胡成__Pinning synchronization of weighted complex networks
2023年人工智能现代科技知识考试题与答案

2023年《人工智能》现代科技知识考试题与答案目录简介一、单选题:共40题二、多选题:共20题三、判断题:共26题一、单选题1、下列哪部分不是专家系统的组成部分?A .用户B.综合数据库C.推理机D.知识库正确答案:A解析:《人工智能导论》(第4版)作者:王万良出版社: 高等教育出版社2、下列哪个神经网络结构会发生权重共享?A.卷积神经网络B.循环神经网络C.全连接神经网络D. A 和B正确答案:D解析:《深度学习、优化与识别》作者:焦李成出版社: 清华大学出版社3、下列哪个不属于常用的文本分类的特征选择算法?A.卡方检验值B.互信息C .信息增益D.主成分分析正确答案:D解析:《自然语言处理》作者:刘挺出版社:高等教育出版社4、下列哪个不是人工智能的技术应用领域?A.搜索技术B.数据挖掘C.智能控制D .编译原理解析:《走进人工智能》作者:周旺出版社:高等教育出版社5、Q(s,a)是指在给定状态s的情况下,采取行动a之后,后续的各个状态所能得到的回报()。
A.总和B.最大值C.最小值D.期望值正确答案:D解析:《深度学习、优化与识别》作者:焦李成出版社: 清华大学出版社6、数据科学家可能会同时使用多个算法(模型)进行预测,并且最后把这些算法的结果集成起来进行最后的预测(集成学习),以下对集成学习说法正确的是()。
A.单个模型之间有高相关性B.单个模型之间有低相关性C,在集成学习中使用“平均权重”而不是“投票”会比较好D.单个模型都是用的一个算法解析:《机器学习方法》作者:李航出版社:清华大学出版社7、以下哪种技术对于减少数据集的维度会更好?A.删除缺少值太多的列B.删除数据差异较大的列C.删除不同数据趋势的列D.都不是正确答案:A解析:《机器学习》作者:周志华出版社:清华大学出版社8、在强化学习过程中,学习率越大,表示采用新的尝试得到的结果比例越(),保持旧的结果的比例越()。
A .大,小B.大,大C.小,大D.小,小正确答案:A解析:《深度学习、优化与识别》作者:焦李成出版社: 清华大学出版社9、以下哪种方法不属于特征选择的标准方法?A.嵌入B.过滤C ,包装D.抽样正确答案:D解析:《深度学习、优化与识别》作者:焦李成出版社: 清华大学出版社10、要想让机器具有智能,必须让机器具有知识。
基于变分贝叶斯推断的新型全局频谱协作感知算法

基于变分贝叶斯推断的新型全局频谱协作感知算法吴名;宋铁成;胡静;沈连丰【摘要】为了实现多维动态频谱接入,首先给出了主用户的全局功率谱近似模型,并构建了新型全局频谱协作感知算法的总体流程,以获得主用户网络中占用频段、功率及位置等全局信息.接着利用变分贝叶斯推断技术,设计了相应的模型系数向量估计器.仿真结果表明,该方法采用的近似模型具有较好的准确性,相应的系数向量估计算法具有较高的有效性和收敛稳定性,同时指明了信噪比和泄漏总虚假功率的关系以及两者对均方误差性能的影响.此外,还证明了该方法通过利用系数向量θ的稀疏性,而在均方误差性能上具有较大优势.【期刊名称】《通信学报》【年(卷),期】2016(037)002【总页数】9页(P115-123)【关键词】认知无线电;全局频谱协作感知;变分贝叶斯推断;稀疏性【作者】吴名;宋铁成;胡静;沈连丰【作者单位】东南大学移动通信国家重点实验室,江苏南京210096;东南大学移动通信国家重点实验室,江苏南京210096;东南大学移动通信国家重点实验室,江苏南京210096;东南大学移动通信国家重点实验室,江苏南京210096【正文语种】中文【中图分类】TN914目前,无线通信领域中存在频谱资源日益匮乏而现有频谱利用效率低下这一困境,认知无线电技术正是为解决这一问题而提出的。
认知无线电技术的基础和关键是频谱感知技术,该技术主要用于判断授权频段是否被主用户占用。
目前,其主要采取协作的方式进行频谱感知,以利用不同从用户的采样点在时间、空间上的独立性或不相关性,实现分集、增强感知性能,从而达到快速、可靠感知的目的[1~3]。
但是因为从用户网络覆盖范围较大,主用户通信范围通常只占据其中一部分。
而在其他地方,由于距离主用户较远、主用户信号功率较弱、建筑物遮蔽等原因,从用户对授权频段的使用往往既不会对主用户通信产生有害的干扰,也不会受到主用户的有害影响。
同时由于主/从用户一般存在移动性,导致主用户通信影响范围和频谱空洞所处位置也随时间不断变化。
一种大鼠心律失常模型的建立

一种大鼠心律失常模型的建立胡一冰;彭成【摘要】目的建立一种新的心律失常动物模型.方法选用SD大鼠,经股静脉快速给予附子脂溶性生物碱0.425 mg·kg-1,用四道生理记录仪持续记录心电图.结果附子脂溶性生物碱能够引起SD大鼠出现室性早搏、二联律或三联律、短时阵发性室性心动过速、连续性室性心动过速,继而以相反顺序逐渐恢复.用利多卡因反证治疗,与生理盐水相比差异极显著(P<0.001).结论附子脂溶性生物碱注射致大鼠心律失常动物模型是一种可行的方法.【期刊名称】《四川动物》【年(卷),期】2010(029)004【总页数】3页(P627-629)【关键词】模型;心律失常;附子脂溶性生物碱【作者】胡一冰;彭成【作者单位】成都大学生物产业学院,成都610106;成都中医药大学药学院,成都,610075【正文语种】中文【中图分类】Q95-33;R541.7心律失常是临床的常见症状,许多疾病都可以导致其发生。
为了进行实验研究,已建立了许多实验性心律失常动物模型。
目前制作实验性心律失常动物模型多采用药物诱发心律失常(如注射乌头碱、哇八因、CaCl2、肾上腺素等)、电刺激诱发心律失常、结扎冠脉导致心律失常等方法,其中以药物诱导的实验性心律失常较为常见,而药物诱导中又以化学合成药物占多数,中药、中药提取物较少。
根据文献报道,中药导致心律失常多因应用附子而引起,附子是临床应用较为广泛的药物之一。
为了便于研究中药导致心律失常的表现,揭示中药诱发心律失常的机理,开发新的抗心律失常中药,我们利用附子对心脏的毒性作用建立了SD大鼠心律失常的动物模型,现将实验报告如下。
附子脂溶性生物碱每克合645 g原生药,由成都中医药大学药学院项目研究组提供。
0.9%氯化钠注射液,由四川美大康佳乐药业有限公司提供(批号:03031215)。
利多卡因注射液,由西南药业股份有限公司提供(批号:020718)。
其他试剂为国产分析纯。
基于遗传算法的朴素贝叶斯分类

收稿日期:2006-04-24基金项目:安徽省高等学校自然科学研究重点项目(2006k j027A )作者简介:胡为成(1975-),男,安徽桐城人,讲师,硕士研究生,主要研究方向为数据挖掘、遗传程序设计等;胡学钢,教授,硕士生导师,主要从事数据挖掘、概念格等方向研究。
基于遗传算法的朴素贝叶斯分类胡为成1,2,胡学钢1(1.合肥工业大学计算机学院,安徽合肥230009;2.铜陵学院计算机系,安徽铜陵244000)摘 要:朴素贝叶斯分类器是一种简单而高效的分类器,但是其属性独立性假设限制了对实际数据的应用。
提出一种新的算法,该算法为避免数据预处理时,训练集的噪声及数据规模使属性约简的效果不太理想,并进而影响分类效果,在训练集上通过随机属性选取生成若干属性子集,并以这些子集构建相应的贝叶斯分类器,进而采用遗传算法进行优选。
实验表明,与传统的朴素贝叶斯方法相比,该方法具有更好的分类精度。
关键词:数据挖掘;朴素贝叶斯;遗传算法;属性约简;适应度函数中图分类号:TP301 文献标识码:A 文章编号:1673-629X (2007)01-0030-03N aive B ayes Classif ication B ased on G enetic AlgorithmsHU Wei 2cheng 1,2,HU Xue 2gang 1(1.College of Computer Science ,Hefei Technology University ,Hefei 230009,China ;2.Department of Computer Science ,Tongling College ,Tongling 244000,China )Abstract :Naive Bayes classifier is a simple and effective classification method ,but its attribute independence assumption makes it unable to express the dependence among attributes in the real world.To avoid the direct influence of feature reduction from data pre -processing on the performance of classification ,a new algorithm is introduced in this paper.It makes use of random feature selection to generate several feature subsets from the whole training set ,and constructs Bayesian classifiers with the feature subsets ,and then optimizes the Bayesian classifiers by using genetic pared with the traditional Naive Bayes methods ,the algorithm has better classification preci 2sion.K ey w ords :data mining ;Naive Bayes ;genetic algorithms ;feature reduction ;fitness function0 引 言数据挖掘(Data Mining ,DM )是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含的、事先未知的、潜在有用的信息的处理过程。
亚运会比赛项目英语介绍

亚运会比赛项目英语介绍1. Athletics: Athletics is a popular sport in the Asian Games. Events like the 100m, 200m, and 400m sprints, hurdles, relays, and long-distance runs are held in the athletics category.2. Aquatics: Aquatics events include swimming, diving, and synchronised swimming. Swimmers compete in freestyle, backstroke, butterfly, and breaststroke events, while divers compete in springboard and platform events.3. Archery: Archery is a traditional sport in Asia. The archery events include individual and team competitions, with athletes competing in a series of rounds to determine the winners.4. Badminton: Badminton is a popular sport in Asia, and is one of the most popular events in the Asian Games. Players compete in singles and doubles matches, with the goal of scoring points by hitting the shuttlecock over the net and into the opponent's court.5. Basketball: Basketball is a team sport that is played at the Asian Games. The game is played by two teams of five players, and the aim is to score points by throwing the ball into the opposing team's basket.6. Boxing: Boxing is one of the most popular combat sports in the Asian Games. Athletes compete in various weight categories, with the aim of outscoring their opponent or knocking them out.7. Cycling: Cycling events include road races, track cycling, and mountain biking. Athletes compete in individual and team events, with the aim of crossing the finish line first.8. Football: Football, or soccer, is a team sport played at the Asian Games. The game consists of two teams of eleven players, with the aim of scoring goals by hitting the ball into the opposing team's goal.9. Golf: Golf is a popular sport in Asia, and is played at the Asian Games. Golfers compete in individual and team events, with the aim of completing the course with the lowest number of strokes.10. Gymnastics: Gymnastics events include artistic gymnastics, rhythmic gymnastics, and trampolining. Athletes compete in individual and team events, with the aim of performing a series of moves and routines with precision and style.11. Judo: Judo is a martial art that is practiced at the Asian Games. Athletes aim to throw their opponents to the ground or submit them with a hold or joint lock.12. Karate: Karate is a martial art that is practiced at the Asian Games. Athletes compete in kata (form) and kumite (sparring) events, with the aim of scoring points by striking or kicking their opponent.13. Rowing: Rowing events include single, double, and quadruple sculls, as well as coxed and coxless pairs and fours. Athletes compete in individual and team events, with the aim of crossing the finish line first.14. Shooting: Shooting is a precision sport that is practiced at the Asian Games. Athletes aim to hit targets from a distance, using rifles, pistols, and shotguns.15. Table Tennis: Table tennis is a popular sport in Asia, and is played at the Asian Games. Players compete in singles and doubles matches, with the aim of hitting a small ball over the net and into the opponent's court.16. Taekwondo: Taekwondo is a martial art that is practiced at the Asian Games. Athletes compete in sparring and poomsae (form) events, withthe aim of scoring points by using kicks and punches.17. Tennis: Tennis is a popular sport worldwide, and is played at the Asian Games. Players compete in singles and doubles matches, with the aim of hitting a ball over the net and into the opponent's court.18. Volleyball: Volleyball is a team sport played at the Asian Games. The game consists of two teams of six players, with the aim of hitting a ball over the net and into the opposing team's court.19. Weightlifting: Weightlifting is a strength sport that is practiced at the Asian Games. Athletes compete in various weight categories, with the aim of lifting the heaviest amount of weight possible.20. Wrestling: Wrestling is a combat sport that is practiced at the Asian Games. Athletes compete in various weight categories, with the aim of pinning their opponent's shoulders to the mat or forcing them out of the ring.。
具有比例时滞的细胞神经网络的全局稳定性分析

具有比例时滞的细胞神经网络的全局稳定性分析陈刚;蒋海军;胡成【期刊名称】《新疆大学学报(自然科学版)》【年(卷),期】2014(000)001【摘要】In this paper, we study the global stability of the equilibrium point for the cellular neural networks with pantograph delays under parameters uncertainties. By constructing a suitable Lyapunov functional, two new sufficient conditions are derived for the global asymptotic stability of the system.%研究了具有比例时滞的细胞神经网络的平衡点的全局稳定性。
通过建立李亚普诺夫函数,得到全局渐进稳定的充分条件。
【总页数】8页(P44-51)【作者】陈刚;蒋海军;胡成【作者单位】新疆大学数学与系统科学学院,新疆乌鲁木齐830046;新疆大学数学与系统科学学院,新疆乌鲁木齐830046;新疆大学数学与系统科学学院,新疆乌鲁木齐830046【正文语种】中文【中图分类】O175.13【相关文献】1.具有时滞的细胞神经网络的全局渐近稳定性分析 [J], 王晓梅;钟守铭;郭科2.多时变时滞细胞神经网络的全局渐近稳定性分析 [J], 陈钢;王占山3.具有区间时变时滞的细胞神经网络的时滞相关渐近稳定性分析 [J], 杨海;施大发4.具有无穷时滞的细胞神经网络的全局稳定性分析 [J], 张继业5.基于LMI的时滞细胞神经网络的全局渐近稳定性分析 [J], 刘德友;张建华;关新平;肖晓丹因版权原因,仅展示原文概要,查看原文内容请购买。
变精度粗糙集中属性变化时近似集获取方法
变精度粗糙集中属性变化时近似集获取方法胡成祥【期刊名称】《计算机科学与探索》【年(卷),期】2015(009)011【摘要】In real-life applications, an information system may vary with time. This paper discusses the approaches for dynamically acquiring approximations in variable precision rough set model while adding or deleting an attri-bute respectively in information system. By dividing original equivalent classes in information system, this paper proposes an approach which avoids the re-division of the universe and improves the efficiency of dynamically acquiring approximations. By discussing the relationship between equivalent classes and original approximations, this paper gives the corresponding theorems between updated approximations and original approximations, and proposes the approaches for dynamically acquiring approximations while adding or deleting an attribute in variable precision rough set model respectively. The experimental results verify the validity of the proposed approaches, and the efficiency of the proposed approaches is better than that of the original approaches.%在实际应用中,信息系统随着时间在不断发生变化.分别讨论了信息系统中属性增加和减少时,变精度粗糙集模型中近似集的动态获取方法.通过对信息系统中原有的等价类进行划分,避免了对论域的重新划分,提高了动态获取近似集的效率;通过讨论等价类与原有近似集之间的关系,给出了信息系统动态更新之后的近似集与原来近似集之间的相关定理,提出了在变精度粗糙集模型中属性增减时近似集动态获取方法.实验结果验证了该方法的有效性,而且效率优于原始方法.【总页数】11页(P1398-1408)【作者】胡成祥【作者单位】滁州学院计算机与信息工程学院,安徽滁州 239000【正文语种】中文【中图分类】TP391【相关文献】1.优势关系下属性值粗化细化时近似集分析 [J], 季晓岚;李天瑞;邹维丽;陈红梅2.基于下近似单调的变精度粗糙集属性约简方法 [J], 何俊红3.特性关系粗糙集下属性值粗化细化时近似集增量更新方法研究 [J], 刘伟斌;李天瑞;邹维丽;胡成祥4.连续值属性决策表中的可变精度粗糙集模型及属性约简 [J], 冯林;李天瑞;余志强5.属性值变化时变精度粗糙集模型中近似集动态更新的矩阵方法研究 [J], 王磊;洪志全;万旎因版权原因,仅展示原文概要,查看原文内容请购买。
基于模拟退火遗传算法的贝叶斯分类
基于模拟退火遗传算法的贝叶斯分类
胡为成;程转流;王本年
【期刊名称】《计算机工程》
【年(卷),期】2007(33)9
【摘要】朴素贝叶斯分类器是一种简单而高效的分类器,但是其属性独立性假设限制了对实际数据的应用.文章提出一种新的算法,该算法为避免数据预处理时的属性约简对分类效果的直接影响,在训练集上通过随机属性选取生成若干属性子集,以这些子集构建相应的朴素贝叶斯分类器,采用模拟退火遗传算法进行优选.实验表明,与传统的朴素贝叶斯方法相比,该方法具有更好的性能.
【总页数】3页(P219-221)
【作者】胡为成;程转流;王本年
【作者单位】铜陵学院计算机系,铜陵,244000;铜陵学院计算机系,铜陵,244000;铜陵学院计算机系,铜陵,244000;南京大学计算机学院,南京,240000
【正文语种】中文
【中图分类】TP301
【相关文献】
1.基于遗传算法的朴素贝叶斯分类 [J], 胡为成;胡学钢
2.一种基于遗传算法的加权朴素贝叶斯分类算法 [J], 保玉俊;周莉莉;段鹏
3.基于模拟退火遗传算法的纺纱车间调度系统 [J], 郑小虎;鲍劲松;马清文;周衡;张良山
4.基于改进模拟退火-遗传算法的FMS生产排程优化分析 [J], 陈应飞;彭正超;胡晓
兵;李彦儒
5.基于模拟退火算法改进遗传算法的织物智能配色 [J], 许雪梅
因版权原因,仅展示原文概要,查看原文内容请购买。
基于梅尔频率倒谱系数与翻转梅尔频率倒谱系数的说话人识别方法
基于梅尔频率倒谱系数与翻转梅尔频率倒谱系数的说话人识别方法胡峰松,张璇*【摘要】为提高说话人识别系统的识别率,提出了基于梅尔频率倒谱系数(MFCC)与翻转梅尔频率倒谱系数(IMFCC)为特征参数的特征提取新方法。
该方法利用Fisher准则将MFCC和IMFCC相结合,构造了一种混合特征参数。
实验结果表明,新的混合特征参数与MFCC相比,在纯净语音库及噪声环境中均具有较好的识别性能。
【期刊名称】计算机应用【年(卷),期】2012(032)009【总页数】3【关键词】说话人识别;梅尔频率倒谱系数;翻转梅尔频率倒谱系数;Fisher准则;高斯混合模型0 引言说话人识别[1]是指根据说话人的声音识别说话人身份的技术,其基本的原理是将说话人的测试模型与训练好的模型进行匹配,从而来判断说话人的身份。
随着计算机和信息技术的快速发展,以及对快速有效身份验证的迫切要求,基于生物特征的身份鉴别技术已成为研究热点。
语音信号具有易于获取、传输和储存等特点,因此基于人类语言的说话人识别技术已成为生物认证技术的重要内容之一。
如何从说话人的语音信号中提取表征说话人的基本特征是说话人识别中最重要的问题之一。
目前主流的说话人识别特征参数依然是梅尔频率倒谱系数(MelFrequency Cepstrum Coefficient,MFCC)[2]。
近年来,提出了将MFCC 与其他说话人特征组合后作为说话人识别系统的新方法,文献[3]利用Fisher准则将傅里叶分析和小波分析结合起来构造了一种新的特征参数,提高了系统的识别率;文献[4]将美尔倒谱系数及其差分与线性预测倒谱系数及其差分相结合作为识别的特征参数,并验证了其有效性;文献[5]用支持向量机分别以MFCC与翻转梅尔频率倒谱系数[6](Inverted MFCC,IMFCC)为特征单独执行分类,将其结果按多分类融合方法融合,实验证明其在一定程度上提高了识别率。
本文首先计算出MFCC参数和IMFCC参数,然后用Fisher准则[7-10]构造了一种混合特征参数,最后利用TIMIT和NOIZEUS语音库[11]进行实验的结果证明,这种混合参数有效地提高了说话人识别系统的识别率。
NEURAL NETWORK CALCULATION METHOD AND DEVICE
专利名称:NEURAL NETWORK CALCULATION METHOD AND DEVICE发明人:HU, Hui,胡慧,ZHENG, Chenglin,郑成林申请号:CN2018/101598申请日:20180821公开号:WO2020/037512A1公开日:20200227专利内容由知识产权出版社提供专利附图:摘要:Disclosed are a neural network calculation method and device, which relate to the technical field of communications, and solve the problem in the prior art that when a block cyclic matrix compresses a neural network, if the size of block is very large, thetraining is difficult to converge, and the accuracy is significantly reduced. The specific solution involves: acquiring an input vector of a first network layer to be processed; according to the dimensionality of a reference random vector of a neural network and a random vector of the first network layer to be processed, acquiring a disturbance vector of the first network layer to be processed, the dimensionality of the disturbance vector is equal to the dimensionality of the input vector of the first network layer to be processed; multiplying elements in the input vector of the first network layer to be processed by elements at corresponding positions in the disturbance vector to obtain a corrected input vector of the first network layer to be processed; and based on a calculation model of the corrected input vector and the neural network, obtaining an output vector of the first network layer to be processed.申请人:HUAWEI TECHNOLOGIES CO., LTD.,华为技术有限公司地址:Huawei Administration Building Bantian, Longgang District Shenzhen, Guangdong 518129 CN,中国广东省深圳市龙岗区坂田华为总部办公楼, Guangdong 518129 CN 国籍:CN,CN代理人:BEIJING ZBSD PATENT & TRADEMARK AGENT LTD.,北京中博世达专利商标代理有限公司更多信息请下载全文后查看。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 Introduction Currently, complex dynamical networks are being studied across many fields of science and engineering. In general, a complex network is a large set of interconnected nodes by edges, in which each node is a fundamental unit with detailed contents. In fact, any large-scale and complicated system in nature and societies can be modeled by a complex network, where vertices are the elements of the system, and edges
C. Hu · J. Yu · H. Jiang ( ) · Z. Teng College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, Xinjiang, P.R. China e-mail: jianteractions between them. Examples of complex networks include the Internet, metabolic networks, neural networks, food webs, electrical power grids, social networks, and many others [1, 2]. Over the past few decades, as a typical kind of dynamics, synchronization in complex networks attracts lots of interests in various fields of science and engineering due to the fact that it not only can well explain many natural phenomena observed, but also has many promising potential applications in image processing, secure communication, etc. From mathematical point of view, synchronization can be defined as a process wherein two (or many) dynamical systems adjust a given property of their motion to a common behavior as time goes to infinity, due to coupling or forcing [3]. Up to now, many different regimes of synchronization have been investigated, including cluster synchronization [3–7], phase synchronization [8], complete synchronization [9–12], and generalized synchronization [13–15]. Meanwhile, many effective control approaches have been developed to synchronize complex networks such as impulsive control [16–18], intermittent control [19, 20], adaptive feedback control [21– 25], and so on. On the other hand, a complex network in the real world normally has a large number of nodes, and it is usually hard and even unfeasible to control all nodes so that each follows a desired synchronous trajectory. Recalling the distributed nature of complex networks, it is feasible and reasonable to control them by acting locally on certain nodes, and then through coupling
Cheng Hu · Juan Yu · Haijun Jiang · Zhidong Teng
Received: 30 March 2011 / Accepted: 6 May 2011 / Published online: 1 June 2011 © Springer Science+Business Media B.V. 2011
Nonlinear Dyn (2012) 67:1373–1385 DOI 10.1007/s11071-011-0074-7
O R I G I N A L PA P E R
Pinning synchronization of weighted complex networks with variable delays and adaptive coupling weights
Abstract In this paper, the synchronization for timedelayed complex networks with adaptive coupling weights is studied. A pinning strategy and a local adaptive scheme to determine coupling weights and feedback gains are proposed. It is noted that our control strategies only rely on some local information other than the global information of the whole network. Finally, the developed techniques are applied to two complex networks which are respectively synchronized to an unstable equilibrium point and a chaotic attractor. Keywords Weighted complex network · Adaptive coupling weight · Pinning control · Synchronization
1374
C. Hu et al.
between nodes, achieving synchronization of the entire network, which is known as pinning control. So far, pinning control has been extensively proposed to provide an insight into regulatory mechanisms for controlling networks of coupled dynamical systems. In [26], the local and global synchronization of weighted complex dynamical networks were both considered by applying adaptive control to a fraction of network nodes and the construction of a master stability function and a Lyapunov function. Several new stability criteria of controlling a complex network with digraph topology to a homogeneous trajectory of the uncoupled system were derived in [27] by a local pinning control algorithm. In [28], a general criterion for ensuring network synchronization has been derived by using pinning control, adaptive techniques, and the authors pointed out that nodes with low degrees should be first pinned when the coupling strength is very small. In [29], low-dimensional pinning criteria for general complex dynamical networks were obtained, and it was shown that the nodes whose out-degrees are bigger than their in-degrees of a directed network should be chosen as pinned candidates. Meanwhile, some similar and useful criteria were also derived by different authors such as [30–33]. A common feature of the research works in [26–33] is that the synchronization conditions require calculating eigenvalues of the coupling weight matrix of the network; in other words, the global information of the whole networks is known beforehand, which can be obtained for the networks with small size. However, if the size of the network is very large, the prior knowledge of the network and the calculation of eigenvalues of the coupling weight matrix are both difficult. Therefore, it is natural to raise the following problem: can we pin the coupled complex network to a decoupled state with the prior partial information other than the global knowledge of the network? In fact, in many real-world networks, the coupling weights are not some constant values and cannot be known in advance, but are automatically adjusted and vary in time according to different environmental conditions. A typical example is wireless sensor networks that gather and communicate data to a central base station. Adaptation is also necessary to control networks of robots when the operating conditions change unexpectedly [23]. Motivated by these applications, the adaptive coupling weights in complex networks are more realistic and reasonable.