第42讲 空间直线与平面的垂直关系

合集下载

直线与平面垂直的判定与性质(共26张PPT)

直线与平面垂直的判定与性质(共26张PPT)
直线与平面垂直的判定与性 质(共26张ppt)
目 录
• 直线与平面垂直的判定 • 直线与平面垂直的性质 • 直线与平面垂直的证明 • 直线与平面垂直的应用 • 总结与展望 • 参考文献
01
直线与平面垂直的判定
直线与平面垂直的定义
01
直线与平面垂直是指直线与平面 内的任意一条直线都垂直。
02
如果一条直线与平面内的任意一 条直线都垂直,则这条直线与该 平面垂直。
建筑设计
在建筑设计中,直线与平面垂直的应用非常重要, 如确定建筑物的垂直度和水平面等。
机械制造
在机械制造中,直线与平面垂直的应用可以帮助 制造出精确的机械部件。
道路建设
在道路建设中,直线与平面垂直的应用可以帮助 确保道路的平直度和坡度等。
05
总结与展望
总结直线与平面垂直的判定与性质
判定方法 通过直线与平面内两条相交直线垂直来判定直线与平面垂直。
通过直线与平面内无数条直线垂直来判定直线与平面垂直。
总结直线与平面垂直的判定与性质
• 通过直线与平面垂直的性质定理来判定直线与平面垂直。
总结直线与平面垂直的判定与性质
01
性质定理
02
03
04
直线与平面垂直,则该直线与 平面内任意一条直线都垂直。
直线与平面垂直,则该直线所 在的所有直线都与该平面垂直
证明
假设有一条直线l与平面α垂直,那么直线l与平面α内的任意一条直线m都垂直。 由于直线l与平面α内的直线m都垂直,所以它们之间的夹角为90°,即直线l与平 面α内的任意一条直线都垂直。
直线与平面垂直的性质推论
推论1
证明
推论2
证明
如果一条直线与平面内的两 条相交直线都垂直,那么这

空间中直线与平面的位置关系 第2课时 直线与平面垂直课件

空间中直线与平面的位置关系 第2课时 直线与平面垂直课件

一条直线和一个平面平行,这条直线上任意一点到这个平面的距离,叫作这条直线与这个平面的距离
高中数学
必修第二册
湖南教育版
即时训练
已知平面外的一条直线上有两个不同的点A,B,且A,B到的距离相等,则这条直线与平面的位置关系

平行或相交
.
高中数学
必修第二册
湖南教育版
五、直线与平面所成的角
1.斜线
一条直线l与一个平面相交,但不与平面垂直,则直线l称为平面的一条斜线,斜线l与平面的交点A
能保证该直线与平面垂直的是( AC )
A.①
B.②
C.③
D.④
高中数学
必修第二册
湖南教育版
三、直线与平面垂直的性质定理
文字描述
垂直于同一个平面的两条直线平行
图形语言
符号语言
a⊥α
} ⇒ ∥
b⊥α
应用
①证明或判断两条直线平行.②构造平行线,即作同一个平面的垂线
名师点析
(1)直线与平面垂直的性质定理给出了判定两条直线平行的另一种方法.
高中数学
必修第二册
湖南教育版
证明:(1)∵ 平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,
∴ AD⊥平面ABC,∴ AD⊥BC.
解:(2)取棱AC的中点N,连接MN,ND,如图所示.
∵ M为棱AB的中点,∴ MN∥BC.∴ ∠DMN(或其补角)为异面直线BC与MD所成的角.
在Rt△DAM中,AM=1,AD=2 3,∴ DM= 2 + 2 = 13.∵ AD⊥平面ABC,∴ AD⊥AC.
棱AB的中点,AB=2,AD=2 3,∠BAD=90°.
(1)求证:AD⊥BC.

直线与平面垂直的判定PPT课件

直线与平面垂直的判定PPT课件

例题二:求点到直线的距离
方法一
利用点到直线的距离公式,通过计算 点到直线上任意一点的向量在直线方 向向量上的投影长度,从而得出点到 直线的距离。
方法二
利用向量的叉积,通过计算点到直线上 两个点的向量与直线方向向量的叉积的 模,再除以直线方向向量的模,从而得 出点到直线的距离。
例题三:解决实际问题中的应用
方法三:结合图形进行判断
• 步骤 • 观察图形中已知直线与平面的位置关系; • 如果看起来垂直,则可以直接判断已知直线与平面垂直。 • 注意:以上三种方法都可以用来判断一条直线是否与一个平
面垂直,但具体使用哪种方法需要根据题目的具体情况来决 定。同时,在实际应用中,还需要注意一些特殊情况的处理, 例如当已知直线在平面内或与平面平行时,需要采用其他方 法进行判断。
点到直线距离公式可以用来辅助判断直线与平面是否垂直。
03
直线与平面垂直的判定方 法
方法一:利用定义直接判断
定义:如果一条直线与一个平面内的任意 一条直线都垂直,那么这条直线与这个平 面垂直。
如果都垂直,则已知直线与平面垂直。
步骤
验证已知直线与这两条相交直线是否垂直;
在平面内任意取两条相交直线;
方法二:利用判定定理进行判断
直线与平面垂直 的判定PPT课件
目录
• 直线与平面垂直的基本概念 • 直线与平面垂直的判定定理 • 直线与平面垂直的判定方法 • 直线与平面垂直的应用举例 • 直线与平面垂直的拓展延伸
01
直线与平面垂直的基本概 念
直线与平面的位置关系
01
02
03
直线在平面内
直线上的所有点都在平面 内。
直线与平面相交
步骤
验证这两条直线是否垂直;

人教A版高中数学必修二课件 《空间直线、平面的垂直》(直线与直线垂直、直线与平面垂直的定义及判定)

人教A版高中数学必修二课件 《空间直线、平面的垂直》(直线与直线垂直、直线与平面垂直的定义及判定)

3.[变条件]本例中的条件“AE⊥PB 于点 E, AF⊥PC 于点 F”,改为“E,F 分别是 AB, PC 的中点,PA=AD”,其他条件不变,求证: EF⊥平面 PCD.
证明:取 PD 的中点 G,连接 AG,FG. 因为 G,F 分别是 PD,PC 的中点, 所以 GF═∥12CD,又 AE═ ∥12CD,所以 GF═ ∥AE, 所以四边形 AEFG 是平行四边形,所以 AG∥EF. 因为 PA=AD,G 是 PD 的中点, 所以 AG⊥PD,所以 EF⊥PD, 易知 CD⊥平面 PAD,AG⊂平面 PAD, 所以 CD⊥AG,所以 EF⊥CD. 因为 PD∩CD=D,所以 EF⊥平面 PCD.
8.6 空间直线、平面的垂直 第1课时直线与直线垂直、直线与平面垂直的定义及判定
第八章 立体几何初步
考点
学习目标
核心素养
会用两条异面直线所成角的
直观想象、逻辑
异面直线所成的 定义,找出或作出异面直线
推理、

所成的角,会在三角形中求简
数学运算
单的异面直线所成的角
第八章 立体几何初步
考点
学习目标
核心素养
所以∠GFE(或其补角)就是异面直线 EF 与 AB 所成的角,EG =GF. 因为 AB⊥CD,所以 EG⊥GF. 所以∠EGF=90°. 所以△EFG 为等腰直角三角形. 所以∠GFE=45°, 即 EF 与 AB 所成的角为 45°.
直线与平面垂直的定义
(1)直线 l⊥平面 α,直线 m⊂α,则 l 与 m 不可能( )
解析:当 l 与 α 内的一条直线垂直时,不能保证 l 与平面 α 垂 直,所以①不正确;当 l 与 α 不垂直时,l 可能与 α 内的无数条 平行直线垂直,所以②不正确,③正确.根据线面垂直的定义, 若 l⊥α,则 l 与 α 内的所有直线都垂直,所以④正确. 答案:③④

空间直线、平面的垂直_课件

空间直线、平面的垂直_课件

方法二 如图所示,连接A1D, 取A1D的中点H, 连接HE,则HE∥
∴∠HEF为异面直线DB1与EF所成的角(或其补角 ).
方法三:如图,连接A1C1, 分别取AA1, CC1的中点M, N,连接 MN. ∵E, F分别是A1B1, B1C1的中点, ∴EF//A1C1, 又MN// A1C1, ∴MN// EF. 连接DM, B1N, MB1, DN, 则B1N//DM, ∴四边形DMB1N为平行四边形,∴MN与DB1必相交, 设交点为P,则∠DPM 为异面直线DB1与EF所成的角(或其补角 ).
拓展练习
例 在正方体 ABCD-A1B1C1D1中,E, F分别是A1B1, B1C1的中点 , 求异面直线DB1与EF所成的角的大小.
[解] 方法一 如图所示, 连接A1C1, B1D1, 并设它们相交于点O , 取DD1的中点G, 连接OG, A1G, C1G, 则OG// B1D,EF//A1C1, ∴∠GOA1为异面直线DB1与EF所成的角(或其补角) ∵GA1=GC1, O为A1C1的中点,∴GO⊥A1C1. ∴异面直线DB1与EF所成的角为90°.
例1如图8.6-3, 已知正方体ABCDA'B'C'D'. (1)哪些棱所在的直线与直线 AA'垂直? (2)求直线BA'与CC'所成的角的大小. (解3):求(1直)棱线ABBA, 'B与CA, CCD所, 成DA的,角A'的B'大, B小'C.', C'D', D'A'所在直线分别与直线AA'垂 直.
方法归纳 证明直线与直线垂直的方法 ①等腰三角形中线即是高线 . ②勾股定理. ③异面直线所成的角为直角 .

高中数学人教A版必修第二册《空间直线、平面的垂直---直线与平面、平面与平面垂直的性质》名师课件

高中数学人教A版必修第二册《空间直线、平面的垂直---直线与平面、平面与平面垂直的性质》名师课件
掌握平面与平面垂直的性质定理.
核心素养
逻辑推理
逻辑推理
学习目标
课程目标
1.理解直线和平面、平面和平面垂直的性质定理并能运用其解决相关问题.
2.通过对性质定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.
数学学科素养
1.逻辑推理:探究归纳直线和平面、平面和平面垂直的性质定理,线线垂直、线面垂直、
变式训练
3.如图所示,在四棱锥PABCD中,底面ABCD是边长为a的菱形,且∠DAB=60°,G为AD边
的中点,侧面PAD为正三角形,其所在的平面垂直于底面ABCD.
(1)求证:BG⊥平面PAD;(2)求证:AD⊥PB.
证明
(1)因为在菱形ABCD中,G为AD的中点, ∠DAB=60° ,所以BG⊥AD.
复习引入
直线与平面垂直的定义:
如果直线与平面内的任意一条直线都垂直,我们说直
线与平面互相垂直,记作 ⊥ .
直线与平面垂直的判定定理:
一条直线与一个平面内的两条相交直线都垂直,则该直线与此平
面垂直.
复习引入
平面与平面垂直的定义
一般地,两个平面相交,如果它们所成的二面角是直二面角,就说
这两个平面互相垂直.
求证:(1)DE=DA;(2)平面BDM⊥平面ECA;(3)平面DEA⊥平面ECA.
证明
(1)如图,取EC的中点F,连接DF.
因为EC⊥平面ABC,BC⊂平面ABC,所以EC⊥BC.
易知DF//BC,所以DF⊥EC.
在Rt△EFD和Rt△DBA中

因为EF= EC,EC=2BD,所以EF=BD.

又FD=BC=AB所以Rt△EFD≌Rt△DBA ,故DE=DA.
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以BG⊥平面PAD.

《空间中的垂直关系:直线与平面垂直》参考教案

βαm la αaα 1.2.3 直线与平面垂直教学目的:1.理解直线与平面垂直的定义;2.掌握直线与平面垂直的判定、性质定理内容及其应用;3.应用直线与平面垂直的判定、性质定理解决问题 .教学重点:直线与平面垂直的判定、性质定理内容及其应用. 教学难点:直线与平面垂直的判定、性质定理内容及论证过程教学过程:一、复习引入:1.直线和平面的位置关系是什么?观察空间直线和平面可知它们的位置关系有:(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)它们的图形分别可表示为如下,符号分别可表示为a ⊂α,a ⋂α=A ,a//α.2.线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:,,////l m l m l ααα⊄⊂⇒ 3.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.推理模式://,,//l l m l αβαβ⊂⋂=⇒ 引入新课:在直线和平面相交的位置关系中,有一种相交是很特殊的,我们把它叫做垂直相交,这节课我们重点来探究这种形式的相交----引出课题.二、研探新知1.观察实例,发现新知现实生活中线面垂直的实例:旗杆与地面的关系,大桥的桥柱与水面的位置关系,房屋的屋柱与地面的关系,都给人以直线与平面垂直的形象。

2.实例研探,定义新知探究:什么叫做直线和平面垂直呢?当直线与平面垂直时,此直线与平面内的所有直线的关系又怎样呢?变换时间观察现实生活中线面垂直的实例:在阳光下观察直立于地面的旗杆及它在地面的影子,随着时间的变化,尽管影子的位置在移动,但是旗杆所在的直线始终与影子所在的直线垂直,就是说,旗杆AB所在直线与地面上任意一条过点B的直线垂直(如图),事实上,旗杆AB所在直线与地面内任意一条不过点B的直线也是垂直的。

考点35 空间直线、平面垂直的判定及其性质

考点三十五 空间直线、平面垂直的判定及其性质知识梳理1.直线与平面垂直的定义如果一条直线a 与一个平面α内的任意一条直线都垂直,我们就说直线a 垂直于平面α,记作a ⊥α,直线a 叫做平面α的垂线,平面α叫做直线a 的垂面,垂线和平面的交点称为垂足.结论: 过一点有且只有一条直线与已知平面垂直,过一点有且只有一个平面与已知直线垂直.2.直线与平面垂直的判定定理如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面. 3.直线与平面垂直的性质定理如果两条直线同时垂直于一个平面,那么这两条直线平行. 4.与线面垂直有关的重要结论(1)如果一条直线垂直于一个平面,那么这条直线垂直于平面内的任何一条直线. (2)如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面. (3)如果一条直线与两个平面都垂直,那么这两个平面平行.(4)过一点有且只有一条直线和已知平面垂直;过一点有且只有一个平面和已知直线垂直. 5.两平面垂直的定义如果两个平面所成的二面角是直二面角,我们就说这两个平面互相垂直. 6.两平面垂直的判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 7.两平面垂直的性质定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面. 8.空间角(1)直线与平面所成的角平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角,如图,∠P AO 就是斜线AP 与平面α所成的角.当直线与平面垂直时,它们所成的角是直角;当直线在平面内或直线与平面平行时,它们所成的角是0°的角.故线面角θ的范围:θ∈[0,π2].(2)二面角从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱.两个半平面叫做二面角的面.如图的二面角,可记作:二面角α-l -β或二面角P -AB -Q .②二面角的平面角如图,过二面角α-l -β的棱l 上一点O 在两个半平面内分别作BO ⊥l ,AO ⊥l ,则∠AOB 就叫做二面角α-l -β的平面角.设二面角的平面角为θ,则θ∈[0,π].当θ=π2时,二面角叫做直二面角.9.垂直关系的转化 判定定理转化:线线垂直线面垂直面面垂直性质定理转化:面面垂直用图形表示为:同时,在平行与垂直之间也存在相互转化,即: 线线垂直线面垂直线线平行线面平行典例剖析题型一 垂直问题有关的命题判定例1 (2014·浙江高考)设m ,n 是两条不同的直线,α,β是两个不同的平面________. ① 若m ⊥n ,n ∥α,则m ⊥α ② 若m ∥β,β⊥α则m ⊥α ③ 若m ⊥β,n ⊥β,n ⊥α则m ⊥α ④ 若m ⊥n ,n ⊥β,β⊥α,则m ⊥α答案 ③解析 选项①,②,④中m 均可能与平面α平行、垂直、斜交或在平面α内,故选③. 变式训练 已知m ,n 是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m ⊥α,n ⊥β,m ⊥n ,则α⊥β; ②若m ∥α,n ∥β,m ⊥n ,则α∥β; ③若m ⊥α,n ∥β,m ⊥n ,则α∥β; ④若m ⊥α,n ∥β,α∥β,则m ⊥n . 其中所有正确的命题是________. 答案 ①④解析 借助于长方体模型来解决本题,对于①,可以得到平面α,β互相垂直,如图(1)所示,故①正确;对于②,平面α、β可能垂直,如图(2)所示;对于③,平面α、β可能垂直,如图(3)所示;对于④,由m ⊥α,α∥β可得m ⊥β,因为n ∥β,所以过n 作平面γ,且γ∩β=g ,如图(4)所示,所以n 与交线g 平行,因为m ⊥g ,所以m ⊥n .解题要点 1.对于这类命题的判断问题,借助模型法是常见策略,一般地,对于线面、面面平行、垂直的位置关系的判定,可构造长方体或正方体化抽象为直观去判断.2.还可以通过画图判断,作图时仍然遵循先作面后作线的原则,用面衬托线,从而利于判断. 题型二 线面垂直的判定与性质例2 如图,已知P A ⊥平面ABCD ,且四边形ABCD 为矩形,M ,N 分别是AB ,PC 的中点.(1)求证:MN ⊥CD ;(2)若∠PDA =45°,求证:MN ⊥平面PCD .证明:(1)如图所示,取PD 的中点E ,连接AE ,NE ,∵N 是PC 的中点,E 为PD 的中点,∴NE ∥CD ,且NE =12CD ,而AM ∥CD ,且AM =12AB =12CD ,∴NEAM ,∴四边形AMNE 为平行四边形,∴MN ∥AE .又P A ⊥平面ABCD ,∴P A ⊥CD , 又∵ABCD 为矩形,∴AD ⊥CD . 而AD ∩P A =A ,∴CD ⊥平面P AD ,∴CD⊥AE.又AE∥MN,∴MN⊥CD.(2)∵P A⊥平面ABCD,∴P A⊥AD,又∠PDA=45°,∴△P AD为等腰直角三角形.又E为PD的中点,∴AE⊥PD,又由(1)知CD⊥AE,PD∩CD=D,∴AE⊥平面PCD.又AE∥MN,∴MN⊥平面PCD.解题要点利用判定定理证明线面垂直时,必须证明一条直线垂直于平面内的两条相交直线,这里相交必须要体现出来.题型三面面垂直的判定和性质例3如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点.(1)证明:平面BDC1⊥平面BDC;(2)平面BDC1分此棱柱为两部分,求这两部分体积的比.解析(1)证明:由题设知BC⊥CC1,BC⊥AC,CC1∩AC=C,所以BC⊥平面ACC1A1. 又DC1⊂平面ACC1A1,所以DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,所以∠CDC1=90°,即DC1⊥DC.又DC∩BC=C,所以DC1⊥平面BDC.又DC1⊂平面BDC1,故平面BDC1⊥平面BDC.(2)设棱锥B-DACC1的体积为V1,AC=1.由题意得V1=13×1+22×1×1=12.又三棱柱ABC-A1B1C1的体积V=1,所以(V-V1)∶V1=1∶1.故平面BDC1分此棱柱所得两部分体积的比为1∶1.变式训练如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE ⊥平面B 1BCC 1; (2)求证:C 1F ∥平面ABE ; (3)求三棱锥E -ABC 的体积.解析 (1)证明 在三棱柱ABC -A 1B 1C 1中,BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1, 又AB 平面ABE ,所以平面ABE ⊥平面B 1BCC 1. (2)证明 取AB 的中点G ,连接EG ,FG .因为E ,F 分别是A 1C 1,BC 的中点,所以FG ∥AC ,且FG =12AC .因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形.所以C 1F ∥EG .又因为EG 平面ABE ,C 1F 平面ABE ,所以C 1F ∥平面ABE . (3)解 因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3.所以三棱锥E -ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.解题要点 (1)判定面面垂直的方法: ①面面垂直的定义;②面面垂直的判定定理(a ⊥β,aα⇒α⊥β).(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.当堂练习1.下列命题中,正确命题个数为________.①如果一条直线垂直于平面内的两条直线,那么这条直线和这个平面垂直. ②过直线l 外一点P ,有且仅有一个平面与l 垂直.③如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.④垂直于角的两边的直线必垂直角所在的平面.⑤过点A垂直于直线a的所有直线都在过点A垂直于a的平面内.答案 4解析②③④⑤正确,①中当这无数条直线都平行时,结论不成立.2.下列命题中正确的是________.①平面α和β分别过两条互相垂直的直线,则α⊥β②若平面α内的一条直线垂直于平面β内两条平行线,则α⊥β③若平面α内的一条直线垂直于平面β内两条相交直线,则α⊥β④若平面α内的一条直线垂直于平面β内无数条直线,则α⊥β答案③解析由两个平面垂直的定义知,③正确.3. 在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,则下面四个结论中不成立的是________.①BC∥平面PDF②DF⊥平面P AE③平面PDF⊥平面ABC④平面P AE⊥平面ABC 答案③解析可画出对应图形,如图所示,则BC∥DF,又DF⊂平面PDF,BC⊄平面PDF,∴BC ∥平面PDF,故①成立;由AE⊥BC,PE⊥BC,BC∥DF,知DF⊥AE,DF⊥PE,∴DF⊥平面P AE,故②成立;又DF⊂平面ABC,∴平面ABC⊥平面P AE,故④成立.4.平面α⊥平面β,直线a∥α,则________.①a⊥β②a∥β③a与β相交④以上都有可能答案④解析借助长方体,可举例说明①、②、③都有可能成立.5.设m、n是两条不同的直线,α、β是两个不同的平面,给出下列四个命题:①若m⊥n,m⊥α,n⊄α,则n∥α;②若m∥α,α⊥β,则m⊥β;③若m⊥β,α⊥β,则m∥α或m⊂α;④若m⊥n,m⊥α,n⊥β,则α⊥β.则其中正确命题的序号为________.答案①③④解析②中可能有m∥β,故②不正确.课后作业一、 填空题1.若m 、n 表示直线,α表示平面,则下列命题中,正确命题的个数为________. ① }m ∥n ,m ⊥α⇒n ⊥α; ② }m ⊥α,n ⊥α⇒M ∥n ; ③ }m ⊥α,n ∥α⇒M ⊥n; ④ }m ∥α,m ⊥n ⇒n ⊥α. 答案 3解析 ①②③正确,④中n 与面α可能有:n ⊂α或n ∥α或相交(包括n ⊥α)2.如图,四棱锥P —ABCD 中,P A ⊥平面ABCD ,则PD 与平面ABCD 所成的角为图中的________.答案 ∠PDA解析 ∵P A ⊥平面ABCD ,∴AD 是PD 在平面ABCD 上的射影,故∠PDA 是PD 与平面ABCD 所成的角. 3.经过平面α外一点和平面α内一点与平面α垂直的平面有________. 答案 1个或无数个解析 如果平面内一点与平面外一点的连线与平面垂直,则可以作无数个平面与已知平面垂直,如果两点连线与已知平面不垂直,则只能作一个平面与已知平面垂直. 4.在如图所示的四个正方体中,能得出AB ⊥CD 的是________.①② ③④答案 ①解析 ①中,∵CD ⊥平面AMB ,∴CD ⊥AB ; ②中,AB 与CD 成60°角; ③中,AB 与CD 成45°角;④中,AB 与CD 夹角的正切值为2.5.已知a ,b ,c 为三条不重合的直线,下面有三个结论:①若a ⊥b ,a ⊥c ,则b ∥c ;②若a ⊥b ,a ⊥c ,则b ⊥c ;③若a ∥b ,b ⊥c ,则a ⊥c . 其中正确的个数为________.答案1个解析①不对,b,c可能异面;②不对,b,c可能平行或异面;③对.6.已知直线m,n和平面α,β满足m⊥n,m⊥α,α⊥β,则________.①n⊥β②n∥β③n⊥α④n∥α或n⊂α答案④解析如图所示,图①中n与β相交,②中n⊂β,③中n∥β,n∥α,∴排除选④.7.设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是________.①若α⊥β,α∩β=n,m⊥n,则m⊥α②若m⊂α,n⊂β,m⊥n,则n⊥α③若n⊥α,n⊥β,m⊥β,则m⊥α④若m∥α,n∥β,m⊥n,则α⊥β答案③解析与α、β两垂直相交平面的交线垂直的直线m,可与α平行或相交,故①错;对②,存在n∥α情况,故②错;对④,存在α∥β情况,故④错.由n⊥α,n⊥β,可知α∥β,又m⊥β,所以m⊥α,故③正确.8.已知平面α与平面β相交,直线m⊥α,则________.①β内必存在直线与m平行,且存在直线与m垂直②β内不一定存在直线与m平行,不一定存在直线与m垂直③β内不一定存在直线与m平行,必存在直线与m垂直④β内必存在直线与m平行,不一定存在直线与m垂直答案③解析当直线m与β相交时β内存在直线与m平行,但可以作直线与m成90°角.9.空间四边形ABCD的四条边相等,则对角线AC与BD的位置关系为________.答案垂直解析取AC中点E,连BE、DE.由AB=BC得AC⊥BE.同理AC⊥DE,所以AC⊥面BE D.因此,AC⊥B D.10.下列四个命题中,正确的序号有________.①α∥β,β⊥γ,则α⊥γ;②α∥β,β∥γ,则α∥γ;③α⊥β,γ⊥β,则α⊥γ;④α⊥β,γ⊥β,则α∥γ.答案①②解析③④不正确,如图所示,α⊥β,γ⊥β,但α,γ相交且不垂直.11.在三棱锥P-ABC中,若P A⊥PB,PB⊥PC,PC⊥P A,则在三棱锥P-ABC的四个面中,互相垂直的面有________对.答案3解析∵P A⊥PB,P A⊥PC,PB∩PC=P,∴P A⊥平面PBC,又P A⊂平面P AC,P A⊂平面P AB,∴平面P AC⊥平面PBC,平面P AB⊥平面PB C.同理可证平面P AB⊥平面P A C.二、解答题12.如图所示,四棱锥P-ABCD的底面ABCD是菱形,∠BCD=60°,E是CD的中点,P A ⊥底面ABCD,求证平面PBE⊥平面P AB.证明如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥C D.又AB∥CD,所以BE⊥A B.又因为P A⊥平面ABCD,BE⊂平面ABCD,所以P A⊥BE.而P A∩AB=A,因此BE⊥平面P A B.又BE⊂平面PBE,所以平面PBE⊥平面P A B.13.如图所示,已知P A垂直于⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,过点A作AE⊥PC于点E.求证AE⊥平面PBC.证明∵P A⊥平面ABC,∴P A⊥B C.又∵AB是⊙O的直径,∴BC⊥A C.而P A∩AC=A,∴BC⊥平面P A C.又∵AE⊂平面P AC,∴BC⊥AE.又∵PC⊥AE,且PC∩BC=C,∴AE⊥平面PB C.。

考点24 空间几何中的垂直(解析版)

考点24 空间几何中的垂直知识理解一.直线与平面垂直(1)直线和平面垂直的定义:直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直(2)直线与平面垂直的判定定理及性质定理:二.平面与平面垂直的判定定理与性质定理三.证明线线垂直的思路平行四边形:正方形、菱形、矩形图形三角形:等腰(等边)三角形--取中点正余弦定理边关系或边长勾股逆定理线面垂直的定义面面垂直的性质⎧⎧⎪⎪⎨⎪⎩⎪⎪⎧⎪⎪⎨⎨⎪⎩⎪⎪⎪⎪⎩ 考向一 线面垂直【例1】3.(2021·江西吉安市·高三期末节选)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,90ADC ∠=︒,22AD DC BC ===,PAD △为正三角形,Q 为AD 的中点,求证:AD ⊥平面PBQ【答案】证明见解析【解析】∵PAD △为正三角形,Q 为AD 的中点,∴PQ AD ⊥.∵//AD BC ,2AD DC BC ==,Q 为AD 的中点.∴四边形BCDQ 为平行四边形,∴//BQ CD . 又90ADC ∠=︒,∴90AQB ∠=︒,即BQ AD ⊥.又PQBQ Q =,∴AD ⊥平面PBQ.考向分析【举一反三】1.(2021·河南信阳市节选)如图所示,四棱锥S ABCD -中,//AB CD ,AD DC ⊥,2224CD AD AB SD ====,SD ⊥平面ABCD ,求证:BC ⊥平面SBD【答案】证明见解析【解析】证明://,,2AB CD AD DC AB AD ⊥==,BD BC ∴==又4CD =,222CD BD BC ∴=+,故BC BD ⊥, 又SD ⊥平面,ABCD BC ⊂平面ABCD ,BC SD ∴⊥, 又SD BD D =,BC ∴⊥平面SBD .2.(2021·江西赣州市节选)如图,已知三棱柱111ABC A B C -的所有棱长均为2,13B BA π∠=,证明:1B C ⊥平面1ABC【答案】证明见解析【解析】证明:如图取AB 中点D ,连接1,B D CD .因为四边形11BCC B 为菱形,所以11B C BC ⊥ 又因为三棱柱的所有棱长均为2,13B BA π∠=,所以ABC 和1ABB △是等边三角形,所以1,B D AB CD AB ⊥⊥因为1,B D CD ⊂平面11,B CD B D CD D ⋂=,所以AB ⊥平面1B CD 所以1B C AB ⊥,而1BC AB B ,所以1B C ⊥平面1ABC3.(2020·山东德州市节选)如图,四棱锥P ABCD -中,四边形ABCD 是边长为2的正方形,PAD ∆为等边三角形,,E F 分别为PC 和BD 的中点,且EF CD ⊥,证明:CD ⊥平面PAD【答案】证明见解析【解析】如图所示,连接AC ,由ABCD 是边长为2的正方形, 因为F 是BD 的中点,可得AC 的中点,在PAC △中,因为,E F 分别是,PC AC 的中点,可得//EF PA , 又因为EF CD ⊥,所以PA CD ⊥,又由AD CD ⊥,且ADAP A =,所以CD ⊥平面PAD .考向二 面面垂直【例2】(2021·河南高三期末节选)如图,直四棱柱1111ABCD A B C D -的底面ABCD 为平行四边形,3AD =,5AB =,3cos 5BAD ∠=,1BD DD =,E 是1CC 的中点,求证:平面DBE ⊥平面1ADD【答案】证明见解析【解析】由题意可得2222cos 16BD AD AB AB AD BAD =+-⨯∠=, 所以222AD BD AB +=,因此AD BD ⊥. 在直四棱柱1111ABCD A B C D -中,1DD ⊥平面ABCD ,BD ⊂平面ABCD ,所以1.DD BD ⊥又因为1ADDD D =,1,AD DD ⊂平面1ADD ,所以BD ⊥平面1ADD ,因为BD ⊂平面DBE ,所以平面DBE ⊥平面1ADD . 【举一反三】1.(2021·河南焦作市节选)如图所示,在四棱锥РABCD -中,底面ABCD 是菱形,PA ⊥平面,ABCD 点Q 为线段PC 的中点,求证:平面BDQ ⊥平面PAC【答案】证明见解析【解析】因为四边形ABCD 是菱形,所以,AC BD ⊥ 因为PA ⊥平面,ABCD BD ⊂平面,ABCD 所以,BD PA ⊥ 又因为,PA AC A ⋂=所以BD ⊥平面,PAC 因为BD ⊂平面,BDQ 所以平面BDQ ⊥平面PAC .2.(2021·山东青岛市·高三期末节选)如图,在直角梯形ABED 中,//BE AD ,DE AD ⊥,BC AD ⊥,4AB =,BE =将矩形BEDC 沿BC 翻折,使得平面ABC ⊥平面BCDE ,若BC BE =,证明:平面ABD ⊥平面ACE【答案】证明见解析【解析】证明:连接BD ,因BC BE =所以BD CE ⊥ 因为平面ABC ⊥平面BCDE ,平面ABC 平面BCDE BC =,AC BC ⊥所以AC ⊥平面BCDE因为BD ⊂平面BCDE ,所以AC BD ⊥ 因为ACCE C =,所以BD ⊥平面ACE因为BD ⊂平面ABD ,所以平面ABD ⊥平面ACE3.(2021·安徽马鞍山市节选)如图,BE ,CD 为圆柱的母线,ABC 是底面圆的内接正三角形,M 为BC 的中点,证明:平面AEM ⊥平面BCDE【答案】证明见详解【解析】根据题意可得,AM BC ⊥. 又BE 为圆柱的母线,BE ∴⊥平面ABC .BE AM ∴⊥,BC BE B =,AM ∴⊥平面BCDE .又AM ⊂平面AEM ,∴平面AEM ⊥平面BCDE .考向三 线线垂直【例3】(2021·江西宜春市·高安中学节选)如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BAD ∠=,已知2,PB PD PA ===,E 为PA 的中点,求证PC BD ⊥【答案】证明见解析【解析】,AC BD 交点为O ,连接PO ,ABCD 是边长为2的菱形,,AC BD O ∴⊥是,AC BD 的中点,,PD O B BD P P =∴⊥,又PO ⊂平面POC ,AC ⊂平面POC ,POAC O =,BD ∴⊥平面POC ,PC ⊂平面POC ,.C BD P ∴⊥【举一反三】1.(2021·江苏南通市·高三期末节选)如图,在四棱锥A BCDE -中,//BC DE ,22BC DE ==,BC CD ⊥,F 为AB 的中点,BC EF ⊥,求证:AC BC ⊥【答案】证明见解析【解析】取AC 中点M ,连接FM ,DM ,,F M 分别为AB ,AC 中点,12FMBC ∴, 1,2DEBC FM DE ∴, ∴四边形DEFM 是平行四边形,//DM EF ∴,,EF BC DM BC ⊥∴⊥,,,CD DM CD DM ⊥⊂平面ACD ,CD DM D ⋂=,BC ∴⊥平面CDM ,AC ⊂平面CDM ,BC AC ∴⊥;2.(2020·山东德州市节选)如图,已知四棱锥P ABCD -中,底面ABCD 为菱形,60,ABC PA ∠=︒⊥平面,,ABCD E F 分别为,BC PA 的中点.(1)求证:AE PD ⊥; (2)求证://EF 平面PCD .【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)连AC ,60ABC ∠=,底面ABCD 为菱形,ABC ∴是等边三角形, BE EC =,AE BC ∴⊥,又//BC AD ,AE AD ∴⊥,又PA ⊥面,ABCD AE ⊂面ABCD ,PA AE ∴⊥, PA AD A ⋂=,AE ∴⊥面,PAD PD ⊂面PAD ,AE PD ∴⊥.()2取PD 的中点M ,连,FM MC ,PF FA =,所以11//,22FM AD FM AD =, 又11//,22EC AD EC AD =, //,FM EC FM EC ∴=, ∴四边形FECM 是平行四边形,//EF MC ∴,又EF ⊄面,PCD MC ⊂面PCD ,//EF ∴面PCD .3.(2021·山东枣庄市节选)如图,四棱锥P ABCD -的侧面PAD △是正三角形,底面ABCD 是直角梯形,90BAD ADC ∠=∠=,22AD AB CD ===,M 为BC 的中点,求证:PM AD ⊥【答案】(1)证明见解析;(2)7. 【解析】证明:取AD 中点N ,连PN ,NM , 因为PAD △是正三角形,所以PNAD .又M 是BC 中点,所以//NM AB .因为90BAD ∠=,即AB AD ⊥.所以NM AD ⊥,因为NM PN N ⋂=,NM 、PN ⊂平而PMN , 所以AD ⊥平面PMN ,PM ⊂平面PMN ,所以AD PM ⊥.1.(2021·山东泰安市·高三期末节选)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60BAD ∠=︒,PB PD =,F 为PC 上一点,过AF 作与BD 平行的平面AEFG ,分别交PD ,PB 于点E ,G ,证明:EG ⊥平面PAC【答案】证明见解析【解析】证明:连接BD ,交AC 于点O ,连接PO . ∵//BD 平面AEFG ,平面PBD平面AEFG EG =,BD ⊂平面PBD ,∴//EG BD .∵底面ABCD 是菱形,∴AC BD ⊥,且O 为AC ,BD 中点,强化练习又PB PD =,∴PO BD ⊥,又AC PO O =,,AC PO ⊂平面PAC ,∴BD ⊥平面PAC ,∴EG ⊥平面PAC .2.(2021·浙江金华市·高三期末节选)在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PA PB AB ====,)证明:PC ⊥平面ABC【答案】证明见解析;【解析】证明:取AB 中点D ,连接PD ,DC∵PA PB =,AC BC =,则AB PD ⊥,AB DC ⊥, 而PD DC D ⋂=,∴AB ⊥平面PDC , 因为PC ⊂平面PDC ,故AB PC ⊥.在ABC 中,AB ==,故222AB AC BC =+,∴BC AC ⊥.又∵平面PAC ⊥平面ABC ,且交线为AC ,BC ⊂平面ABC , ∴BC ⊥平面PAC ,因为PC ⊂平面PAC ,故BC PC ⊥. 因为AB BC B ⋂=,∴PC ⊥平面ABC .3.(2021·河南焦作市节选)如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点,求证:DE ⊥平面PAH【答案】证明见解析【解析】因为PA ⊥底面ABCD ,DE ⊂底面ABCD ,所以PA DE ⊥,因为E ,H 分别为正方形ABCD 的边AB ,BC 的中点,,,AB DA BH AE HBA EAD ,所以Rt ABH Rt DAE ≌△△,所以BAH ADE ∠=∠,由90AED ADE ∠+∠= 所以90BAH AED ∠+∠=,所以DE AH ⊥, 因为PA ⊂平面PAH ,AH ⊂平面PAH ,PA AH A ⋂=,所以DE ⊥平面PAH .4.(2021·浙江温州市节选)如图,已知三棱锥P ABC -﹐PC AB ⊥,ABC 是边长为形,PB =60PBC ∠=,点F 为线段AP 的中点,证明:PC ⊥平面ABC【答案】证明见解析【解析】在PBC 中,PB =BC =60PBC ∠=,由余弦定理可得2222cos 36PC PB BC PB BC PBC =+-⋅∠=,222PC BC PB ∴+=,PC BC ∴⊥,PC AB ⊥,AB BC B ⋂=,PC ∴⊥平面ABC ;5.(2021·陕西咸阳市·高三一模节选)如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PC AC ⊥,BC AC ⊥,2AC PC ==,4CB =,M 是PA 的中点,求证:PA ⊥平面MBC【答案】证明见解析【解析】平面PAC ⊥平面ABC ,平面PAC 平面ABC =AC ,BC ⊂平面ABC ,BC AC ⊥,∴BC ⊥平面PAC , ∵PA ⊂平面PAC , ∴BC PA ⊥,∵AC PC =,M 是PA 的中点, ∴CM PA ⊥, ∵CMBC C =,,CM BC ⊂平面MBC ,∴PA ⊥平面MBC .6.(2021·浙江金华市节选)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD AB ==,平面PCD ⊥平面ABCD ,若E 为PC 的中点,求证:DE ⊥平面PBC【答案】证明见解析【解析】因为平面PCD ⊥平面ABCD ,且平面PCD平面ABCD CD =,底面ABCD 为矩形,所以BC CD ⊥,又CD ⊂平面PDC ,所以BC ⊥平面PDC ,又DE ⊂平面PDC ,所以BC DE ⊥;因为PD AB DC ==,所以PDC △为等腰三角形,E 为PC 的中点,所以DE CP ⊥,因为CPBC C =,,BC CP ⊂面PBC ,所以DE ⊥面PBC7.(2021·西安市铁一中学节选)如图,在底面为菱形的四棱锥P ABCD -中,60,1,ABC PA AC PB PD ︒∠=====,点E 在PD 上,且2PEED=,求证:PA ⊥平面ABCD【答案】证明见详解【解析】因为底面ABCD 是菱形,60ABC ︒∠=, 所以1AB AC AD ===,在PAB △中,1,PA PB ==由222PA AB PB +=,可得PA AB ⊥.同理,PA AD ⊥,又AB AD A ⋂=所以PA ⊥平面ABCD .8.(2021·河南高三期末节选)如图,直四棱柱1111ABCD A B C D -的底面ABCD 为平行四边形,133,5,cos ,,5AD AB BAD BD DD E ==∠==是1CC 的中点,求证:平面DBE ⊥平面1ADD【答案】证明见解析【解析】由题意可得2222cos 16BD AD AB AB AD BAD =+-⨯∠=, 所以222AD BD AB +=,因此AD BD ⊥,在直四棱柱1111ABCD A B C D -中,1DD ⊥平面ABCD ,所以1DD BD ⊥, 又因为1ADDD D =,所以BD ⊥平面1ADD ,因为BD ⊂平面DBE ,所以平面DBE ⊥平面1ADD .9.(2021·江苏南通市节选)如图,四面体ABCD 中,O 是BD 的中点,点G 、E 分别在线段AO 和BC 上,2BE EC =,2AG GO =,2CA CB CD BD ====,AB AD ==(1)求证://GE 平面ACD ; (2)求证:平面ABD ⊥平面BCD . 【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)连接BG 并延长,交AD 于M ,连接MC ,在ABD △中,O 为BD 中点,G 在AO 上,2AG GO =, ∴G 为ABD △的重心∴21BG GM =, 又21BE EC =∴BG BEGM EC=∴//GE MC , ∵GE ⊄平面ACD ,AC ⊂平面ACD , ∴//GE 平面ACD ;(2)在ABD △中,O 为BD 中点,2BD =,AB AD ==∴AO BD ⊥∴1AO ==,在BCD △中,2BC CD BD ===,O 为BD 中点,连接OC ,则OC =又2CA =,∴222OA OC CA +=,∴AO OC ⊥ 由AO OC ⊥,AO BD ⊥,OC BD O =,,OC BD ⊂平面BCD ,得AO ⊥平面BCD , 又AO ⊂平面ABD , ∴平面ABD ⊥平面BCD .10.(2021·山西吕梁市·高三一模节选)如图,四棱锥S ABCD -中,//AB CD ,BC CD ⊥,侧面SCD为等边三角形, 4AB BC ==,2CD =,SB =BC SD ⊥【答案】证明见解析【解析】由已知4BC =,2SC =,SB =222SB BC SC =+,所以90BCS ∠=︒,所以BC CS ⊥,又,BC CD CDCS C ⊥=,所以BC ⊥平面SCD ,又SD ⊂平面SCD ,所以BC SD ⊥.11.(2021·云南高三期末)如图所示,在正方体ABCD A B C D ''''-中,点M 为线段B D ''的中点.(1)求证:DD AC '⊥; (2)求证://BM平面ACD '.【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)在正方体ABCD A B C D ''''-中, ∵DD AD '⊥,DD CD '⊥,且CDAD D =,∴DD '⊥平面ACD ,AC ⊂平面ACD . ∴DD AC '⊥(2)如图所示,连接BD ,交AC 于N ,连接D N '.由题设得:BN MD '=,//BN MD ', ∴四边形BMD N '为平行四边形. ∴//BM ND '.又∵ND '⊂平面ACD ',BM ⊄平面ACD ', ∴//BM平面ACD '.12.(2021·江西景德镇市节选)如图,已知四棱锥S ABCD -,其中//AD BC ,AB AD ⊥,45BCD ∠=,22BC AD ==,侧面SBC ⊥底面ABCD ,E 是SB 上一点,且ECD 是等边三角形,求证:CE ⊥平面SAB【答案】证明见解析 【解析】//AD BC ,AB AD ⊥,AB BC ∴⊥,侧面SBC ⊥底面ABCD ,侧面SBC底面ABCD BC =,AB平面ABCD ,AB ∴⊥平面SBC ,CE ⊂平面SBC ,CE AB ∴⊥,如下图所示,取BC 的中点F ,连接DF 、EF ,2BC AD =,且F 为BC 的中点,则AD BF =,//BC AD ,则//AD BF ,所以,四边形ABFD 为平行四边形,则//DF AB , DF ⊥∴平面SBC ,EF 、BC ⊂平面SBC ,DF EF ∴⊥,DF BC ⊥,ECD 为等边三角形,则EF CF BF ===,所以,FBE BEF ∠=∠,FCE CEF ∠=∠,由2FBE BEF FCE CEF BEC π∠+∠+∠+∠=∠=,2BEC π∴∠=,即CE SB ⊥,SB AB B =,因此,CE ⊥平面SAB ;13.(2021·江西景德镇市·景德镇一中)如图,在三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC ,2,AB BC == 30ACB ∠=,13AA =,11BC A C ,E 为AC 的中点.(1)求证:1//AB 平面1C EB ; (2)求证:1A C ⊥平面1C EB .【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)如下图所示,连接1AB 、1B C ,设11B CBC F =,连接EF ,在三棱柱111ABC A B C -中,四边形11BB C C 为平行四边形, 因为11B CBC F =,在点F 为1B C 的中点,又因为点E 为AC 的中点,1//EF AB ∴,1AB ⊄平面1C EB ,EF ⊂平面1C EB ,所以,1//AB 平面1C EB ;(2)AB BC =,E 为AC 的中点,BE AC ∴⊥,因为平面11A ACC ⊥平面ABC ,平面11A ACC ⋂平面ABC AC =,BE ⊂平面ABC ,BE ∴⊥平面11A ACC ,1A C ⊂平面11A ACC ,1A C BE ∴⊥, 11BC AC ⊥,1BE BC B =,1A C ∴⊥平面1C EB .14.(2021·陕西咸阳市)在三棱锥A BCD -中,E 、F 分别为AD 、DC 的中点,且BA BD =,平面ABD ⊥平面ADC .(1)证明://EF 平面ABC ;(2)证明:BE CD ⊥.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)在ADC 中,E 、F 分别是AD 、DC 的中点,//EF AC ∴.EF ⊄平面ABC ,AC ⊂平面ABC ,//EF ∴平面ABC ;(2)在ABD △中,BA BD =,E 为AD 的中点,BE AD ∴⊥, 又平面ABD ⊥平面ADC ,平面ABD ⋂平面ADC AD =,BE ⊂平面ABD ,BE ∴⊥平面ADC .CD ⊂平面ADC ,BE CD ∴⊥.15.(2021·全国)已知四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,PAB △为等边三角形,底面ABCD 为直角梯形,90DAB ∠=︒且2AB CD =,点M 为PB 的中点,求证:PB DM ⊥.【答案】证明见解析.【解析】因为PAB △为等边三角形,M 为PB 的中点,所以AM PB ⊥,因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,DA AB ⊥,DA ⊂平面ABCD , 所以DA ⊥平面PAB ,因为PB ⊂平面PAB ,所以DA PB ⊥,因为DA AM A ⋂=,所以PB ⊥平面ADM ,因为DM ⊂平面ADM ,所以PB DM ⊥.16.(2020·全国)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)若P 点是线段AM 的中点,求证://MC 平面PBD .【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)因为矩形ABCD 所在平面与半圆弦CD 所在平面垂直,面ABCD 面CDM CD =,AD DC ⊥,AD ⊂面ABCD ,所以AD ⊥半圆弦CD 所在平面,且CM ⊂半圆弦CD 所在平面,所以CM AD ⊥;又M 是CD 上异于C ,D 的点,所以CM DM ⊥;又DM AD D =,所以CM ⊥平面AMD ;又CM ⊂平面CMB ,所以平面AMD ⊥平面BMC ;(2)由P 是AM 的中点,连接BD 交AC 于点O ,连接OP ,如图所示:由中位线定理得//MC OP ;又MC ⊂/平面BDP ,OP ⊂平面BDP ,所以//MC 平面PBD .17.(2021·全国高三专题练习)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.证明:平面AMD ⊥平面BMC .【答案】证明见解析【解析】由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .18.(2020·全国高三专题练习)已知四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,PAB △为等边三角形,底面ABCD 为直角梯形,90DAB ∠=︒且2AB CD =,点M 为PB 的中点,求证:DM PB .【答案】证明见解析.【解析】证明:∵PAB ∆为等边三角形,M 为PB 的中点,∴AM PB ⊥, 又∵平面PAB ⊥平面ABCD ,且平面PAB 平面ABCD AB =, DA AB ⊥,DA ⊂平面ABCD ,∴DA ⊥平面PAB ,又PB ⊂平面PAB ,∴DA PB ⊥,∵DA AM A ⋂=,∴PB ⊥平面ADM ,又DM ⊂平面ADM ,∴PB DM ⊥.19.(2020·江苏苏州市·高三三模)如图,在三棱柱111A B C ABC -中,AB AC =,D 为BC 中点,平面ABC ⊥平面11BCC B ,11BC B D ⊥.(1)求证:1//A C 平面1AB D ;(2)求证:11AB BC ⊥.【答案】(1)证明见解析(2)证明见解析【解析】证明:(1)连结1A B 交1AB 于点O ,连结OD .因为111A B C ABC -是三棱柱,所以11ABB A 是平行四边形,所以O 为1A B 中点. 有因为D 为BC 中点,所以1OD AC . 又1AC ⊄平面1AB D ,OD ⊂平面1AB D ,所以1A C 平面1AB D . (2)因为AB AC =,D 为BC 中点,所以AD BC ⊥.又因为平面ABC ⊥平面11BCC B ,平面ABC 平面11BCC B BC =,AD ⊂平面ABC , 所以AD ⊥平面11BCC B . 因为1BC ⊂平面11BCC B ,所以1AD BC ⊥. 又因为11BC B D ⊥,1AD B D D ⋂=,AD ⊂平面1AB D ,1B D ⊂平面1AB D , 所以1BC ⊥平面1AB D . 因为1AB ⊂平面1AB D ,所以11AB BC ⊥.。

直线与平面垂直判定完整版课件


绘制图表,将实验数据 可视化展示,便于分析 和比较。
03
分析实验数据,总结直 线与平面垂直的判定方 法和规律。
04
根据实验结果,评估实 验方法的准确性和可靠 性,并提出改进意见。
06
课程总结与回顾
知识点梳理
01
直线与平面垂直的定义
如果直线$l$与平面$alpha$内的任意一条直线都垂直,那么我们就说
角的范围
异面直线所成角的取值范围是 (0, 90°]。
异面直线所成角求解方法
01
02
03
平移法
将两条异面直线平移到同 一个起点上,然后用余弦 定理或三角函数求解。
向量法
建立空间直角坐标系,将 异面直线的方向向量表示 出来,然后通过向量的夹 角公式求解。
投影法
将一条直线投影到另一条 直线上,通过投影长度和 原长度之间的关系,利用 三角函数求解。
易错点提示
忽略直线与平面内两条相交直线 都垂直的条件,只考虑与其中一
条直线垂直或平行的情况。
在证明直线与平面垂直时,未明 确说明平面内的两条相交直线, 或者错误地认为只要与平面内无
数条直线垂直即可。
符号使用不规范,如将直线与平 面垂直的符号误写为平行或相交
等。
下一讲预告
下一讲我们将继续深入学习空间几何中的直线与平面的位置关系,包括直线与平面 平行的判定和性质等内容。
确定未知量
根据题目要求,确定需要求解 的未知量。
建立方程
利用已知条件和几何性质,建 立关于未知量的方程。
求解方程
解方程得到未知量的值,注意 解的合理性。
解答题规范步骤和答案
画出图形
根据题意画出相应 的图形,标注已知 量和未知量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档