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB1,所以1A P 与平面11BCC B 所=所以该选项正确.故选:ACD 6.C【分析】根据直线与平面的位置关系进行判断即可.【详解】解:∶若a ,b 相交,a α⊂,b β⊂,则其交点在交线c 上,故a ,c 相交, ∶若a ,c 相交,可能a ,b 为相交直线或异面直线.综上所述:a ,b 相交是a ,c 相交的充分不必要条件. 故选:C . 7.A【分析】由分层抽样求出100人中的男女生数,再利用平均数公式计算作答. 【详解】根据分层随机抽样原理,被抽取到的男生为60人,女生为40人, 设被抽取到的女生平均身高为cm x ,则6017240165100x⨯+=,解得154.5cm x =,所以被抽取的女生平均身高为154.5cm . 故选:A 8.D【分析】做出图像数形结合即可判断.【详解】如图,A 为二面角--l αβ内任意一点,AB α⊥,AC β⊥,过B 作BD l ⊥于D , 连接CD ,因为AB α⊥,l α⊂,所以AB l ⊥因为AC β⊥,l β⊂,所以AC l ⊥,且AB AC A ⋂=, 所以l ⊥平面ABCD ,且CD ⊂面ABCD ,所以⊥l CD 则BDC ∠为二面角l αβ--的平面角,90ABD ACD ∠∠︒==,BAC ∠为两条垂线AB 与AC 所成角,所以180A BDC ∠∠︒+=, 所以两条垂线所夹的角与二面角的平面角互为补角. 故选:D. 9.B【解析】根据频率分布直方图,结合平均数、众数、中位数的求法,即可得解. 【详解】由频率分布直方图可知,平均数为450.00510450.00510550.01510650.02010⨯⨯+⨯⨯+⨯⨯+⨯⨯750.03010850.02510950.0051072+⨯⨯+⨯⨯+⨯⨯=众数为最高矩形底边的中点,即75中为数为:0.005100.015100.02010100.5x ⨯+⨯+⨯+⨯= 可得0.010x = 所以中为数为0.010701073.30.030+⨯≈ 综上可知,B 为正确选项 故选:B【点睛】本题考查了频率分布直方图的应用,平均数、众数、中位数的计算,属于基础题. 10.B【分析】分别求出平均数,中位数,众数,第75百分位数即可得解. 【详解】解:平均数为2683346858+++++++=,故甲正确;众数为:3,6,8,故乙错误;将这组数据按照从小到大的顺序排列:2,3,3,4,6,6,8,8, 则中位数为4652+=,故丙错误; 875%6⨯=,则第75百分位数为6872+=,故丁正确, 所以正确的个数为2个. 故选:B. 11.C【分析】先分析总的选课情况数,然后再分析甲、乙两人的选课中仅有一门课程相同的情况数,然后两者相除即可求解出对应概率.【详解】甲、乙总的选课方法有:3355C C ⋅种,甲、乙两人的选课中仅有一门课程相同的选法有:5412C C ⋅种,(先选一门相同的课程有15C 种选法,若要保证仅有一门课程相同只需要其中一人从剩余4门课程中选取2门,另一人选取剩余的2门课程即可,故有24C 种选法)所以概率为12543355310C C P C C ==,故选:C.【点睛】关键点点睛:解答本题的关键在于分析两人的选课仅有1门相同的选法数,可通过先确定相同的选课,然后再分析四门课程中如何做到两人的选课不同,根据古典概型的概率计算方法完成求解. 12.D【详解】试题分析:因为线面平行,所求求线面距可以转化为求点到面的距离,选用等体积法.1//AC 平面BDE ,1AC ∴到平面BDE 的距离等于A 到平面BDE 的距离,由题计算得11111223232E ABD ABD V S CC -=⨯=⨯⨯⨯在BDE 中,BE DE BD ===BD边上的高2==,所以122BDE S =⨯=所以1133A BDE BDE V S h -==⨯,利用等体积法A BDE E ABD V V --=,得: 13⨯=解得: 1h = 考点:利用等体积法求距离 13.∶∶【分析】先证明平面1A BD ∥平面GEF ,可判断P 的轨迹是线段BD ,结合选项和几何性质一一判断即可. 【详解】分别连接11,,BD A B A D ,所以11BD B D ∥,又因为11B D ∥EG ,则BD EG ∥, 同理1A D EF ∥,1,BDA D D EGEF E ==,故平面1A BD ∥平面GEF ,又因为1A P ∥平面GEF ,且P 是底面ABCD 上的一点,所以点P 在BD 上.所以点P 的轨迹是一段长度为BD =,故∶正确;当P 为BD 中点时1A P BD ⊥,线段1A P ,故∶错; 因为在正方体1111ABCD A B C D -中,1AC ⊥平面1A BD ,又1A P ⊂平面1A BD , 则11A P AC ⊥,故∶正确;当P 与D 重合时,1A P 与1B C 平行,则∶错. 故答案为:∶∶14.1920【分析】利用独立事件的概率乘法公式和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,甲不中奖的概率为1111424--=,乙不中奖的概率为1311555--=,因此,甲、乙两人至少有1人获奖的概率为111914520-⨯=.故答案为:1920. 15.16【详解】试题分析:由题意知12868x x x x +++==,(862s x +-=,则12848x x x +++=,24s =,而()()()12826262624886688x x x y -+-++-⨯-⨯===,所以所求方差为()()()2222212812122122124168s x x x s ⎡⎤=-+-++-=⨯=⎣⎦'.故正确答案为16.考点:两组线性数据间的特征数的运算.【方法点晴】此题主要考查两组俱有线性关系的数据的特征数关系,当数据{}12,,,n x x x 与{}12,,,n y y y 中若有i i y ax b =+时,那么它们之间的平均数与方差(标准差)之间的关系是:y x =,222y x s a s =或是y x s as =,掌握此关系会给我们计算带来很大方便. 16.60°【分析】将所求异面直线平移到同一个三角形中,即可求得异面直线所成的角. 【详解】如图,取AC ,BD ,AD 的中点,分别为O ,M ,N ,则11,22ON CD MN AB ∥∥,所以ONM ∠或其补角即为所求的角.因为平面ABC ⊥平面ACD ,BO AC ⊥,平面ABC平面ACD AC =,BO ⊂平面ABC ,所以BO ⊥平面ACD ,又因为OD ⊂平面ACD ,所以BO OD ⊥. 设正方形边长为2,OB OD ==2BD =,则112OM BD ==. 所以=1ON MN OM ==.所以OMN 是等边三角形,60ONM ∠=︒. 所以直线AB 与CD 所成的角为60︒. 故答案为: 60° 17.(1)证明见解析 (2)证明见解析【分析】(1)由线面垂直得到1AA BC ⊥,从而求出BC ⊥平面11ABB A ,得到1BC AB ⊥;(2)根据正方形得到11BA AB ⊥,结合第一问求出的1BC AB ⊥,得到1AB ⊥平面1A BC ,从而证明面面垂直. (1)∶1AA ⊥平面ABC ,且BC ⊂平面ABC , ∶1AA BC ⊥. 又因为1,BC AB AA AB A ⊥=,1,AA AB ⊂平面11ABB A ,所以BC ⊥平面11ABB A . ∶1AB ⊂平面11ABB A , ∶1BC AB ⊥. (2)∶1AA AB =,易知矩形11ABB A 为正方形, ∶11BA AB ⊥.由(1)知1BC AB ⊥,又由于11,,A B BC B A B BC =⊂平面1A BC ,∶1AB ⊥平面1A BC . 又∶1AB ⊂平面1AB G , ∶平面1AB G ⊥平面1A BC .18.(1)甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1;(2)甲乙的平均水平相当,但是乙更稳定.【分析】(1)根据众数和中位数的公式直接计算,众数是指数据中出现次数最多的数据,中位数是按从小到大排列,若是奇数个,则正中间的数是中位数,若是偶数个数,则正中间两个数的平均数是中位数;(2)平均数指数据的平均水平,标准差指数据的稳定程度,离散水平.【详解】解:(1)由题知:甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1 (2)甲的平均数等于0012003040110+++++++++=乙的平均数等于2020202020110+++++++++=甲的方差等于2222222222(01)(01)(11)(21)(01)(01)(31)(01)(41)(01)210-+-+-+-+-+-+-+-+-+-=乙的方差等于2222222222(21)(01)(21)(01)(21)(01)(21)(01)(21)(01)110-+-+-+-+-+-+-+-+-+-=1 因此,甲乙的平均水平相当,但是乙更稳定!【点睛】本题考查样本的众数,中位数,标准差,重点考查定义和计算能力,属于基础题型. 19.(1)0.4;(2)20;(3)3:2.【分析】(1)根据频率=组距⨯高,可得分数小于70的概率为:1(0.040.02)10-+⨯;(2)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等,分别求出男生、女生的人数,进而得到答案.【详解】解:(1)由频率分布直方图知:分数小于70的频率为:1(0.040.02)100.4-+⨯= 故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4; (2)已知样本中分数小于40的学生有5人, 故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1(0.040.020.020.01)100.050.05-+++⨯-=, 估计总体中分数在区间[40,50)内的人数为4000.0520⨯=人, (3)样本中分数不小于70的频率为:0.6, 由于样本中分数不小于70的男女生人数相等. 故分数不小于70的男生的频率为:0.3, 由样本中有一半男生的分数不小于70,故男生的频率为:0.6,则男生人数为0.610060⨯=, 即女生的频率为:0.4,则女生人数为0.410040⨯=, 所以总体中男生和女生人数的比例约为:3:2. 20.(1)38;(2)13(3)80P X ==;(3)分布列见解析;期望为712. 【分析】(1)甲未能参与面试,则甲笔试最多通过一个环节,结合已知条件计算即可;(2)分析3X =时,分析乙笔试和面试分别通过的环节即可求解;(3)首先分别求出甲乙应聘的概率,然后利用独立事件的性质求解即可.【详解】(1)设事件A =“甲未能参与面试”,即甲笔试最多通过一个环节, 故1131131133()(1)(1)(1)(1)(1)2(1)(1)2242242248P A =---+⨯--⨯+--⨯=;(2)当3X =时,可知乙笔试通过两个环节且面试通过1个环节,或者乙笔试通过三个环节且面试都未通过, 3113114343(3)[(1)(1)2][(1)(1)]4224225454P X ==-⨯⨯+⨯⨯-⨯⨯-+-⨯3114313(1)(1)4225480+⨯⨯⨯--=;(3)甲应聘成功的概率为1113113113215[(1)2(1)]2242242243224P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=, 乙应聘成功的概率为2113113113433[(1)2(1)]224224224548P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=,由题意可知,Y 的取值可能为0,1,2, 5395(0)(1)(1)248192P Y ==--=, 535341(1)(1)(1)24824896P Y ==⨯-+-⨯=535(2)24864P Y ==⨯=, 所以Y 的分布列如下表:所以数学期望7()12E Y =. 21.(1)证明见解析; (2)证明见解析.【分析】(1)由题意证得//MN AC ,结合线面平行的判定定理,即可证得//MN 平面PAC ;(2)由PA ⊥平面ABC ,证得PA BC ⊥,再由AB AC =,证得AM BC ⊥,根据线面垂直的判定定理证得BC ⊥平面PAM ,进而得到平面PBC ⊥平面PAM . (1)证明:在ABC 中,因为,M N 分别为,BC AB 中点,可得//MN AC , 又因为MN ⊄平面PAC ,AC ⊂平面PAC ,所以//MN 平面PAC . (2)证明:因为PA ⊥平面ABC ,且BC ⊂平面ABC ,可得PA BC ⊥, 又因为AB AC =,且M 为BC 中点,可得AM BC ⊥,又由PA AM A =且,PA AM ⊂平面PAM ,所以BC ⊥平面PAM , 因为BC ⊂平面PBC ,所以平面PBC ⊥平面PAM . 22.(1)证明见解析 (2)【分析】(1)连接1A B ,1A D ,可证明1AO BD ⊥,再证明1A O OA ⊥,从而可证明结论. (2)由线面垂直的判断定理得AC ⊥平面1A BD ,由11//AC A C 得11A C ⊥平面1A BD ,再由棱锥的体积可得答案. (1)连接11,A D A B ,111,,AD AB A AB A AD A A =∠=∠为公共边,1111,∴≅∴=A AB A AD A D A B ,又O 为BD 的中点,1A O BD ∴⊥,在1A AB 中,由余弦定理可知1A B在1Rt AOB 中1AO =13,A A AO = 满足22211A O AO A A +=1A O OA ∴⊥,又AO BD O ⋂=,1A O ∴⊥平面ABCD .(2)由(1)知1A O ⊥平面ABCD ,AC ⊂平面ABCD , 1A O AC ∴⊥且1BD AC BD AO O ⊥⋂=,, AC ∴⊥平面1A BD ,且11//AC A C , 11A C ∴⊥平面1A BD ,1111232C A BD V -=⨯⨯。

人教版2019学年高一数学考试试卷含答案(共10套 )

人教版2019学年高一数学考试试卷含答案(共10套 )

人教版2019学年高一数学考试试题(一)一、选择题:(每小题5分,共50分) 1、下列计算中正确的是( )A 、633x x x =+ B 、942329)3(b a b a = C 、b a b a lg lg )lg(⋅=+ D 、1ln =e2、当时,函数和的图象只可能是( )3、若10log 9log 8log 7log 6log 98765⋅⋅⋅⋅=y ,则( )A 、()3,2∈yB 、()2,1∈yC 、()1,0∈yD 、1=y4、某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是( )A 、不增不减B 、增加9.5%C 、减少9.5%D 、减少7.84% 5、函数x x f a log )(= ( π≤≤x 2)的最大值比最小值大1,则a 的值( ) A 、2π B 、 π2 C 、 2π或π2D 、 无法确定 6、已知集合}1,)21(|{},1,log |{2>==>==x y y B x x y y A x,则B A ⋂等于( ) A 、{y |0<y <21} B 、{y |0<y <1} C 、{y |21<y <1} D 、 ∅ 7、函数)176(log 221+-=x x y 的值域是( )A 、RB 、[8,+∞)C 、]3,(--∞D 、[-3,+∞)8、若 ,1,10><<b a 则三个数ab b b P a N a M ===,log ,的大小关系是( )A 、P N M <<B 、P M N <<C 、N M P <<D 、M N P << 9、函数y = )A 、[12--,)] B 、(12--,)) C 、[12--,](1,2) D 、(12--,)(1,2)10、对于幂函数21)(x x f =,若210x x <<,则)2(21x x f +,2)()(21x f x f +大小关系是( )A 、)2(21x x f +<2)()(21x f x f + B 、)2(21x x f +>2)()(21x f x f + C 、 )2(21x x f +=2)()(21x f x f +D 、无法确定二、填空题:(共7小题,共28分)11、若集合}1log |{},2|{25.0+====x y y N y y M x , 则N M 等于 __________;12、函数y =)124(log 221-+x x 的单调递增区间是 ;13、已知01<<-a ,则三个数331,,3a a a由小到大的顺序是 ;14、=+=a R e aa e x f xx 上是偶函数,则在)(______________; 15、函数=y (31)1822+--x x (3-1≤≤x )的值域是 ;16、已知⎩⎨⎧≥-<=-)2()1(log )2(2)(231x x x e x f x ,则=)]2([f f ________________; 17、方程2)22(log )12(log 122=+++x x 的解为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一下学期期末数学试卷
一、选择题
1. 已知集合A={x|x2﹣3x﹣4<0},B={x||x|≤2},则集合A∩B=()
A . (﹣4,2]
B . (﹣1,2]
C . [﹣2,﹣1)
D . [﹣2,4)
2. 下列不等式中,与不等式的解集相同的是()
A . (x+4)(x2﹣2x+2)>3
B . x+4>3(x2﹣2x+2)
C .
D .
3. 现有10个数,它们能构成一个以2为首项,﹣2为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是()
A .
B .
C .
D .
4. 已知递增等差数列{an}的前n项和为Sn,a3a5=45,S7=49,则数列
的前n项和为()
A .
B .
C .
D .
5. 如图是一个算法的流程图,则输出的a值为()
A . 511
B . 1023
C . 2047
D . 4095
6. 在△ABC中,若AB=4,AC=6,D为边BC的中点,O为△ABC的外心,则
=()
A . 13
B . 24
C . 26
D . 52
7. 已知定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(1+x)=f(1﹣x),当0<x≤1时,f(x)=2x,则f(2017)+f(2016)=()
A . 0
B . 1
C . 2
D . 3
8. 函数的零点个数为()
A . 5
B . 6
C . 7
D . 9
9. 若b>a>0,则的最小值为()
A .
B . 3
C .
D . 2
10. 已知函数f(x)=cos2x的图象向左平移个单位后得到函数g(x)的图象,若使|f(x1)﹣g(x2)|=2成立x1,x2的满足,则φ的值为()
A .
B .
C .
D .
11. 已知数列{an}满足:an+1+(﹣1)nan=n+2(n∈N*),则S20=()
A . 130
B . 135
C . 260
D . 270
12. 在平面四边形ABCD中,若AB=3,AC=4,cos∠CAB= ,AD=4sin∠ACD,则BD的最大值为()
A .
B . 4
C .
D . 5
二、填空题
13. 已知角α的终边在直线y=3x上,则sin2α+sin2α=________.
14. 《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是:“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,Sn为前n天两只老鼠打洞长度之和,则Sn=________尺.
15. 已知函数f(x)=ax2﹣2ax+b,当x∈[0,3]时,|f(x)|≤1恒成立,则2a+b 的最大值为________.
16. 在平面直角坐标系xoy中,角θ满足
,设点B是角θ终边上的一个动点,则的最小值为________.
三、解答题
17. 已知向量,函数

(1)求函数f(x)的单调递减区间;
(2)若,且α为第一象限角,求cosα的值.
18. 已知锐角△ABC的三个内角A,B,C的对边分别为a,b,c,且=(a,b+c),.
(1)求角A;
(2)若a=3,求△ABC面积的取值范围.
19. 已知正项数列{an}的前n项和为Sn,点(an,Sn)(n∈N*)都在函数f (x)= 的图象上.
(1)求数列{an}的通项公式;
(2)若bn=an•3n,求数列{bn}的前n项和Tn .
20. 为了测量山顶M的海拔高度,飞机沿水平方向在A,B两点进行测量,A,B,M在同一个铅垂面内(如图).能够测量的数据有俯角、飞机的高度和A,B两点间的距离.请你设计一个方案,包括:
(1)指出需要测量的数据(用字母表示,并在图中标出);
(2)用文字和公式写出计算山顶M海拔高度的步骤.
21. 设函数f(x)= ,a为常数,且a∈(0,1).
(1)若x0满足f(x0)=x0,则称x0为f(x)的一阶周期点,证明函数f(x)有且只有两个一阶周期点;
(2)若x0满足f(f(x0))=x0,且f(x0)≠x0,则称x0为f(x)的二阶周期点,当a= 时,求函数f(x)的二阶周期点.
22. 已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N* .
(1)若2a2,a3,a2+2成等差数列,求数列{an}的通项公式;
(2)设数列{bn}满足bn= ,且b2= ,证明:b1+b2++bn>.。

相关文档
最新文档