【精编】2018年山东省滨州市数学中考一模试卷(解析版)及解析
山东省滨州市2018年中考数学试卷(含答案解析)

山东省滨州市2018年中考数学试卷一、单选题1.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 82.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A. 2+(﹣2)B. 2﹣(﹣2)C. (﹣2)+2D. (﹣2)﹣23.如图,直线AB∥CD,则下列结论正确的是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180°D. ∠3+∠4=180°4.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 45.把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A. B. C. D.6.在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A. (5,1)B. (4,3)C. (3,4)D. (1,5)7.下列命题,其中是真命题的为()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形D. 一组邻边相等的矩形是正方形8.已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A. B. C. D.9.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A. 4B. 3C. 2D. 110.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A. 1B. 2C. 3D. 411.如图,∠AOB=60°,点P是∠AOB内的定点且OP= ,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A. B. C. 6 D. 312.如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A. B.C. D.二、填空题13.在△ABC中,若∠A=30°,∠B=50°,则∠C=________.14.若分式的值为0,则x的值为________.15.在△ABC中,∠C=90°,若tanA= ,则sinB=________.16.若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是________.17.若关于x、y的二元一次方程组,的解是,则关于a、b的二元一次方程组的解是________.18.若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y= (k为常数)的图象上,则y1、y2、y3的大小关系为________.19.如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE= ,∠EAF=45°,则AF的长为________.20.观察下列各式:,,,……请利用你所发现的规律,计算+ + +…+ ,其结果为________.三、解答题21.先化简,再求值:(xy2+x2y)× ,其中x=π0﹣()﹣1,y=2sin45°﹣.22.如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.23.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?24.如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1,).(1)求图象过点B的反比例函数的解析式;(2)求图象过点A,B的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x 的取值范围.25.已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.26.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到________的距离等于到________的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.答案解析部分一、单选题1.【答案】A【解析】【解答】解:∵在直角三角形中,勾为3,股为4,∴弦为故答案为:A.【分析】根据在直角三角形中,勾是最短的直角边,股是长的直角边,弦是斜边,知道勾和股利用勾股定理,即可得出答案。
2018滨州数学中考真题(解析版)

2018滨州数学中考真题(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共12小题)1.在直角三角形中,若勾为3,股为4,则弦为()A.5 B.6 C.7 D.82.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2)C.(﹣2)+2 D.(﹣2)﹣23.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180°D.∠3+∠4=180°4.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A.1 B.2 C.3 D.45.把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.6.在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A.(5,1)B.(4,3)C.(3,4)D.(1,5)7.下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形8.已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A.B.C.D.9.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.110.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3.其中正确的个数是()A.1 B.2 C.3 D.411.如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.B.C.6 D.312.如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A.B.C.D.二、填空题(共8小题)13.在△ABC中,若∠A=30°,∠B=50°,则∠C=.14.若分式的值为0,则x的值为﹣.15.在△ABC中,∠C=90°,若tanA=,则sinB=.16.若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是.17.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是.18.若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为.19.如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为.20.观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+,其结果为.三、解答题(共6小题)21.先化简,再求值:(xy2+x2y)×÷,其中x=π0﹣()﹣1,y=2sin45°﹣.22.如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.23.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?24.如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1,).(1)求图象过点B的反比例函数的解析式;(2)求图象过点A,B的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.25.已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.26.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(圆可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.2018滨州数学中考真题(解析版)参考答案一、单选题(共12小题)1.【分析】直接根据勾股定理求解即可.【解答】解:∵在直角三角形中,勾为3,股为4,∴弦为=5.故选:A.【知识点】勾股定理2.【分析】根据数轴上两点间距离的定义进行解答即可.【解答】解:A、B两点之间的距离可表示为:2﹣(﹣2).故选:B.【知识点】两点间的距离、数轴3.【分析】依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.【解答】解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选:D.【知识点】平行线的性质4.【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【解答】解:①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选:B.【知识点】同底数幂的乘法、幂的乘方与积的乘方、同底数幂的除法5.【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【解答】解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选:B.【知识点】在数轴上表示不等式的解集、解一元一次不等式组6.【分析】利用位似图形的性质,结合两图形的位似比进而得出C点坐标.【解答】解:∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A(6,8),∴端点C的坐标为(3,4).故选:C.【知识点】位似变换、坐标与图形性质7.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、例如等腰梯形,故本选项错误;B、根据菱形的判定,应是对角线互相垂直的平行四边形,故本选项错误;C、对角线相等且互相平分的平行四边形是矩形,故本选项错误;D、一组邻边相等的矩形是正方形,故本选项正确.故选:D.【知识点】命题与定理8.【分析】根据圆周角定理和弧长公式解答即可.【解答】解:如图:连接AO,CO,∵∠ABC=25°,∴∠AOC=50°,∴劣弧的长=,故选:C.【知识点】三角形的外接圆与外心、弧长的计算9.【分析】先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.【解答】解:根据题意,得:=2x,解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为×[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选:A.【知识点】方差、算术平均数10.【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.【知识点】二次函数图象与系数的关系、抛物线与x轴的交点、二次函数的最值11.【分析】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.【解答】解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.故选:D.【知识点】轴对称-最短路线问题12.【分析】根据定义可将函数进行化简.【解答】解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.【知识点】函数的图象二、填空题(共8小题)13.【分析】直接利用三角形内角和定理进而得出答案.【解答】解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°【知识点】三角形内角和定理14.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:因为分式的值为0,所以=0,化简得x2﹣9=0,即x2=9.解得x=±3因为x﹣3≠0,即x≠3所以x=﹣3.故答案为﹣3.【知识点】分式的值为零的条件15.【分析】直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.【解答】解:如图所示:∵∠C=90°,tanA=,∴设BC=x,则AC=2x,故AB=x,则sinB===.故答案为:.【知识点】互余两角三角函数的关系16.【分析】列表得出所有等可能结果,从中找到点M在第二象限的结果数,再根据概率公式计算可得.【解答】解:列表如下:由表可知,共有6种等可能结果,其中点M在第二象限的有2种结果,所以点M在第二象限的概率是=,故答案为:.【知识点】点的坐标、列表法与树状图法17.【分析】利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.【解答】解:方法一:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组可整理为:解得:方法二:关于x、y的二元一次方程组的解是,由关于a、b的二元一次方程组可知解得:故答案为:【知识点】二元一次方程组的解18.【分析】设t=k2﹣2k+3,配方后可得出t>0,利用反比例函数图象上点的坐标特征可求出y1、y2、y3的值,比较后即可得出结论.【解答】解:设t=k2﹣2k+3,∵k2﹣2k+3=(k﹣1)2+2>0,∴t>0.∵点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,∴y1=﹣,y2=﹣t,y3=t,又∵﹣t<﹣<t,∴y2<y1<y3.故答案为:y2<y1<y3.【知识点】反比例函数图象上点的坐标特征19.【分析】取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.【解答】解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME==,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=,∴AF==.故答案为:.【知识点】矩形的性质、勾股定理20.【分析】直接根据已知数据变化规律进而将原式变形求出答案.【解答】解:由题意可得:+++…+=1++1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.【知识点】二次根式的加减法、规律型:数字的变化类三、解答题(共6小题)21.【分析】原式利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=xy(x+y)••=x﹣y,当x=1﹣2=﹣1,y=﹣2=﹣时,原式=﹣1.【知识点】分式的化简求值、特殊角的三角函数值、零指数幂、负整数指数幂22.【分析】(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;(2)连接BC,证△DAC∽△CAB即可得.【解答】解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴=,即AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.【知识点】圆周角定理、相似三角形的判定与性质、切线的判定与性质23.【分析】(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.【解答】解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x1=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.【知识点】二次函数的应用24.【分析】(1)由C的坐标求出菱形的边长,利用平移规律确定出B的坐标,利用待定系数法求出反比例函数解析式即可;(2)由菱形的边长确定出A坐标,利用待定系数法求出直线AB解析式即可;(3)联立一次函数与反比例函数解析式求出交点坐标,由图象确定出满足题意x的范围即可.【解答】解:(1)由C的坐标为(1,),得到OC=2,∵菱形OABC,∴BC=OC=OA=2,BC∥x轴,∴B(3,),设反比例函数解析式为y=,把B坐标代入得:k=3,则反比例解析式为y=;(2)设直线AB解析式为y=mx+n,把A(2,0),B(3,)代入得:,解得:,则直线AB解析式为y=x﹣2;(3)联立得:,解得:或,即一次函数与反比例函数交点坐标为(3,)或(﹣1,﹣3),则在第一象限内,当一次函数的图象在反比例函数的图象下方时,自变量x的取值范围为2<x <3.【知识点】菱形的性质、反比例函数的图象、待定系数法求一次函数解析式、待定系数法求反比例函数解析式、一次函数的性质25.【分析】(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF;(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA(ASA),再根据全等三角形的性质即可得出BE=AF.【解答】(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.【知识点】等腰直角三角形、全等三角形的判定与性质26.【分析】(1)由题意得到AP=PB,求出y的值,即为圆P的半径;(2)利用两点间的距离公式,根据AP=PB,确定出y关于x的函数解析式,画出函数图象即可;(3)类比圆的定义描述此函数定义即可;(4)画出相应图形,求出m的值,进而确定出所求角的余弦值即可.【解答】解:(1)由x=2,得到P(2,y),连接AP,PB,∵圆P与x轴相切,∴PB⊥x轴,即PB=y,由AP=PB,得到=y,解得:y=,则圆P的半径为;(2)同(1),由AP=PB,得到(x﹣1)2+(y﹣2)2=y2,整理得:y=(x﹣1)2+1,即图象为开口向上的抛物线,画出函数图象,如图②所示;(3)给(2)中所得函数图象进行定义:此函数图象可以看成是到点A的距离等于到x轴的距离的所有点的集合;故答案为:点A;x轴;(4)连接CD,连接AP并延长,交x轴于点B,CD与AF交于点E,由对称性及切线的性质可得:CD⊥AB,设PE=a,则有EB=a+1,ED=,∴D坐标为(1+,a+1),代入抛物线解析式得:a+1=(1﹣a2)+1,解得:a=﹣2+或a=﹣2﹣(舍去),即PE=﹣2+,在Rt△PED中,PE=﹣2,PD=1,则cos∠APD==﹣2.【知识点】圆的综合题。
2018年山东省滨州市中考数学试卷(样题)(解析版)

2018年山东省滨州市中考数学试卷(样题)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.(3分)在,,0,﹣2这四个数中,为无理数的是()A.B.C.0 D.﹣22.(3分)如果□×(﹣3)=1,则“□”内应填的实数是()A.B.3 C.﹣3 D.3.(3分)如图,小手盖住的点的坐标可能为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,5) D.(4,﹣5)4.(3分)已知实数a,b,若a>b,则下列结论错误的是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b5.(3分)如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=45°,∠1=65°,则∠2的度数为()A.45°B.65°C.70°D.110°6.(3分)如图,在点M,N,P,Q中,一次函数y=kx+2(k<0)的图象不可能经过的点是()A.M B.N C.P D.Q7.(3分)关于x的分式方程+=3的解为正实数,则实数m的取值范围是()A.m<﹣6且m≠2 B.m>6且m≠2 C.m<6且m≠﹣2 D.m<6且m≠2 8.(3分)将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,如图,则∠EDP的大小为()A.80°B.100°C.120° D.不能确定9.(3分)如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则k的值为()A.12 B.20 C.24 D.3210.(3分)如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是()A.0 B.C.D.111.(3分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB、AC于点E、G.连接GF.则下列结论错误的是()A.∠AGD=112.5°B.四边形AEFG是菱形C.tan∠AED=2 D.BE=2OG12.(3分)如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y 与x的函数关系的是()A.B. C.D.二、填空题:本大题共8个小题,每小题5分,满分40分.13.(5分)计算:﹣22﹣(﹣7)0+=.14.(5分)不等式组的解集为.15.(5分)有一组数据:3,a,4,6,7,它们的平均数是5,则a=,这组数据的方差是.16.(5分)经过两次连续降价,某药品销售单价由原来的49元降到30元,设该药品平均每次降价的百分率为x,根据题意可列方程是.17.(5分)如图,正三棱柱的底面周长为15,截去一个底面周长为6的正三棱柱,所得几何体的俯视图的周长是,面积是.18.(5分)如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行20分钟到达C处,在C 处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是海里.19.(5分)如图,在平面直角坐标系中,点A的坐标为(﹣2,),以原点O 为中心,将点A顺时针旋转165°得到点A′,则点A′的坐标为.20.(5分)规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是.三、解答题:本大题共6个小题,满分74分.解答时请写出必要的演推过程. 21.(10分)先化简后求值:,其中x=.22.(12分)已知:如图,在△ABC中,AD是角平分线,E是AD上一点,且AB:AC=AE:AD.求证:(1)BE=BD;(2).23.(12分)△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.24.(13分)已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.(1)已知x=2是方程的一个根,求m的值;(2)以这个方程的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当BC=时,△ABC是等腰三角形,求此时m的值.25.(13分)如图,⊙O为等腰△ABC的外接圆,直径AB=12,P为弧上任意一点(不与B,C重合),直线CP交AB延长线于点Q,⊙O在点P处切线PD交BQ于点D,(1)若PD∥BC,求证:AP平分∠CAB;(2)若PB=BD,求PD的长度;(3)证明:无论点P在弧上的位置如何变化,CP•CQ为定值.26.(14分)在平面直角坐标系中,已知点B的坐标是(﹣1,0),点A的坐标是(4,0),点C的坐标是(0,4),抛物线过A、B、C三点.(1)求抛物线的解析式.(2)点N是抛物线上的一点(点N在直线AC上方),过点N作NG⊥x轴,垂足为G,交AC于点H,当线段ON与CH互相平分时,求出点N的坐标.(3)设抛物线的对称轴为直线L,顶点为K,点C关于L的对称点J,x轴上是否存在一点Q,y轴上是否一点R使四边形KJQR的周长最小?若存在,请求出周长的最小值;若不存在,请说明理由.2018年山东省滨州市中考数学试卷(样题)参考答案与试题解析一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.(3分)在,,0,﹣2这四个数中,为无理数的是()A.B.C.0 D.﹣2【解答】解:,0,﹣2是有理数,是无理数,故选:A.2.(3分)如果□×(﹣3)=1,则“□”内应填的实数是()A.B.3 C.﹣3 D.【解答】解:(﹣)×(﹣3)=1,故选:D.3.(3分)如图,小手盖住的点的坐标可能为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,5) D.(4,﹣5)【解答】解:由图可知,小手盖住的点的坐标位于第三象限,(﹣4,﹣5)(﹣4,5)(4,5)(4,﹣5)中,只有(﹣4,﹣5)在第三象限,所以,小手盖住的点的坐标可能为(﹣4,﹣5).故选:A.4.(3分)已知实数a,b,若a>b,则下列结论错误的是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b【解答】解:a>b,A、a﹣7>b﹣7,故A选项正确;B、6+a>b+6,故B选项正确;C、>,故C选项正确;D、﹣3a<﹣3b,故D选项错误.故选:D.5.(3分)如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=45°,∠1=65°,则∠2的度数为()A.45°B.65°C.70°D.110°【解答】解:如图,∵直线l1∥l2,∠1=65°,∴∠AEF=∠1=65°,∵∠A=45°,∴∠2=∠AFE=180°﹣∠A﹣∠AEF=70°,故选:C.6.(3分)如图,在点M,N,P,Q中,一次函数y=kx+2(k<0)的图象不可能经过的点是()A.M B.N C.P D.Q【解答】解:∵在y=kx+2(k<0)中,令x=0可得y=2,∴一次函数图象一定经过第一、二象限,∵k<0,∴y随x的增大而减小,∴一次函数不经过第三象限,∴其图象不可能经过Q点,故选:D.7.(3分)关于x的分式方程+=3的解为正实数,则实数m的取值范围是()A.m<﹣6且m≠2 B.m>6且m≠2 C.m<6且m≠﹣2 D.m<6且m≠2【解答】解:+=3,方程两边同乘(x﹣2)得,x+m﹣2m=3x﹣6,解得,x=,∵≠2,∴m≠2,由题意得,>0,解得,m<6,实数m的取值范围是:m<6且m≠2.故选:D.8.(3分)将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,如图,则∠EDP的大小为()A.80°B.100°C.120° D.不能确定【解答】解:由旋转的性质可知,∠BAD=100°,AB=AD,∴∠B=∠ADB=40°,∴∠ADE=∠B=40°,∴∠EDP=180°﹣∠ADB﹣∠ADE=100°,故选:B.9.(3分)如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则k的值为()A.12 B.20 C.24 D.32【解答】解:过C点作CD⊥x轴,垂足为D,∵点C的坐标为(3,4),∴OD=3,CD=4,∴OC===5,∴OC=BC=5,∴点B坐标为(8,4),∵反比例函数y=(x>0)的图象经过顶点B,∴k=32,故选:D.10.(3分)如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是()A.0 B.C.D.1【解答】解:所有等可能的情况有3种,分别为①②⇒③;①③⇒②;②③⇒①,其中组成命题是真命题的情况有:①②⇒③;①③⇒②;②③⇒①,则P=1,故选:D.11.(3分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB、AC于点E、G.连接GF.则下列结论错误的是()A.∠AGD=112.5°B.四边形AEFG是菱形C.tan∠AED=2 D.BE=2OG【解答】解:∵在正方形纸片ABCD中,折叠正方形纸片ABCD,使AD落在BD 上,点A恰好与BD上的点F重合,∴∠GAD=45°,∠ADG=∠ADO=22.5°,∴∠AGD=112.5°,∴A正确;根据题意可得:AE=EF,AG=FG,又∵EF∥AC,∴∠FEG=∠AGE,又∵∠AEG=∠FEG,∴∠AEG=∠AGE,∴AE=AG=EF=FG,∴四边形AEFG是菱形,∴B正确.∵tan∠AED=,AE=EF<BE,∴AE<AB,∴tan∠AED=>2,∴C错误;∵在等腰直角三角形BEF和等腰直角三角形OFG中,BE2=2EF2=2GF2=2×2OG2,∴BE=2OG.∴D正确.故选:C.12.(3分)如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y 与x的函数关系的是()A.B. C.D.【解答】解:点E沿A→B运动,△ADE的面积逐渐变大,设菱形的变形为a,∠A=β,∴AE边上的高为ABsinβ=a•sinβ,∴y=x•a•sinβ,点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.y=(3a﹣x)•sinβ,故选:D.二、填空题:本大题共8个小题,每小题5分,满分40分.13.(5分)计算:﹣22﹣(﹣7)0+=﹣5+2.【解答】解:原式=﹣4﹣1+2=﹣5+2.故答案为:﹣5+2.14.(5分)不等式组的解集为﹣1<x<3.【解答】解:解不等式3﹣2x<5,得:x>﹣1,解不等式x﹣2<1,得:x<3,所以不等式组的解集为﹣1<x<3,故答案为:﹣1<x<3.15.(5分)有一组数据:3,a,4,6,7,它们的平均数是5,则a=5,这组数据的方差是2.【解答】解:∵数据:3,a,4,6,7,它们的平均数是5,∴a=5×5﹣3﹣4﹣6﹣7=5;则这组数据的方差是S2=[(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(7﹣5)2]=2;故答案为:5,2.16.(5分)经过两次连续降价,某药品销售单价由原来的49元降到30元,设该药品平均每次降价的百分率为x,根据题意可列方程是49(1﹣x)2=30;.【解答】解:由题意可得,49(1﹣x)2=30,故答案为49(1﹣x)2=30;17.(5分)如图,正三棱柱的底面周长为15,截去一个底面周长为6的正三棱柱,所得几何体的俯视图的周长是13,面积是.【解答】解:从上边看是一个梯形:上底是2,下底是5,两腰是3,周长是2+3+3+5=13.原三角形的边长是5,截去的三角形的边长是2,梯形的面积=原三角形的面积﹣截去的三角形的面颊=××52﹣××22=﹣=,故答案为:13,.18.(5分)如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行20分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是海里.【解答】解:如图,作AM⊥BC于M.由题意得,∠DBC=20°,∠DBA=50°,BC=60×=20海里,∠NCA=10°,则∠ABC=∠ABD﹣∠CBD=50°﹣20°=30°.∵BD∥CN,∴∠BCN=∠DBC=20°,∴∠ACB=∠ACN+∠BCN=10°+20°=30°,∴∠ACB=∠ABC=30°,∴AB=AC,∵AM⊥BC于M,∴CM=BC=10海里.在直角△ACM中,∵∠AMC=90°,∠ACM=30°,∴AC===(海里).故答案为:.19.(5分)如图,在平面直角坐标系中,点A的坐标为(﹣2,),以原点O为中心,将点A顺时针旋转165°得到点A′,则点A′的坐标为(,﹣);.【解答】解:作AB⊥x轴于点B,∴AB=2、OB=2,则tan∠AOB=,∴∠AOB=60°,∴∠AOy=30°∴将点A顺时针旋转165°得到点A′后,如图所示,OA′=OA=2OB=4,∠A′OC=45°,∴A′C=2、OC=2,即A′(2,﹣2),故答案为(,﹣);20.(5分)规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是﹣2或﹣1或0或1或2.【解答】解:①﹣1<x<﹣0.5时,[x]+(x)+[x)=﹣1+0﹣1=﹣2;②﹣0.5<x<0时,[x]+(x)+[x)=﹣1+0+0=﹣1;③x=0时,[x]+(x)+[x)=0+0+0=0;④0<x<0.5时,[x]+(x)+[x)=0+1+0=1;⑤0.5<x<1时,[x]+(x)+[x)=0+1+1=2.故答案为:﹣2或﹣1或0或1或2.三、解答题:本大题共6个小题,满分74分.解答时请写出必要的演推过程. 21.(10分)先化简后求值:,其中x=.【解答】解:==,当x==2时,原式=.22.(12分)已知:如图,在△ABC中,AD是角平分线,E是AD上一点,且AB:AC=AE:AD.求证:(1)BE=BD;(2).【解答】证明:(1)∵AD是角平分线,∴∠BAD=∠CAD,又AB:AC=AE:AD,∴△ABE∽△ACD,∴∠AEB=∠ADC,∴∠BED=∠BDE,∴BE=BD;(2)如图,过点A作AH⊥BC,垂足为H,=,S△ADc=,则S△ABD∴=,又BE=BD,∴.23.(12分)△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【解答】(1)证明•:如图所示:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO;(2)解:当点O运动到AC中点时,四边形AECF是矩形;理由如下:∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.24.(13分)已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.(1)已知x=2是方程的一个根,求m的值;(2)以这个方程的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当BC=时,△ABC是等腰三角形,求此时m的值.【解答】解:(1)∵x=2是方程的一个根,∴4﹣2(2m+3)+m2+3m+2=0,∴m=0或m=1;(2)∵△=(2m+3)2﹣4(m2+3m+2)=1,=1;∴x=∴x1=m+2,x2=m+1,∵AB、AC(AB<AC)的长是这个方程的两个实数根,∴AC=m+2,AB=m+1.∵BC=,△ABC是等腰三角形,∴当AB=BC时,有m+1=,∴m=﹣1;当AC=BC时,有m+2=,∴m=﹣2,综上所述,当m=﹣1或m=﹣2时,△ABC是等腰三角形.25.(13分)如图,⊙O为等腰△ABC的外接圆,直径AB=12,P为弧上任意一点(不与B,C重合),直线CP交AB延长线于点Q,⊙O在点P处切线PD交BQ于点D,(1)若PD∥BC,求证:AP平分∠CAB;(2)若PB=BD,求PD的长度;(3)证明:无论点P在弧上的位置如何变化,CP•CQ为定值.【解答】证明:(1)如图,连接OP,∵PD是⊙O的切线,∴OP⊥PD,∵PD∥BC,∴OP⊥BC,∴CP=BP,∴∠PAC=∠PAB,∴AP平分∠CAB;(2)∵PB=BD,∴∠BPD=∠BDP,∵OP⊥PD,∴∠BPD+∠BPO=∠BDP+∠BOP,∴∠BOP=∠BPO,∴BP=BO=PO=6,即△BOP是等边三角形,∴在Rt△OPD中,PD==6;(3)∵AC=BC,∴∠BAC=∠ABC,∵∠ABC=∠APC,∴∠APC=∠BAC,又∵∠ACP=∠QCA,∴△ACP∽△QCA,∴=,即CP•CQ=CA2=72,即CP•CQ为定值.26.(14分)在平面直角坐标系中,已知点B的坐标是(﹣1,0),点A的坐标是(4,0),点C的坐标是(0,4),抛物线过A、B、C三点.(1)求抛物线的解析式.(2)点N是抛物线上的一点(点N在直线AC上方),过点N作NG⊥x轴,垂足为G,交AC于点H,当线段ON与CH互相平分时,求出点N的坐标.(3)设抛物线的对称轴为直线L,顶点为K,点C关于L的对称点J,x轴上是否存在一点Q,y轴上是否一点R使四边形KJQR的周长最小?若存在,请求出周长的最小值;若不存在,请说明理由.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,将A、B、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2+3x+4;(2)如图1,设AC的解析式为y=kx+b,将A、C点坐标代入,得,解得,AC的解析式为y=﹣x+4,设N(m,﹣m2+3m+4),H(m,﹣m+4).NH=﹣m2+4m.由线段ON与CH互相平分,得NH=OC=4,即﹣m2+4m=4,解得m=2,﹣m2+3m+4=6,即N(2,6),当线段ON与CH互相平分时,点N的坐标为(2,6);(3)如图2,作K点关于y轴的对称点D,作J点关于x轴的对称点E,连接DE交y轴于R交x轴于Q点,y=﹣x2+3x+4=﹣(x﹣)2+,顶点K(,).由点C关于对称轴L=的对称点J,C(0,4),得J点坐标为(3,4).由K点关于y轴的对称点D,K(,),得D点坐标为(﹣,).由J点关于x轴的对称点E,J(3,4),得E点的坐标为(3,﹣4).由勾股定理,得KJ==;DE==,KJQR的周长最小=KR+RQ+QJ+KJ=DE+KJ=+.。
山东省滨州市中考数学试题(解析)

2018 年山东省滨州市中考数学试卷一.选择题:本大题共 12 个小题,在每个小题的四个选项中只有一个是正确的,请把正确的选出来,并将其字母标号填写在答题栏内.每题选对得 3 分,选错、不选或选出的答案超出一个均记0 分,满分36 分.1.( 2018 滨州)23 等于()A . 6B .6C . 8D .8考点: 有理数的乘方。
解答: 解: 238.应选 C .2.( 2018 滨州)以下问题,不适适用全面检查的是()A .认识全班同学每周体育锻炼的时间B .鞋厂检查生产的鞋底能蒙受的弯折次数C .学校招聘教师,对应聘人员面试 D .黄河三角洲中学检查全校753 名学生的身高考点: 全面检查与抽样检查。
解答: 解: A 、数目不大,应选择全面检查;B 、数目较大,拥有损坏性的检查,应选择抽样检查;C 、事关重要,检查常常采用普查;D 、数目较不大应选择全面检查.应选 B .3.( 2018 滨州)借助一副三角尺,你能画出下边哪个度数的角()A .65°B . 75°C . 85°D . 95° 考点: 角的计算。
解答: 解:利用一副三角板能够画出75°角,用 45°和 30°的组合即可,应选: B .4.( 2018 滨州)一个三角形三个内角的度数之比为2: 3: 7,这个三角形必定是()A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形考点: 三角形内角和定理。
解答: 解:三角形的三个角挨次为 180°×=30 °, 180°×=45 °, 180°×=105°,所以这个三角形是钝角三角形.应选 D .5.( 2018 滨州)不等式2x 1 x 1x 8 4x的解集是()1A . x 3B . x 2C . 2x 3D .空集考点: 解一元一次不等式组。
2018年山东省滨州市中考数学试题及解析

2018年山东省滨州市中考数学试卷
一、选择题(共12小题,每小题3分,满分36分)
1.(3分)(2018•滨州)数5的算术平方根为()
A.B.25C.±25D.±
2.(3分)(2018•滨州)下列运算:sin30°=,=2,π0=π,2﹣2=﹣4,其中运算结果正确的个数为()A.4B.3C.2D.1
3.(3分)(2018•滨州)一元二次方程4x2+1=4x的根的情况是()
A.没有实数根B.只有一个实数根
C.有两个相等的实数根D.有两个不相等的实数根
4.(3分)(2018•滨州)如果式子有意义,那么x的取值范围在数轴上表示出来,正确的是()A.B.C.D.
5.(3分)(2018•滨州)用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()
A.(x+3)2=1B.(x﹣3)2=1C.(x+3)2=19D.(x﹣3)2=19
6.(3分)(2018•滨州)如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么∠BAO与∠ABO之间的大小关系一定为()
A.互余B.相等C.互补D.不等
7.(3分)(2018•滨州)在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()
A.45°B.60°C.75°D.90°
8.(3分)(2018•滨州)顺次连接矩形ABCD各边中点,所得四边形必定是()
A.邻边不等的平行四边形B.矩形
C.正方形D.菱形
9.(3分)(2018•滨州)某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.。
山东省滨州市九年级数学第一次模拟考试试题(扫描版)

山东省滨州市2018届九年级第一次模拟考试数学试题数学模拟试题(一)参考答案及评分标准一、选择题:本大题共12个小题,每小题填对得3分,满分36分. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D C A C B C D C D A B D二、填空题:本大题共8个小题,每小题5分,满分40分.13.)13)(13(-+a a ab ; 14.20% ; 15. 1032=-)(x ; 16. 66°; 17.1 ; 18.105; 19.6; 20.143-n )(.三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.(以下各题仅提供一种解法,其它解法酌情判分)21.(本小题满分10分)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC . ………………………2分∵AE =21AD ,FC =21BC ,∴AE ∥FC ,AE =FC . ………………………4分 ∴四边形AECF 是平行四边形. ………………………5分 ∴GF ∥EH . ………………………6分 同理可证:ED ∥BF 且ED =BF . ………………………7分 ∴四边形BF DE 是平行四边形. ………………………8分 ∴GE ∥FH . ………………………9分 ∴四边形EGFH 是平行四边形. ………………………10分22.(本小题满分12分)解:设小红每消耗1千卡能量需要行走x 步,则小明每消耗1千卡能量需要行走(x +10)步,………………………1分根据题意,得x x 9000102000=+, ………………………7分解得x =30. ………………………9分 经检验:x =30是原方程的解. ………………………11分 答:小红每消耗1千卡能量需要行走30步. ………………………12分23.(本小题满分12分)解:(1) 50. ………………………2分(2)如图: ………………………4分(3)根据题意如表:………………………8分∵共有12种等可能的结果数,其中一名男生和一名女生的共有7种 . ……………10分 ∴P =127, ………………………11分 答:选中一名男生和一名女生的概率为127. ………………………12分24.(本小题满分13分)(1)解:∵∠AOB =90°,P 为AB 中点,∴AP =OP =PB , ………………………1分 ∵PC ⊥AO∴AC =OC , ………………………2分 ∵DO ∥AB ,∴∠DOA =∠OAB , ………………………3分 ∴△ACP ≌△OCD ………………………4分 ∴DC =CP , ………………………5分令一次函数231--=x y 中的y=0,得到x =﹣6,令x =0,得到y =﹣2,即B 点坐标(0,﹣2),A 点坐标(﹣6,0),即OA =6,OB =2,………………………6分易知tan ∠OAB =tan ∠AOD =31,又OC =3,∴DC =1, ………………………7分 所以点D 的坐标(﹣3,1), ………………………8分 代入反比例解析式得k =﹣3; ………………………9分(2)证明:由(1)△ACP ≌△OCD ,得AP =DO ,又AP ∥DO ,……………………10分∴四边形APOD 为平行四边形, ………………………12分 又AP =PO ,∴四边形APOD 为菱形. ………………………13分25.(本小题满分13分)解:(1)与△EDP 相似的三角形是△PCG .…………………1分证明:∵四边形ABCD 是正方形,∴∠A =∠C =∠D =90°. ………………………2分由折叠知∠EPQ =∠A =90°. ………………………3分∴∠1+∠3=90°,∠1+∠2=90°. ………………………4分∴∠2=∠3. ………………………5分 ∴△PCG ∽△EDP . ………………………6分(2)设ED =x ,则AE =2﹣x ,由折叠可知:EP =AE =2﹣x . ………………………7分∵点P 是CD 中点,∴DP =1. ………………………8分∵∠D =90°,∴ED 2+DP 2=EP 2,即x 2+12=(2﹣x )2 ………………………9分解得43=x . ………………………10分∴43=ED . ………………………11分∵△PCG ∽△EDP ,(第25题答案图)∴34431==ED PC , ………………………12分 ∴△PCG 与△EDP 周长的比为4:3. ………………………13分 26.(本小题满分14分)(1)解:∵直线333+-=x y 分别与x 轴、y 轴交于A 、B 两点,∴当x =0时,y =3,当y =0时,x =3,∴点A (3,0),点B (0,3) ……………1分∴AB =3222=+OB OA , ∴AE =BE =21AB =3, ……………………2分连接EC ,交x 轴于点H ,∵∠COD =∠CBO ,∴=,∴EC ⊥OA ,OC =AC ,∴OH =AH =21OA =23, ………………………3分在Rt △AEH 中,EH =2322=-AH AE ,∴CH =EC ﹣EH =23,∴点C 的坐标为(23,﹣23); ………………………4分(2)解:设经过O 、C 、A 三点的抛物线的解析式为y=ax (x ﹣3) ……………5分∵点C 的坐标为(23,﹣23);∴﹣23=a ×23×(23﹣3), ………………………6分(第26题(1)答案图)解得:a =932, ………………………7分 ∴经过O 、C 、A 三点的抛物线的解析式为:x x y 3329322-=;…………………8分 (3)解:存在. ……………………9分 ∵OC =3,∴当OP +CP 最小时,△COP 的周长最小, ………………………10分过点O 作OF ⊥AB 于点F ,并延长交⊙O 于点K ,连接CK 交直线AB 于点P ,此点P 即为所求; ………………………11分∵∠OAB =30°,∴∠AOF =60°,∵∠COD =30°,∴∠COK =90°,∴CK 是直径, ………………………12分∵点P 在直线AB 上,∴点P 与点E 重合;∵点E 的横坐标为23, ∴2332333=+⨯-=y , ………………………13分 ∴点P 的坐标为(23,23). ………………………14分 (第26题(2)答案图)。
2018年山东省滨州数学解析版
2018年山东省滨州市中考数学试卷试卷满分:150分 教材版本:人教版一、选择题:本大题共12小题,每小题3分,共36分.1.(2018滨州,1,3分)在直角三角形中,若勾为3,股为4,则弦为( ) A .5B .6C .7D .81.A ,解析:根据勾股定理直接求得弦长为223+4=5.2.(2018滨州,2,3分)若数轴上点A 、B 分别表示数2、-2,则A 、B 两点之间的距离可表示为( ) A .2+(-2) B .2-(-2) C .(-2)+2 D .(-2)-22.B ,解析:AB =|x A -x B |=|2-(-2)|=2-(-2).3.(2018滨州,3,3分)如图,直线AB ∥CD ,则下列结论正确的是( ) A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D . ∠3+∠4=180°第3题图3.D ,解析:根据平行线的性质对四个选项进行逐一判断,得出∠3+∠4=180°正确.4.(2018滨州,4,3分)下列运算:①a ²·a ³=a 6,②(a ³)²=a 6,③a 5÷a 5=a ,④(ab )³=a ³b ³,其中结果正确的个数为( ) A .1B .2C .3D .44.B ,解析:根据同底数幂的乘法法则可判断①错误,根据同底数幂的除法法则可判断③错误,根据幂的乘方与积的乘方可判断②,④正确.5.(2018滨州,5,3分)把不等式组1326x x +⎧⎨--⎩≥>-4中每个不等式的解集在同一条数轴上表示出来,正确的为( )–2–10123–2–10123–2–10123–2–10123A B C D5.B ,解析:先求出不等式组中每一个不等式的解集,再根据大于向右,小于向左,≥或≤用实心点,>或<用空心点.4321ABCD6.(2018滨州,6,3分)在平面直角坐标系中,线段AB 两个端点的坐标分别为A (6,8)、B (10,2).若以原点O 为位似中心,在第一象限内将线段AB 缩短为原来的12后得到线段CD ,则点A 的对应点C 的坐标为( )A .(5,1)B .(4,3)C .(3,4)D .(1,5) 6.C ,解析:根据位似图形的性质,结合将线段AB 缩短为原来的12后得到线段CD ,得出点C 的坐标为点A 的坐标的12.7.(2018滨州,7,3分)下列命题,其中是真命题的为( ) A .一组对边平行,另一组对边相等的四边形是平行四边形 B .对角线互相垂直的四边形是菱形 C .对角线相等的四边形是矩形 D .一组邻边相等的矩形是正方形7.D ,解析:一组对边平行,另一组对边相等的四边形也可能是梯形,故A 是假命题;对角线互相垂直的四边形未必一定是菱形,故B 是假命题;对角线相等的四边形也可能是等腰梯形,故C 是假命题;一组邻边相等的矩形是正方形是正确的,故D 是真命题.8.(2018滨州,8,3分)已知半径为5的⊙O 是△ABC 的外接圆,若∠ABC =25°,则劣弧AC 的长为( ) A .2536π B .12536π C .2518π D .536π8.C ,解析:先求出劣弧AC 所对的圆心角的度数,再根据弧长公式直接代入计算即可.9.(2018滨州,9,3分)如果一组数据6、7、x 、9、5的平均数是2x ,那么这组数据的方差为( ) A .4 B .3 C .2 D .19.A ,解析:先根据平均数是2x 求出x 的值,再根据方差公式求出方差即可.10.(2018滨州,10,3分)如图,若二次函数2y ax bx c =++(a ≠0)图象的对称轴为x =1,与y 轴交于点C ,与x 轴交于点A 、点B (-1,0)则①二次函数的最大值为a +b +c ;②a -b +c <0;③b ²-4ac <0;④当y >0时,-1<x <3.其中正确的个数是( ) A .1 B .2 C .3 D .410.B ,解析:由图像可知,当x =1时,函数值取到最大值,最大值为:a +b +c,故①正确;因为抛物线经过点B (-1,0),所以当x =-1时,y =a -b +c =0,故②错误;因为该函数图象与x 轴有两个交点A 、B ,所以b²-4ac >0,故③错误;因为点A 与点B 关于直线x =1对称,所以A(3,0),根据图像可知,当y >0时,-1<x <3,故④正确;故选B .11.(2018滨州,11,3分)如图,∠AOB =60°,点P 是∠AOB 内的定点且OP =3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .362 B .332C .6D .311.D ,解析:分别以OA 、OB 为对称轴作点P 的对称点P 1,P 2,连接点P 1,P 2,分别交射线OA 、OB 于点M 、N 则此时△PMN 的周长有最小值,△PMN 周长等于=PM +PN +MN = P 1N +P 2N +MN ,根据对称的性质可知,OP 1=OP 2=OP =3,∠P 1OP 2=120°,∠OP 1M =30°,过点O 作MN 的垂线段,垂足为Q ,在△OP 1Q 中,可知P 1Q =32,所以P 1P 2=2P 1Q =3,故△PMN 的周长最小值为3.12.(2018滨州,12,3分)如果规定[]x 表示不大于x 的最大整数,例如[]2.32=,那么函数[]y x x =-的AB OPMNxy -1BOCAx =1图象为( )xyxy –1–2–3123–11–1–2–3123–11O OA .B .xyxy –1–2–3123–11–1–2–3123–11O OC .D .12.A ,解析:根据题中的新定义,分x 为正整数,负整数两种情况进行验证,即可排除B ,C ,D ,故选A.二、填空题:本大题共8小题,每小题5分,共40分.不需写出解答过程,请把最后结果填在题中横线上.13.(2018滨州,13,5分)在△ ABC 中,若∠A =30°,∠B =50°,则∠C =___________. 13.100°,解析:直接根据三角形内角和定理求得∠C =180°-30°-50°=100°.14.(2018滨州,14,5分)若分式293x x --的值为0,则x 的值为________.14.-3,解析:分式的值为0,需要满足两个条件:分子为0,同时分母不为0,由分子x²-9=0,求得x =±3,再由分母不为0,求得x =-3.15.(2018滨州,15,5分)在△ABC 中,∠C =90°,若tan A =12,则sin B =__________. 15.255,解析:根据tan A =12可设b =1,则a =2,c =5,所以sin B =25=255.16.(2018滨州,16,5分)若从-1,1,2这三个数中,任取两个分别作为点M 的横、纵坐标,则点M在第二象限的概率是_________.16.13,解析:先根据题意将点M 的坐标的所有可能情况全部列出,再确定在第二象限的情形有几种,即可求出点M 在第二象限的概率.17.(2018滨州,17,5分)若关于x ,y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组3()()5,2()()6a b m a b a b n a b +--=⎧⎨++-=⎩的解是___________.17.3212a b ⎧=⎪⎪⎨⎪=-⎪⎩,解析:观察两个方程组的结构特点,a +b 相当于x ,a -b 相当于y ,故可直接得出:12a b a b +=⎧⎨-=⎩,从而得出元一次方程组3()()5,2()()6a b m a b a b n a b +--=⎧⎨++-=⎩的解是3212a b ⎧=⎪⎪⎨⎪=-⎪⎩.18.(2018滨州,18,5分)若点A (-2,y 1),B (-1,y 2),C (1,y 3)都在反比例函数y =223k k x-+(k 为常数)的图象上,则y 1,y 2,y 3的大小关系为_______________.18.y 3>y 1>y 2,解析:先根据x 的符号,得出为y 3>0,而y 1,y 2均<0,再根据y 随着x 的增大而减小,得出y 3>y 1>y 2.19. (2018滨州,19,5分)如图,在矩形ABCD 中,AB =2,BC =4,点E ,F 分别在BC ,CD 上,若AE =5,∠EAF =45°,则AF 的长为___________.19.4103,解析:取AD 、BC 中点M 、N ,由AD =4,AB =2,证得四边形ABNM 是正方形,连接MN ,EH ,由∠HAE =45°,四边形ABNM 是正方形,可知此处有典型的正方形内“半角模型”,故有EH =MH +BE 。
山东滨州市2018年中考数学试题(含解析)-精品
2018年山东省滨州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1. 在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【答案】A【解析】分析:直接根据勾股定理求解即可.详解:∵在直角三角形中,勾为3,股为4,∴弦为故选A.点睛:本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.2. 若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A. 2+(﹣2)B. 2﹣(﹣2)C. (﹣2)+2D. (﹣2)﹣2【答案】B【解析】分析:根据数轴上两点间距离的定义进行解答即可.详解:A、B两点之间的距离可表示为:2﹣(﹣2).故选B.点睛:本题考查的是数轴上两点间的距离、数轴等知识,熟知数轴上两点间的距离公式是解答此题的关键.3. 如图,直线AB∥CD,则下列结论正确的是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180°D. ∠3+∠4=180°【答案】D详解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选D.点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.4. 下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】分析:根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.详解:①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选B.点睛:此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.5. 把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A. B. C. D.【答案】B【解析】分析:先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.详解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选B.点睛:本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.6. 在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A. (5,1)B. (4,3)C. (3,4)D. (1,5)【答案】C【解析】分析:利用位似图形的性质,结合两图形的位似比进而得出C点坐标.详解:∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A(6,8),∴端点C的坐标为(3,4).故选C.点睛:此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.7. 下列命题,其中是真命题的为()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形D. 一组邻边相等的矩形是正方形【答案】D【解析】试题分析:A、一组对边平行,另一组对边相等的四边形有可能是等腰梯形,故A 选项错误;B、对角线互相垂直的四边形也可能是一般四边形,故B选项错误;C、对角线相等的四边形有可能是等腰梯形,故C选项错误.D、一组邻边相等的矩形是正方形,故D选项正确.故选:D.考点:命题与定理;平行四边形的判定;菱形的判定;矩形的判定;正方形的判定.8. 已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A. B. C. D.【答案】C【解析】分析:根据圆周角定理和弧长公式解答即可.详解:如图:连接AO,CO,∵∠ABC=25°,∴∠AOC=50°,∴劣弧的长=,故选C.点睛:此题考查三角形的外接圆与外心,关键是根据圆周角定理和弧长公式解答.9. 如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A. 4B. 3C. 2D. 1【答案】A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.详解:根据题意,得:=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为 [(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选A.点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.10. 如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B【解析】分析:直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.11. 如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A. B. C. 6 D. 3【答案】D【解析】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.12. 如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A. B.C. D.【答案】A【解析】分析:根据定义可将函数进行化简.详解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选A.点睛:本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.二、填空题(本大题共8小题,每小题5分,满分40分)13. 在△ABC中,若∠A=30°,∠B=50°,则∠C=_______.【答案】100°【解析】分析:直接利用三角形内角和定理进而得出答案.详解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°点睛:此题主要考查了三角形内角和定理,正确把握定义是解题关键.14. 若分式的值为0,则x的值为______.【答案】-3【解析】分析:分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.详解:因为分式的值为0,所以=0,化简得x2﹣9=0,即x2=9.解得x=±3因为x﹣3≠0,即x≠3所以x=﹣3.故答案为﹣3.点睛:本题主要考查分式的值为0的条件,注意分母不为0.15. 在△ABC中,∠C=90°,若tanA=,则sinB=______.【答案】【解析】分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.详解:如图所示:∵∠C=90°,tanA=,∴设BC=x,则AC=2x,故AB=x,则sinB=.故答案为:.点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.16. 若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是____.【答案】【解析】分析:列表得出所有等可能结果,从中找到点M在第二象限的结果数,再根据概率公式计算可得.详解:列表如下:由表可知,共有6种等可能结果,其中点M在第二象限的有2种结果,所以点M在第二象限的概率是..故答案为:.点睛:本题考查了利用列表法与树状图法求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=..【答案】【解析】分析:利用关于x、y的二元一次方程组,的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组整理为:解得:点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.18. 若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为________.【答案】y2<y1<y3【解析】分析:设t=k2﹣2k+3,配方后可得出t>0,利用反比例函数图象上点的坐标特征可求出y1、y2、y3的值,比较后即可得出结论.详解:设t=k2﹣2k+3,∵k2﹣2k+3=(k﹣1)2+2>0,∴t>0.∵点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,∴y1=﹣,y2=﹣t,y3=t,又∵﹣t<﹣<t,∴y2<y1<y3.故答案为:y2<y1<y3.点睛:本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.19. 如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为_____.【答案】【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME=,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=∴AF=故答案为:.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,20. 观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.三、解答题(本大题共6小题,满分74分)21. 先化简,再求值:(xy2+x2y)×,其中x=π0﹣()﹣1,y=2sin45°﹣.【答案】【解析】分析:原式利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值.详解:原式=xy(x+y)•=x﹣y,当x=1﹣2=﹣1,y=﹣2=﹣时,原式=﹣1.点睛:此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.22. 如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.【答案】(1)证明见解析.(2)证明见解析.【解析】分析:(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;(2)连接BC,证△DAC∽△CAB即可得.详解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴,即AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.23. 如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?【答案】(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)在飞行过程中,小球从飞出到落地所用时间是4s;(3)在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.【解析】分析:(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.详解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.点睛:本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.24. 如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1,).(1)求图象过点B的反比例函数的解析式;(2)求图象过点A,B的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.【答案】(1);(2);(3)x<﹣1或0<x<3.【解析】分析:(1)由C的坐标求出菱形的边长,利用平移规律确定出B的坐标,利用待定系数法求出反比例函数解析式即可;(2)由菱形的边长确定出A坐标,利用待定系数法求出直线AB解析式即可;(3)联立一次函数与反比例函数解析式求出交点坐标,由图象确定出满足题意x的范围即可.详解:(1)由C的坐标为(1,),得到OC=2,∵菱形OABC,∴BC=OC=OA=2,BC∥x轴,∴B(3,),设反比例函数解析式为y=,把B坐标代入得:k=3,则反比例解析式为y=;(2)设直线AB解析式为y=mx+n,把A(2,0),B(3,)代入得:,解得:则直线AB解析式为y=﹣2;(3)联立得:,解得:或,即一次函数与反比例函数交点坐标为(3,)或(﹣1,﹣3),则当一次函数的图象在反比例函数的图象下方时,自变量x的取值范围为x<﹣1或0<x <3.点睛:此题考查了待定系数法求反比例函数解析式与一次函数解析式,一次函数、反比例函数的性质,以及一次函数与反比例函数的交点,熟练掌握待定系数法是解本题的关键.25. 已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.【答案】(1)证明见解析;(2)BE=AF,证明见解析.【解析】分析:(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF;(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA(ASA),再根据全等三角形的性质即可得出BE=AF.详(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.点睛:本题考查了全等三角形的判定与性质、等腰直角三角形、补角及余角,解题的关键是:(1)根据全等三角形的判定定理ASA证出△BDE≌△ADF;(2)根据全等三角形的判定定理ASA证出△EDB≌△FDA.26. 如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D (m,n)在点C的右侧,请利用图②,求cos∠APD的大小.【答案】(1);(2)图象为开口向上的抛物线,见解析;(3)点A;x轴;(4)【解析】分析:(1)由题意得到AP=PB,求出y的值,即为圆P的半径;(2)利用两点间的距离公式,根据AP=PB,确定出y关于x的函数解析式,画出函数图象即可;(3)类比圆的定义描述此函数定义即可;(4)画出相应图形,求出m的值,进而确定出所求角的余弦值即可.详解:(1)由x=2,得到P(2,y),连接AP,PB,∵圆P与x轴相切,∴PB⊥x轴,即PB=y,由AP=PB,得到=y,解得:y=,则圆P的半径为;(2)同(1),由AP=PB,得到(x﹣1)2+(y﹣2)2=y2,整理得:y=(x﹣1)2+1,即图象为开口向上的抛物线,画出函数图象,如图②所示;(3)给(2)中所得函数图象进行定义:此函数图象可以看成是到点A的距离等于到x轴的距离的所有点的集合;故答案为:点A;x轴;(4)连接CD,连接AP并延长,交x轴于点F,设PE=a,则有EF=a+1,ED=,∴D坐标为(1+,a+1),代入抛物线解析式得:a+1=(1﹣a2)+1,解得:a=﹣2+或a=﹣2﹣(舍去),即PE=﹣2+,在Rt△PED中,PE=﹣2,PD=1,则cos∠APD==﹣2.点睛:此题属于圆的综合题,涉及的知识有:两点间的距离公式,二次函数的图象与性质,圆的性质,勾股定理,弄清题意是解本题的关键.。
2018年山东省滨州市中考数学试卷和解析答案(样题)
2018年山东省滨州市中考数学试卷(样题)一、选择题:本大题共12个小题,在每小题地四个选项中只有一个是正确地,请把正确地选项选出来,用2B铅笔把答题卡上对应题目地答案标号涂黑.每小题涂对得3分,满分36分.1.(3分)在,,0,﹣2这四个数中,为无理数地是()A.B.C.0 D.﹣22.(3分)如果□×(﹣3)=1,则“□”内应填地实数是()A.B.3 C.﹣3 D.3.(3分)如图,小手盖住地点地坐标可能为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,5) D.(4,﹣5)4.(3分)已知实数a,b,若a>b,则下列结论错误地是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b5.(3分)如图,直线l1∥l2,且分别与△ABC地两边AB、AC相交,若∠A=45°,∠1=65°,则∠2地度数为()A.45°B.65°C.70°D.110°6.(3分)如图,在点M,N,P,Q中,一次函数y=kx+2(k<0)地图象不可能经过地点是()A.M B.N C.P D.Q7.(3分)关于x地分式方程+=3地解为正实数,则实数m地取值范围是()A.m<﹣6且m≠2 B.m>6且m≠2 C.m<6且m≠﹣2 D.m<6且m≠2 8.(3分)将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC地延长线上,如图,则∠EDP地大小为()A.80°B.100°C.120° D.不能确定9.(3分)如图,菱形OABC地顶点C地坐标为(3,4).顶点A在x轴地正半轴上,反比例函数y=(x>0)地图象经过顶点B,则k地值为()A.12 B.20 C.24 D.3210.(3分)如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成地命题是真命题地概率是()A.0 B.C.D.111.(3分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上地点F重合.展开后,折痕DE分别交AB、AC于点E、G.连接GF.则下列结论错误地是()A.∠AGD=112.5°B.四边形AEFG是菱形C.tan∠AED=2 D.BE=2OG12.(3分)如图,点E为菱形ABCD边上地一个动点,并延A→B→C→D地路径移动,设点E经过地路径长为x,△ADE地面积为y,则下列图象能大致反映y 与x地函数关系地是()A.B. C.D.二、填空题:本大题共8个小题,每小题5分,满分40分.13.(5分)计算:﹣22﹣(﹣7)0+=.14.(5分)不等式组地解集为.15.(5分)有一组数据:3,a,4,6,7,它们地平均数是5,则a=,这组数据地方差是.16.(5分)经过两次连续降价,某药品销售单价由原来地49元降到30元,设该药品平均每次降价地百分率为x,根据题意可列方程是.17.(5分)如图,正三棱柱地底面周长为15,截去一个底面周长为6地正三棱柱,所得几何体地俯视图地周长是,面积是.18.(5分)如图,轮船从B处以每小时60海里地速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行20分钟到达C处,在C 处观测灯塔A位于北偏东10°方向上,则C处与灯塔A地距离是海里.19.(5分)如图,在平面直角坐标系中,点A地坐标为(﹣2,),以原点O 为中心,将点A顺时针旋转165°得到点A′,则点A′地坐标为.20.(5分)规定:[x]表示不大于x地最大整数,(x)表示不小于x地最小整数,[x)表示最接近x地整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)地结果是.三、解答题:本大题共6个小题,满分74分.解答时请写出必要地演推过程.21.(10分)先化简后求值:,其中x=.22.(12分)已知:如图,在△ABC中,AD是角平分线,E是AD上一点,且AB:AC=AE:AD.求证:(1)BE=BD;(2).23.(12分)△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA地平分线于E,交∠DCA地平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你地结论.24.(13分)已知:关于x地一元二次方程x2﹣(2m+3)x+m2+3m+2=0.(1)已知x=2是方程地一个根,求m地值;(2)以这个方程地两个实数根作为△ABC中AB、AC(AB<AC)地边长,当BC=时,△ABC是等腰三角形,求此时m地值.25.(13分)如图,⊙O为等腰△ABC地外接圆,直径AB=12,P为弧上任意一点(不与B,C重合),直线CP交AB延长线于点Q,⊙O在点P处切线PD交BQ于点D,(1)若PD∥BC,求证:AP平分∠CAB;(2)若PB=BD,求PD地长度;(3)证明:无论点P在弧上地位置如何变化,CP•CQ为定值.26.(14分)在平面直角坐标系中,已知点B地坐标是(﹣1,0),点A地坐标是(4,0),点C地坐标是(0,4),抛物线过A、B、C三点.(1)求抛物线地解析式.(2)点N是抛物线上地一点(点N在直线AC上方),过点N作NG⊥x轴,垂足为G,交AC于点H,当线段ON与CH互相平分时,求出点N地坐标.(3)设抛物线地对称轴为直线L,顶点为K,点C关于L地对称点J,x轴上是否存在一点Q,y轴上是否一点R使四边形KJQR地周长最小?若存在,请求出周长地最小值;若不存在,请说明理由.2018年山东省滨州市中考数学试卷(样题)参考答案与试题解析一、选择题:本大题共12个小题,在每小题地四个选项中只有一个是正确地,请把正确地选项选出来,用2B铅笔把答题卡上对应题目地答案标号涂黑.每小题涂对得3分,满分36分.1.(3分)在,,0,﹣2这四个数中,为无理数地是()A.B.C.0 D.﹣2【解答】解:,0,﹣2是有理数,是无理数,故选:A.2.(3分)如果□×(﹣3)=1,则“□”内应填地实数是()A.B.3 C.﹣3 D.【解答】解:(﹣)×(﹣3)=1,故选:D.3.(3分)如图,小手盖住地点地坐标可能为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,5) D.(4,﹣5)【解答】解:由图可知,小手盖住地点地坐标位于第三象限,(﹣4,﹣5)(﹣4,5)(4,5)(4,﹣5)中,只有(﹣4,﹣5)在第三象限,所以,小手盖住地点地坐标可能为(﹣4,﹣5).故选:A.4.(3分)已知实数a,b,若a>b,则下列结论错误地是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b【解答】解:a>b,A、a﹣7>b﹣7,故A选项正确;B、6+a>b+6,故B选项正确;C、>,故C选项正确;D、﹣3a<﹣3b,故D选项错误.故选:D.5.(3分)如图,直线l1∥l2,且分别与△ABC地两边AB、AC相交,若∠A=45°,∠1=65°,则∠2地度数为()A.45°B.65°C.70°D.110°【解答】解:如图,∵直线l1∥l2,∠1=65°,∴∠AEF=∠1=65°,∵∠A=45°,∴∠2=∠AFE=180°﹣∠A﹣∠AEF=70°,故选:C.6.(3分)如图,在点M,N,P,Q中,一次函数y=kx+2(k<0)地图象不可能经过地点是()A.M B.N C.P D.Q【解答】解:∵在y=kx+2(k<0)中,令x=0可得y=2,∴一次函数图象一定经过第一、二象限,∵k<0,∴y随x地增大而减小,∴一次函数不经过第三象限,∴其图象不可能经过Q点,故选:D.7.(3分)关于x地分式方程+=3地解为正实数,则实数m地取值范围是()A.m<﹣6且m≠2 B.m>6且m≠2 C.m<6且m≠﹣2 D.m<6且m≠2【解答】解:+=3,方程两边同乘(x﹣2)得,x+m﹣2m=3x﹣6,解得,x=,∵≠2,∴m≠2,由题意得,>0,解得,m<6,实数m地取值范围是:m<6且m≠2.故选:D.8.(3分)将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC地延长线上,如图,则∠EDP地大小为()A.80°B.100°C.120° D.不能确定【解答】解:由旋转地性质可知,∠BAD=100°,AB=AD,∴∠B=∠ADB=40°,∴∠ADE=∠B=40°,∴∠EDP=180°﹣∠ADB﹣∠ADE=100°,故选:B.9.(3分)如图,菱形OABC地顶点C地坐标为(3,4).顶点A在x轴地正半轴上,反比例函数y=(x>0)地图象经过顶点B,则k地值为()A.12 B.20 C.24 D.32【解答】解:过C点作CD⊥x轴,垂足为D,∵点C地坐标为(3,4),∴OD=3,CD=4,∴OC===5,∴OC=BC=5,∴点B坐标为(8,4),∵反比例函数y=(x>0)地图象经过顶点B,∴k=32,故选:D.10.(3分)如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成地命题是真命题地概率是()A.0 B.C.D.1【解答】解:所有等可能地情况有3种,分别为①②⇒③;①③⇒②;②③⇒①,其中组成命题是真命题地情况有:①②⇒③;①③⇒②;②③⇒①,则P=1,故选:D.11.(3分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上地点F重合.展开后,折痕DE分别交AB、AC于点E、G.连接GF.则下列结论错误地是()A.∠AGD=112.5°B.四边形AEFG是菱形C.tan∠AED=2 D.BE=2OG【解答】解:∵在正方形纸片ABCD中,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上地点F重合,∴∠GAD=45°,∠ADG=∠ADO=22.5°,∴∠AGD=112.5°,∴A正确;根据题意可得:AE=EF,AG=FG,又∵EF∥AC,∴∠FEG=∠AGE,又∵∠AEG=∠FEG,∴∠AEG=∠AGE,∴AE=AG=EF=FG,∴四边形AEFG是菱形,∴B正确.∵tan∠AED=,AE=EF<BE,∴AE<AB,∴tan∠AED=>2,∴C错误;∵在等腰直角三角形BEF和等腰直角三角形OFG中,BE2=2EF2=2GF2=2×2OG2,∴BE=2OG.∴D正确.故选:C.12.(3分)如图,点E为菱形ABCD边上地一个动点,并延A→B→C→D地路径移动,设点E经过地路径长为x,△ADE地面积为y,则下列图象能大致反映y 与x地函数关系地是()A.B. C.D.【解答】解:点E沿A→B运动,△ADE地面积逐渐变大,设菱形地变形为a,∠A=β,∴AE边上地高为ABsinβ=a•sinβ,∴y=x•a•sinβ,点E沿B→C移动,△ADE地面积不变;点E沿C→D地路径移动,△ADE地面积逐渐减小.y=(3a﹣x)•sinβ,故选:D.二、填空题:本大题共8个小题,每小题5分,满分40分.13.(5分)计算:﹣22﹣(﹣7)0+=﹣5+2.【解答】解:原式=﹣4﹣1+2=﹣5+2.故答案为:﹣5+2.14.(5分)不等式组地解集为﹣1<x<3.【解答】解:解不等式3﹣2x<5,得:x>﹣1,解不等式x﹣2<1,得:x<3,所以不等式组地解集为﹣1<x<3,故答案为:﹣1<x<3.15.(5分)有一组数据:3,a,4,6,7,它们地平均数是5,则a=5,这组数据地方差是2.【解答】解:∵数据:3,a,4,6,7,它们地平均数是5,∴a=5×5﹣3﹣4﹣6﹣7=5;则这组数据地方差是S2=[(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(7﹣5)2]=2;故答案为:5,2.16.(5分)经过两次连续降价,某药品销售单价由原来地49元降到30元,设该药品平均每次降价地百分率为x,根据题意可列方程是49(1﹣x)2=30;.【解答】解:由题意可得,49(1﹣x)2=30,故答案为49(1﹣x)2=30;17.(5分)如图,正三棱柱地底面周长为15,截去一个底面周长为6地正三棱柱,所得几何体地俯视图地周长是13,面积是.【解答】解:从上边看是一个梯形:上底是2,下底是5,两腰是3,周长是2+3+3+5=13.原三角形地边长是5,截去地三角形地边长是2,梯形地面积=原三角形地面积﹣截去地三角形地面颊=××52﹣××22=﹣=,故答案为:13,.18.(5分)如图,轮船从B处以每小时60海里地速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行20分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A地距离是海里.【解答】解:如图,作AM⊥BC于M.由题意得,∠DBC=20°,∠DBA=50°,BC=60×=20海里,∠NCA=10°,则∠ABC=∠ABD﹣∠CBD=50°﹣20°=30°.∵BD∥CN,∴∠BCN=∠DBC=20°,∴∠ACB=∠ACN+∠BCN=10°+20°=30°,∴∠ACB=∠ABC=30°,∴AB=AC,∵AM⊥BC于M,∴CM=BC=10海里.在直角△ACM中,∵∠AMC=90°,∠ACM=30°,∴AC===(海里).故答案为:.19.(5分)如图,在平面直角坐标系中,点A地坐标为(﹣2,),以原点O为中心,将点A顺时针旋转165°得到点A′,则点A′地坐标为(,﹣);.【解答】解:作AB⊥x轴于点B,∴AB=2、OB=2,则tan∠AOB=,∴∠AOB=60°,∴∠AOy=30°∴将点A顺时针旋转165°得到点A′后,如图所示,OA′=OA=2OB=4,∠A′OC=45°,∴A′C=2、OC=2,即A′(2,﹣2),故答案为(,﹣);20.(5分)规定:[x]表示不大于x地最大整数,(x)表示不小于x地最小整数,[x)表示最接近x地整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)地结果是﹣2或﹣1或0或1或2.【解答】解:①﹣1<x<﹣0.5时,[x]+(x)+[x)=﹣1+0﹣1=﹣2;②﹣0.5<x<0时,[x]+(x)+[x)=﹣1+0+0=﹣1;③x=0时,[x]+(x)+[x)=0+0+0=0;④0<x<0.5时,[x]+(x)+[x)=0+1+0=1;⑤0.5<x<1时,[x]+(x)+[x)=0+1+1=2.故答案为:﹣2或﹣1或0或1或2.三、解答题:本大题共6个小题,满分74分.解答时请写出必要地演推过程. 21.(10分)先化简后求值:,其中x=.【解答】解:==,当x==2时,原式=.22.(12分)已知:如图,在△ABC中,AD是角平分线,E是AD上一点,且AB:AC=AE:AD.求证:(1)BE=BD;(2).【解答】证明:(1)∵AD是角平分线,∴∠BAD=∠CAD,又AB:AC=AE:AD,∴△ABE∽△ACD,∴∠AEB=∠ADC,∴∠BED=∠BDE,∴BE=BD;(2)如图,过点A作AH⊥BC,垂足为H,=,S△ADc=,则S△ABD∴=,又BE=BD,∴.23.(12分)△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA地平分线于E,交∠DCA地平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你地结论.【解答】(1)证明•:如图所示:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO;(2)解:当点O运动到AC中点时,四边形AECF是矩形;理由如下:∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA地外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.24.(13分)已知:关于x地一元二次方程x2﹣(2m+3)x+m2+3m+2=0.(1)已知x=2是方程地一个根,求m地值;(2)以这个方程地两个实数根作为△ABC中AB、AC(AB<AC)地边长,当BC=时,△ABC是等腰三角形,求此时m地值.【解答】解:(1)∵x=2是方程地一个根,∴4﹣2(2m+3)+m2+3m+2=0,∴m=0或m=1;(2)∵△=(2m+3)2﹣4(m2+3m+2)=1,=1;∴x=∴x1=m+2,x2=m+1,∵AB、AC(AB<AC)地长是这个方程地两个实数根,∴AC=m+2,AB=m+1.∵BC=,△ABC是等腰三角形,∴当AB=BC时,有m+1=,∴m=﹣1;当AC=BC时,有m+2=,∴m=﹣2,综上所述,当m=﹣1或m=﹣2时,△ABC是等腰三角形.25.(13分)如图,⊙O为等腰△ABC地外接圆,直径AB=12,P为弧上任意一点(不与B,C重合),直线CP交AB延长线于点Q,⊙O在点P处切线PD交BQ于点D,(1)若PD∥BC,求证:AP平分∠CAB;(2)若PB=BD,求PD地长度;(3)证明:无论点P在弧上地位置如何变化,CP•CQ为定值.【解答】证明:(1)如图,连接OP,∵PD是⊙O地切线,∴OP⊥PD,∵PD∥BC,∴OP⊥BC,∴CP=BP,∴∠PAC=∠PAB,∴AP平分∠CAB;(2)∵PB=BD,∴∠BPD=∠BDP,∵OP⊥PD,∴∠BPD+∠BPO=∠BDP+∠BOP,∴∠BOP=∠BPO,∴BP=BO=PO=6,即△BOP是等边三角形,∴在Rt△OPD中,PD==6;(3)∵AC=BC,∴∠BAC=∠ABC,∵∠ABC=∠APC,∴∠APC=∠BAC,又∵∠ACP=∠QCA,∴△ACP∽△QCA,∴=,即CP•CQ=CA2=72,即CP•CQ为定值.26.(14分)在平面直角坐标系中,已知点B地坐标是(﹣1,0),点A地坐标是(4,0),点C地坐标是(0,4),抛物线过A、B、C三点.(1)求抛物线地解析式.(2)点N是抛物线上地一点(点N在直线AC上方),过点N作NG⊥x轴,垂足为G,交AC于点H,当线段ON与CH互相平分时,求出点N地坐标.(3)设抛物线地对称轴为直线L,顶点为K,点C关于L地对称点J,x轴上是否存在一点Q,y轴上是否一点R使四边形KJQR地周长最小?若存在,请求出周长地最小值;若不存在,请说明理由.【解答】解:(1)设抛物线地解析式为y=ax2+bx+c,将A、B、C点坐标代入函数解析式,得,解得,抛物线地解析式为y=﹣x2+3x+4;(2)如图1,设AC地解析式为y=kx+b,将A、C点坐标代入,得,解得,AC地解析式为y=﹣x+4,设N(m,﹣m2+3m+4),H(m,﹣m+4).NH=﹣m2+4m.由线段ON与CH互相平分,得NH=OC=4,即﹣m2+4m=4,解得m=2,﹣m2+3m+4=6,即N(2,6),当线段ON与CH互相平分时,点N地坐标为(2,6);(3)如图2,作K点关于y轴地对称点D,作J点关于x轴地对称点E,连接DE交y轴于R交x轴于Q点,y=﹣x2+3x+4=﹣(x﹣)2+,顶点K(,).由点C关于对称轴L=地对称点J,C(0,4),得J点坐标为(3,4).由K点关于y轴地对称点D,K(,),得D点坐标为(﹣,).由J点关于x轴地对称点E,J(3,4),得E点地坐标为(3,﹣4).由勾股定理,得KJ==;DE==,KJQR地周长最小=KR+RQ+QJ+KJ=DE+KJ=+.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。
2018年滨州市中考数学一模试卷(有答案和解释)
2018年滨州市中考数学一模试卷(有答案和解释)2018年山东省滨州市中考数学一模试卷一、选择题(本大题共12小题,每小题3分,共36分。
每小题给出的四个选项中只有一个使正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入表中) 1.(3分)�的相反数是() A.�5 B.5 C.�D. 2.(3分)据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.将8000000000000用科学记数法表示应为()A.0.8×1013 B.8×1012 C.8×1013 D.80×1011 3.(3分)如图是由八个相同小正方体组合而成的几何体,则其俯视图是()A. B. C. D. 4.(3分)下列运算中正确的是() A.(x3)2=x5 B.2a�5•a3=2a8 C. D.6x3÷(�3x2)=2x 5.(3分)若分式的值为零,则x等于() A.2 B.�2 C.±2 D.0 6.(3分)已知x+y=�5,xy=3,则x2+y2=() A.25 B.�25 C.19 D.�19 7.(3分)将抛物线y=x2�2x+1向下平移2个单位,再向左平移1个单位,所得抛物线的解析式是() A.y=x2�2x�1 B.y=x2+2x�1 C.y=x2�2 D.y=x2+2 8.(3分)如果关于x的一元二次方程ax2+x�1=0有实数根,则a的取值范围是() A.a >� B.a≥� C.a≥�且a≠0 D.a>且a≠0 9.(3分)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2 ,则阴影部分图形的面积为() A.4π B.2π C.π D. 10.(3分)定义:一个自然数,右边的数字总比左边的数字小,我们称它为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为() A. B. C. D. 11.(3分)上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是() A. B. C. D. 12.(3分)如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,连接CE,作BF⊥CE,垂足为F,则tan∠FBC的值为()A. B. C. D.二、填空题(本大题共8小题,每小题5分,共40分) 13.(5分)因式分解:9a3b�ab= . 14.(5分)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是%. 15.(5分)用配方法解方程x2�6x�1=0,经过配方后得到的方程式. 16.(5分)如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠BED的度数是. 17.(5分)点A(�3,m)和点B(n,2)关于原点对称,则m+n= . 18.(5分)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元,这批电话手表至少有块. 19.(5分)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为. 20.(5分)观察下列图形,若第1个图形中阴影部分的面积为1,第2个图形中阴影部分的面积为,第3个图形中阴影部分的面积为,第4个图形中阴影部分的面积为,…则第n个图形中阴影部分的面积为•(用字母n表示)三、解答题(本大题共6小题,共计74分.解答时请写出必要的演推过程) 21.(10分)如图,▱ABCD中E,F分别是AD,BC中点,AF与BE交于点G,CE和DF交于点H,求证:四边形EGFH是平行四边形. 22.(12分)目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步? 23.(12分)在初三综合素质评定结束后,为了了解年级的评定情况,现对初三某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图.(1)调查发现评定等级为合格的男生有2人,女生有1人,则全班共有名学生.(2)补全女生等级评定的折线统计图.(3)根据调查情况,该班班主任从评定等级为合格和A的学生中各选1名学生进行交流,请用树形图或表格求出刚好选中一名男生和一名女生的概率. 24.(13分)如图,直线y= x�2分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y= (x<0)的图象于点D,且OD∥AB.(1)求k的值;(2)连接OP、AD,求证:四边形APOD是菱形. 25.(13分)如图,已知正方形纸片ABCD的边长为2,将正方形纸片折叠,使顶点A落在边CD上的点P处(点P与C、D不重合),折痕为EF,折叠后AB边落在PQ的位置,PQ与BC交于点G.(1)观察操作结果,找到一个与△EDP相似的三角形,并证明你的结论;(2)当点P位于CD中点时,你找到的三角形与△EDP周长的比是多少? 26.(14分)直线y=�x+ 分别与x轴、y轴交于A、B两点,⊙E经过原点O 及A、B两点,C是⊙E上一点,连接BC交OA于点D,∠COD=∠CBO.(1)求A、B、C三点坐标;(2)求经过O、C、A三点的抛物线解析式;(3)直线AB上是否存在点P,使得△COP的周长最小?若存在,请求出P点坐标;若不存在,请说明理由. 2018年山东省滨州市中考数学一模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年山东省滨州市中考数学一模试卷一、选择题(本大题共12小题,每小题3分,共36分。
每小题给出的四个选项中只有一个使正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入表中)1.(3分)﹣的相反数是()A.﹣5 B.5 C.﹣ D.2.(3分)据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.将8000000000000用科学记数法表示应为()A.0.8×1013B.8×1012C.8×1013D.80×10113.(3分)如图是由八个相同小正方体组合而成的几何体,则其俯视图是()A.B.C.D.4.(3分)下列运算中正确的是()A.(x3)2=x5B.2a﹣5•a3=2a8C.D.6x3÷(﹣3x2)=2x5.(3分)若分式的值为零,则x等于()A.2 B.﹣2 C.±2 D.06.(3分)已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣197.(3分)将抛物线y=x2﹣2x+1向下平移2个单位,再向左平移1个单位,所得抛物线的解析式是()A.y=x2﹣2x﹣1 B.y=x2+2x﹣1 C.y=x2﹣2 D.y=x2+28.(3分)如果关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是()A.a>﹣B.a≥﹣C.a≥﹣且a≠0 D.a>且a≠09.(3分)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分图形的面积为()A.4πB.2πC.πD.10.(3分)定义:一个自然数,右边的数字总比左边的数字小,我们称它为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为()A.B.C.D.11.(3分)上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A. B. C. D.12.(3分)如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,连接CE,作BF⊥CE,垂足为F,则tan∠FBC的值为()A.B.C.D.二、填空题(本大题共8小题,每小题5分,共40分)13.(5分)因式分解:9a3b﹣ab=.14.(5分)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是%.15.(5分)用配方法解方程x2﹣6x﹣1=0,经过配方后得到的方程式.16.(5分)如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠BED的度数是.17.(5分)点A(﹣3,m)和点B(n,2)关于原点对称,则m+n=.18.(5分)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元,这批电话手表至少有块.19.(5分)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为.20.(5分)观察下列图形,若第1个图形中阴影部分的面积为1,第2个图形中阴影部分的面积为,第3个图形中阴影部分的面积为,第4个图形中阴影部分的面积为,…则第n个图形中阴影部分的面积为•(用字母n表示)三、解答题(本大题共6小题,共计74分.解答时请写出必要的演推过程)21.(10分)如图,▱ABCD中E,F分别是AD,BC中点,AF与BE交于点G,CE 和DF交于点H,求证:四边形EGFH是平行四边形.22.(12分)目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?23.(12分)在初三综合素质评定结束后,为了了解年级的评定情况,现对初三某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图.(1)调查发现评定等级为合格的男生有2人,女生有1人,则全班共有名学生.(2)补全女生等级评定的折线统计图.(3)根据调查情况,该班班主任从评定等级为合格和A的学生中各选1名学生进行交流,请用树形图或表格求出刚好选中一名男生和一名女生的概率.24.(13分)如图,直线y=x﹣2分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=(x<0)的图象于点D,且OD ∥AB.(1)求k的值;(2)连接OP、AD,求证:四边形APOD是菱形.25.(13分)如图,已知正方形纸片ABCD的边长为2,将正方形纸片折叠,使顶点A落在边CD上的点P处(点P与C、D不重合),折痕为EF,折叠后AB边落在PQ的位置,PQ与BC交于点G.(1)观察操作结果,找到一个与△EDP相似的三角形,并证明你的结论;(2)当点P位于CD中点时,你找到的三角形与△EDP周长的比是多少?26.(14分)直线y=﹣x+分别与x轴、y轴交于A、B两点,⊙E经过原点O及A、B两点,C是⊙E上一点,连接BC交OA于点D,∠COD=∠CBO.(1)求A、B、C三点坐标;(2)求经过O、C、A三点的抛物线解析式;(3)直线AB上是否存在点P,使得△COP的周长最小?若存在,请求出P点坐标;若不存在,请说明理由.2018年山东省滨州市中考数学一模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分。
每小题给出的四个选项中只有一个使正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入表中)1.(3分)﹣的相反数是()A.﹣5 B.5 C.﹣ D.【分析】只有符号不同的两个数叫做互为相反数.【解答】解:﹣的相反数是.故选:D.2.(3分)据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.将8000000000000用科学记数法表示应为()A.0.8×1013B.8×1012C.8×1013D.80×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:8000000000000=8×1012,故选:B.3.(3分)如图是由八个相同小正方体组合而成的几何体,则其俯视图是()A.B.C.D.【分析】俯视图是从图形的上面看所得到的图形,根据小正方体的摆放方法,画出图形即可.【解答】解:俯视图有3列,从左往右分别有2,1,2个小正方形,其俯视图是.故选:A.4.(3分)下列运算中正确的是()A.(x3)2=x5B.2a﹣5•a3=2a8C.D.6x3÷(﹣3x2)=2x【分析】A、原式利用幂的乘方运算法则计算得到结果,即可做出判断;B、原式利用同分母幂的乘法法则计算得到结果,即可做出判断;C、原式利用负指数幂法则计算得到结果,即可做出判断;D、原式利用单项式除以单项式法则计算得到结果,即可做出判断.【解答】解:A、(x3)2=x6,故选项错误;B、2a﹣5•a3=2a﹣2,故选项错误;C、3﹣2=,故选项正确;D、6x3÷(﹣3x2)=﹣2x,故选项错误.故选:C.5.(3分)若分式的值为零,则x等于()A.2 B.﹣2 C.±2 D.0【分析】分式的值是0的条件是:分子为0,分母不为0.【解答】解:∵x2﹣4=0,∴x=±2,当x=2时,2x﹣4=0,∴x=2不满足条件.当x=﹣2时,2x﹣4≠0,∴当x=﹣2时分式的值是0.故选:B.6.(3分)已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣19【分析】把x2+y2利用完全平方公式变形后,代入x+y=﹣5,xy=3求值.【解答】解:∵x+y=﹣5,xy=3,∴x2+y2=(x+y)2﹣2xy=25﹣6=19.故选:C.7.(3分)将抛物线y=x2﹣2x+1向下平移2个单位,再向左平移1个单位,所得抛物线的解析式是()A.y=x2﹣2x﹣1 B.y=x2+2x﹣1 C.y=x2﹣2 D.y=x2+2【分析】抛物线y=x2﹣2x+1化为顶点坐标式再按照“左加右减,上加下减”的规律平移则可.【解答】解:根据题意y=x2﹣2x+1=(x﹣1)2向下平移2个单位,再向左平移1个单位,得y=(x﹣1+1)2﹣2,y=x2﹣2.故选:C.8.(3分)如果关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是()A.a>﹣B.a≥﹣C.a≥﹣且a≠0 D.a>且a≠0【分析】在判断一元二次方程根的情况的问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根的情况下必须满足△=b2﹣4ac≥0.【解答】解:依题意列方程组,解得a≥﹣且a≠0.故选C.9.(3分)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分图形的面积为( )A .4πB .2πC .πD .【分析】根据垂径定理求得CE=ED=,然后由圆周角定理知∠COE=60°,然后通过解直角三角形求得线段OC 、OE 的长度,最后将相关线段的长度代入S 阴影=S 扇形OCB ﹣S △COE +S △BED .【解答】解:如图,假设线段CD 、AB 交于点E ,∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CE=ED=,又∵∠CDB=30°,∴∠COE=2∠CDB=60°,∠OCE=30°,∴OE=CE•cot60°=×=1,OC=2OE=2,∴S阴影=S 扇形OCB ﹣S △COE +S △BED =﹣OE ×EC +BE•ED=﹣+=.故选:D .10.(3分)定义:一个自然数,右边的数字总比左边的数字小,我们称它为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )A .B .C .D .【分析】根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个;②符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率.【解答】解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,概率为=.故选:A.11.(3分)上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A. B. C. D.【分析】根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.【解答】解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;故选:B.12.(3分)如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,连接CE,作BF⊥CE,垂足为F,则tan∠FBC的值为()A.B.C.D.【分析】首先根据以B为圆心BC为半径画弧交AD于点E,判断出BE=BC=5;然后根据勾股定理,求出AE的值是多少,进而求出DE的值是多少;再根据勾股定理,求出CE的值是多少,再根据BC=BE,BF⊥CE,判断出点F是CE的中点,据此求出CF、BF的值各是多少;最后根据角的正切的求法,求出tan∠FBC的值是多少即可.【解答】解:∵以B为圆心BC为半径画弧交AD于点E,∴BE=BC=5,∴AE=,∴DE=AD﹣AE=5﹣4=1,∴CE=,∵BC=BE,BF⊥CE,∴点F是CE的中点,∴CF=,∴BF==,∴tan∠FBC=,即tan∠FBC的值为.故选:D.二、填空题(本大题共8小题,每小题5分,共40分)13.(5分)因式分解:9a3b﹣ab=ab(3a+1)(3a﹣1).【分析】原式提取公因式后,利用平方差公式分解即可.【解答】解:原式=ab(9a2﹣1)=ab(3a+1)(3a﹣1).故答案为:ab(3a+1)(3a﹣1)14.(5分)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是20%.【分析】设该药品平均每次降价的百分率是x,则第一次降价后的价格是25×(1﹣x),第二次降价后的价格是在第一次降价后的价格的基础上进行降价的为25×(1﹣x)(1﹣x)=16,解方程即可求解.【解答】解:设该药品平均每次降价的百分率是x,根据题意得25×(1﹣x)(1﹣x)=16,整理得25×(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去);即该药品平均每次降价的百分率是20%.故答案为:20%.15.(5分)用配方法解方程x2﹣6x﹣1=0,经过配方后得到的方程式(x﹣3)2=10.【分析】根据配方法可以解答本题.【解答】解:x2﹣6x﹣1=0,(x﹣3)2﹣9﹣1=0(x﹣3)2=10,故答案为:(x﹣3)2=10.16.(5分)如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠BED的度数是66°.【分析】由AB∥CD,∠C=33°可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,然后由两直线平行,内错角相等,求得∠BED的度数.【解答】解:∵AB∥CD,∠C=33°,∴∠ABC=∠C=33°,∵BC平分∠ABE,∴∠ABE=2∠ABC=66°,∵AB∥CD,∴∠BED=∠ABE=66°.故答案为:66°17.(5分)点A(﹣3,m)和点B(n,2)关于原点对称,则m+n=1.【分析】根据两个点关于原点对称时,它们的坐标符号相反,可得出m、n的值,代入可得出代数式的值.【解答】解:∵点A(﹣3,m)和点B(n,2)关于原点对称,∴m=﹣2,n=3,故m+n=3﹣2=1.故答案为:1.18.(5分)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元,这批电话手表至少有105块.【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.【解答】解:设这批手表有x块,550×60+500(x﹣60)>55000,解得x>104.故这批电话手表至少有105块,故答案为:105.19.(5分)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为6.【分析】要求△AMN的周长,根据题目已知条件无法求出三条边的长,只能把三条边长用其它已知边长来表示,所以需要作辅助线,延长AB至F,使BF=CN,连接DF,通过证明△BDF≌△CND,及△DMN≌△DMF,从而得出MN=MF,△AMN的周长等于AB+AC的长.【解答】解:∵△BDC是等腰三角形,且∠BDC=120°∴∠BCD=∠DBC=30°∵△ABC是边长为3的等边三角形∴∠ABC=∠BAC=∠BCA=60°∴∠DBA=∠DCA=90°延长AB至F,使BF=CN,连接DF,在Rt△BDF和Rt△CND中,BF=CN,DB=DC∴△BDF≌△CND∴∠BDF=∠CDN,DF=DN∵∠MDN=60°∴∠BDM+∠CDN=60°∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM为公共边∴△DMN≌△DMF,∴MN=MF∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.20.(5分)观察下列图形,若第1个图形中阴影部分的面积为1,第2个图形中阴影部分的面积为,第3个图形中阴影部分的面积为,第4个图形中阴影部分的面积为,…则第n个图形中阴影部分的面积为n﹣1(n为整数)•(用字母n表示)【分析】本题可根据图形,可知后一个图形中阴影部分的面积等于前一个图形中阴影部分的面积×.【解答】解:第1个图形中阴影部分的面积=()0=1;第2个图形中阴影部分的面积=()1=;第3个图形中阴影部分的面积=()2=;…第n个图形中阴影部分的面积=n﹣1(n为整数)•三、解答题(本大题共6小题,共计74分.解答时请写出必要的演推过程)21.(10分)如图,▱ABCD中E,F分别是AD,BC中点,AF与BE交于点G,CE 和DF交于点H,求证:四边形EGFH是平行四边形.【分析】可分别证明四边形AFCE是平行四边形,四边形BFDE是平行四边形,从而得出GF∥EH,GE∥FH,即可证明四边形EGFH是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=AD,FC=BC,∴AE∥FC,AE=FC.∴四边形AECF是平行四边形.∴GF∥EH.同理可证:ED∥BF且ED=BF.∴四边形BFDE是平行四边形.∴GE∥FH.∴四边形EGFH是平行四边形.22.(12分)目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?【分析】设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,根据数量关系消耗能量千卡数=行走步数÷每消耗1千卡能量需要行走步数结合小明步行12 000步与小红步行9 000步消耗的能量相同,即可得出关于x的分式方程,解之后经检验即可得出结论.【解答】解:设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,根据题意,得=,解得x=30.经检验:x=30是原方程的解.答:小红每消耗1千卡能量需要行走30步.23.(12分)在初三综合素质评定结束后,为了了解年级的评定情况,现对初三某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图.(1)调查发现评定等级为合格的男生有2人,女生有1人,则全班共有50名学生.(2)补全女生等级评定的折线统计图.(3)根据调查情况,该班班主任从评定等级为合格和A的学生中各选1名学生进行交流,请用树形图或表格求出刚好选中一名男生和一名女生的概率.【分析】(1)根据合格的男生有2人,女生有1人,得出合格的总人数,再根据评级合格的学生占6%,即可得出全班的人数;(2)根据折线统计图和扇形统计图以及全班的学生数,即可得出女生评级3A 的学生和女生评级4A的学生数,即可补全折线统计图;(3)根据题意画出图表,再根据概率公式即可得出答案.【解答】解:因为合格的男生有2人,女生有1人,共计2+1=3人,又因为评级合格的学生占6%,所以全班共有:3÷6%=50(人).故答案为:50.(2)根据题意得:女生评级3A的学生是:50×16%﹣3=8﹣3=5(人),女生评级4A的学生是:50×50%﹣10=25﹣10=15(人),如图:(3)根据题意如表:∵共有12种等可能的结果数,其中一名男生和一名女生的共有7种,∴P=,答:选中一名男生和一名女生的概率为:.24.(13分)如图,直线y=x﹣2分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=(x<0)的图象于点D,且OD ∥AB.(1)求k的值;(2)连接OP、AD,求证:四边形APOD是菱形.【分析】(1)在直角三角形AOB中,利用斜边上的中线等于斜边的一半得到AP=OP=PB,再由PC与x轴垂直,利用三线合一得到C为OA中点,根据OD与AB平行,得到一对内错角相等,利用ASA得到三角形DCO与三角形ACP全等,利用全等三角形对应边相等得到DC=PC,求出A与B坐标,进而确定出D坐标,代入反比例解析式求出k的值即可;(2)由(1)的全等得到OD=AP,利用一组对边平行且相等的四边形为平行四边形得到APOD为平行四边形,再根据AP=OP即可得证.【解答】(1)解:∵∠AOB=90°,P为AB中点,∴AP=OP=PB,∵PC⊥AO,∴AC=OC,∵DO∥AB,∴∠DOA=∠OAB,∴△ACP≌△OCD,∴DC=CP,一次函数y=﹣x﹣2中,令y=0,得到x=﹣6,令x=0,得到y=﹣2,即B点坐标(0,﹣2),A点坐标(﹣6,0),∴OA=6,OB=2,∵tan∠OAB=tan∠AOD=,又OC=3,∴DC=1,所以点D的坐标(﹣3,1),代入反比例解析式得k=﹣3;(2)证明:由(1)△ACP≌△OCD,得AP=DO,又AP∥DO,∴四边形APOD为平行四边形,又AP=PO,∴四边形APOD为菱形.25.(13分)如图,已知正方形纸片ABCD的边长为2,将正方形纸片折叠,使顶点A落在边CD上的点P处(点P与C、D不重合),折痕为EF,折叠后AB边落在PQ的位置,PQ与BC交于点G.(1)观察操作结果,找到一个与△EDP相似的三角形,并证明你的结论;(2)当点P位于CD中点时,你找到的三角形与△EDP周长的比是多少?【分析】(1)根据题意,∠EPG=90°,可得∠EPD+∠CPG=90°,又∠EPD+∠PED=90°,所以∠CPG=∠PED.加上∠C=∠D,可得△EDP∽△PCG;(2)根据相似三角形性质求解.因为CP=1,所以需求对应边DE的长度.设DE=x,则AE=EP=2﹣x,根据勾股定理可求.【解答】解:(1)与△EDP相似的三角形是△PCG.(1分)证明:∵四边形ABCD是正方形,∴∠A=∠C=∠D=90°.由折叠知∠EPQ=∠A=90°.∴∠1+∠3=90°,∠1+∠2=90°.∴∠2=∠3.∴△PCG∽△EDP.(2分)(2)设ED=x,则AE=2﹣x,由折叠可知:EP=AE=2﹣x.∵点P是CD中点,∴DP=1.∵∠D=90°,∴ED2+DP2=EP2,即x2+12=(2﹣x)2解得.∴.(3分)∵△PCG∽△EDP,∴.∴△PCG与△EDP周长的比为4:3.(4分)26.(14分)直线y=﹣x+分别与x轴、y轴交于A、B两点,⊙E经过原点O及A、B两点,C是⊙E上一点,连接BC交OA于点D,∠COD=∠CBO.(1)求A、B、C三点坐标;(2)求经过O、C、A三点的抛物线解析式;(3)直线AB上是否存在点P,使得△COP的周长最小?若存在,请求出P点坐标;若不存在,请说明理由.【分析】(1)由直线y=﹣x+分别与x轴、y轴交于A、B两点,即可求得点A与点B的坐标,然后连接EC,交x轴于点H,由∠COD=∠CBO,根据垂径定理的即可求得OH与AH的长,由勾股定理,可求得AB的长,EH的长,继而求得点C的坐标;(2)利用待定系数法即可求得经过O、C、A三点的抛物线解析式;(3)由OC已知,可得当OP+CP最小时,△COP的周长最小;过点O作OF⊥AB 于点F,并延长交⊙O于点K,连接CK交直线AB于点P,此点即为所求;易证得CK是直径,则可得点P与点E重合,继而求得P点坐标.【解答】解:(1)∵直线y=﹣x+分别与x轴、y轴交于A、B两点,∴当x=0时,y=,当y=0时,x=3,∴点A(3,0),点B(0,)∴AB==2,∴AE=BE=AB=,如图1,连接EC,交x轴于点H,∵∠COD=∠CBO,∴=,∴EC⊥OA,OC=AC,∴OH=AH=OA=,在Rt△AEH中,EH==,∴CH=EC﹣EH=,∴点C的坐标为(,﹣);(2)设经过O、C、A三点的抛物线的解析式为y=ax(x﹣3),∵点C的坐标为(,﹣);∴﹣=a××(﹣3),解得:a=,∴经过O、C、A三点的抛物线的解析式为:y=x2﹣x;(3)存在.∵OC=,∴当OP+CP最小时,△COP的周长最小,如图2,过点O作OF⊥AB于点F,并延长交⊙O于点K,连接CK交直线AB于点P,此点P即为所求;∵∠OAB=30°,∴∠AOF=60°,∵∠COD=30°,∴∠COK=90°,∴CK是直径,∵点P在直线AB上,∴点P与点E重合;∵点E的横坐标为:,∴y=﹣×+=,∴点P的坐标为(,).。