轨道交通时钟系统解决方案
城市轨道交通信号系统时钟不同步故障分析及优化

城市轨道交通信号系统时钟不同步故障分析及优化黄柒光;梁宇【摘要】The importance of clock synchronization in urban rail transit signal system is elaborated, the design principle of clock synchronization is described. Then, the problems of clock synchronization failure in rail transit signal systems of Hong Kong, Suzhou and other cities are analyzed, the impact of precision deviation that comes from multiple clock sources on the next stratum equipment is discussed. The clock synchronization schemes of SNTP and NTP are compared, the precision deviation of the two synchronization methods is analyzed.On this basis, an optimized clock synchronization scheme of signal system is proposed, which has been verified in experimental environment. The application of the optimized scheme to many cities proves to be successful.%阐述了城市轨道交通中信号系统时钟同步的重要性, 对信号系统中时钟同步方案进行了说明.对香港和苏州等城市出现的信号系统时钟不同步问题进行了分析, 对多个时钟源的精度偏差影响下一层设备时钟同步进行了分析;比较分析了SNTP与NTP时钟同步方案, 并分析了两种同步方式的精度偏差.提出了优化信号系统时钟同步方案, 在试验环境下对优化方案进行了验证, 并将优化的时钟同步方案运用在多个城市, 运用效果良好.【期刊名称】《城市轨道交通研究》【年(卷),期】2018(021)012【总页数】4页(P149-152)【关键词】城市轨道交通;信号系统;时钟不同步;偏差;网络时间协议;简单网络时间协议【作者】黄柒光;梁宇【作者单位】卡斯柯信号有限公司,200070,上海;卡斯柯信号有限公司,200070,上海【正文语种】中文【中图分类】F530.31信号系统是城市轨道交通中非常重要的一个系统,是指挥列车运行的控制设备,以确保列车实现安全防护、自动驾驶、自动跟踪和自动调度,对于保障列车行驶安全和提高城市轨道交通系统运营效率起着关键性作用。
城市轨道交通时钟系统

城市轨道交通时钟系统时钟系统为传输系统、无线通信系统、公务电话系统、专用电话系统、闭路电视监视系统、广播系统、信号系统、SCADA系统、AFC系统、FAS、环境与设备监控系统(building automation system,BAS)及列车自动控制(automatic train control,ATC)等系统提供准确、统一的时间信息,使全线执行统一的定时标准。
它为城市轨道交通行车指挥、列车运行、设备管理提供统一的时间基准,确保通信系统与其他重要控制系统协调同步。
因此,时钟系统具有以下特点。
1. 安全可靠母钟是整个时间系统的中枢部分,其工作稳定性在很大程度上决定了整个系统的可靠性,因此要充分考虑其功能的实现与可靠性等综合因素,对控制中心及车站母钟关键部位采用双重热备份,当主单元发生故障时,能够自动切换到备用单元,实现主备单元之间的自动转换。
正常情况下,母钟的时间基准由控制中心时间服务器传送,当服务器出现故障时,母钟将采用自身的高稳晶振作为时间基准。
中心母钟与二级母钟之间的传输通道在资源允许的情况下,可以采用主备两路来提高系统的整体可靠性。
2. 组网灵活时钟系统采用分布式结构,通过计算机进行集散式控制,这样既便于用户按照自己的需要灵活配置,又可以保证在以后的工程中很方便地对系统进行扩容。
二级母钟可独立于中心母钟,单独控制所属子钟。
当系统的某一部分发生故障时,整个系统仍能正常运行。
3. 维护方便时钟系统的关键部位采用模块单元插接结构及标准元器件,相同规格的设备与部件之间具有可互换性,维护方便。
主单元采用可带电插拔式板卡结构。
4. 抗干扰能力强时钟系统针对城市轨道交通的特点,充分考虑电磁波对时钟系统的干扰,采用了抗电磁、抗电气干扰的设备和电缆,并采取了必要的、有效的防高压和防静电隔离防护措施,既防止了其他系统带来的电磁干扰,又不会对其他系统造成电磁辐射污染。
5.有较大的扩展余地时钟系统在校准手段、中心接口、车站子钟驱动接口等处均留有较大的扩展余地,以备将来线路延伸扩容和升级。
关于地铁时钟系统故障问题分析及建议阐述

关于地铁时钟系统故障问题分析及建议阐述【摘要】本文主要分析了地铁时钟系统内容及构成,其次阐述了地铁时钟系统故障问题及措施,通过相关分析希望进一步提高地铁时钟系统运行效果。
主要从多个角度出发总结地铁时钟系统故障原因,并进行深入研究,降低实际造成的影响之后,保证地铁时钟系统高效运行,为地铁工作人员和乘客提供优质的时钟服务,仅供参考。
【关键词】地铁运行;时钟系统;故障原因;控制中心1地铁时钟系统内容及构成1.1内容地铁高效稳定运行过程中离不开多种系统的支持,时钟系统就是其中非常关键的一种组成因素。
细致分析和总结“时钟系统”的作用,就会发现为地铁控制中心调度人员、车站值班人员、乘客提供正确统一的时间信息,同时也可以为地铁其他系统提供统一的时间信号。
地铁时钟系统充分发挥作用,不仅能够保证让多个系统与时钟系统同步运作,也能保证地铁全线的时间具有统一性。
时钟系统高效稳定运行的状况下,能够向地铁运行过程中的多个系统发送标准时间信号,这样能够为传输、无线通信、广播系统正确运行提供保障。
考虑到时钟系统非常关键,就要在地铁工程建设过程中科学合理地设置时钟系统,既要保证能够准确计时,也要为后续提高地铁运营效率提供保障。
1.2构成两级组网是地铁时钟系统运行过程中的一种重要方式,其中主要是指控制中心、车站/车辆级的两级组网。
以南京地铁S8号线时钟系统为例进行分析,了解到地铁时钟系统主要由一级母钟、二级母钟、子钟、网管设备、传输通道五个非常关键的部分共同组成。
2地铁时钟系统运行期间常见的故障处置方法将地铁安全稳定运行的实际情况作为基础依据进行分析,可知时钟系统是其中极易发生故障的一个系统。
实际研究期间将“网管系统子钟告警问题”作为主要对象,可知这种类型的故障体现在以下三个比较关键的方面。
2.1 子钟全黑,无时间显示地铁时钟系统中的子钟处于“全黑”的状态,一般会将其发生原因确定为是电源方面的问题。
通过细致观察,能精准确定是否存在“单一子钟黑屏”的现象。
城市轨道交通时钟系统的模式

城市轨道交通时钟系统的模式1. 时钟系统的组网模式(1)时钟系统单独组网模式城市轨道交通中的时钟系统一般采用控制中心/车站两级组网方式。
一级母钟接收来自GPS的标准时间信号校正本身晶振,产生稳定的标准时间信号,通过传输系统传给车站、车辆段、停车场等的二级母钟。
二级母钟接收一级母钟标准时间信号,校正本身晶振,产生稳定标准时间信号,驱动所带全部子钟显示统一时间,为乘客和工作人员提供统一时间。
一级母钟在控制中心还为其他系统提供统一的时间信号,使各系统的定时设备与时钟系统同步。
(2)时钟系统与乘客信息系统混合组网模式综合考虑时钟系统和乘客信息系统的显示内容、显示界面形式,可以将时钟系统与乘客信息系统融合,具体模式为:保留各车站的二级母钟,取消站厅、站台内的子钟。
一级母钟在控制中心为乘客信息系统提供时间信号或由车站二级母钟给车站乘客引导设备提供时间信号,由乘客信息系统在各车站站厅、站台的显示终端上以固定窗口的形式显示时钟信息。
两种时钟系统组网模式均能满足城市轨道交通运营的需求,第一种组网模式中各系统独立运行互不影响,第二种组网模式利用乘客信息系统显示时间信息完成子钟显示,显示屏幕不具备自身校时的功能,当时钟系统故障或线路故障时,屏幕上显示不了时钟信息,但具有经济、合理、集成化程度高的特点。
2. 时钟系统的运作模式(1)中央控制运作模式系统在正常工作状态下,采用中央控制运作模式。
在中央控制运作模式下,中心母钟可正常接收GPS信号,并将此信号转换成标准时间信号传送给二级母钟及其他需要接收时间信号的系统,从而使各终端用户的时间与GPS的时间保持同步。
当一级时钟不能接收 GPS信号时,一级母钟将会通过自身的高稳晶振提供时间信号,此时各终端用户仍然接收来自一级母钟的时间信号,一般一级母钟自身晶振的精度可达到10-6,所提供的时间仍能满足运营要求。
(2)车站降级控制运作模式当一级母钟因故不能向二级母钟传送时间信号时,系统转入车站降级控制运作模式,二级母钟通过自身的高稳晶振为分布于各站点的子钟提供时间信号,但不向其他系统提供时间信号。
时钟系统方案

时钟系统方案第1篇时钟系统方案一、方案背景随着信息化建设的不断深入,时钟系统已成为各类业务系统中不可或缺的组成部分。
为确保业务数据的准确性和系统运行的稳定性,需建立一套合法合规的时钟系统方案,以实现各系统间的时间同步和统一管理。
二、方案目标1. 确保时钟系统合法合规,遵循国家相关法律法规和行业标准。
2. 实现各业务系统间的时间同步,保证数据的一致性和准确性。
3. 提高时钟系统的可靠性和稳定性,降低系统故障风险。
4. 方便时钟系统的管理和维护,降低运维成本。
三、方案设计1. 时钟源选择采用我国国家标准时间源(如国家授时中心),确保时钟源的准确性和可靠性。
2. 时钟同步协议采用NTP(网络时间协议)或PTP(精确时间协议)等国际通用的时间同步协议,实现各业务系统间的时间同步。
3. 系统架构采用分布式架构,分为时钟源、时钟服务器、时钟客户端三级,确保时钟系统的可扩展性和高可用性。
4. 时钟服务器时钟服务器负责接收时钟源的时间信息,并进行本地时间同步。
建议采用双机热备的配置,提高系统可靠性。
5. 时钟客户端时钟客户端部署在各业务系统服务器上,定期从时钟服务器获取时间信息,实现业务系统的时间同步。
6. 网络设计采用专用网络或虚拟专用网络(VPN)实现时钟系统的数据传输,确保数据安全和传输效率。
7. 安全防护针对时钟系统进行安全防护,包括防火墙、入侵检测、数据加密等,确保系统安全。
四、实施步骤1. 需求分析调研现有业务系统对时钟系统的需求,明确时钟同步的范围、精度等要求。
2. 方案设计根据需求分析,设计时钟系统方案,包括硬件设备选型、软件配置、网络架构等。
3. 设备采购与安装采购符合国家标准的时钟设备,进行安装、调试,确保设备正常运行。
4. 系统部署按设计方案部署时钟系统,包括时钟源、时钟服务器、时钟客户端等。
5. 测试验证对时钟系统进行功能测试、性能测试、安全测试等,确保系统满足业务需求。
6. 培训与交付对运维人员进行时钟系统的培训,确保其具备管理和维护能力。
城市轨道交通时钟系统

时钟系统时钟系统是城市轨道交通运行的重要组成部分之一,其主要作用是为城轨工作人员和乘客提供统一的标准时间,并为其他各相关系统提供统一的标准时间信号,使各系统的定时设备与本系统同步,从而实现城轨全线统一的时间标准。
提供时间信息的时钟系统分为一级母钟系统与二级母钟系统,一级母钟系统安装在控制中心,二级母钟系统安装在各车站和车辆段,用以驱动分布在站(段)内的子钟显示正确的时间。
城轨时钟系统所采用的标准时钟设备,在输出时间信号的同时,亦输出为通信设备提供的时钟同步信号,使各通信节点设备能同步运行。
亦可另行配置通信综合定时供给系统(BITS),单独提供时钟同步信号。
如上所述,城轨同步系统分为两类:一类是基于协调世界时(UTC)组建的时间同步系统;另一类是用于数字通信设备的时钟同步系统(或数字同步系统)。
时间同步系统定时(例如每隔1s或1min)输出标准时间(年、月、日、时、分、秒、毫秒)信号;而时钟同步系统则输出高稳定度、连续的正弦波或脉冲信号。
第一节时钟系统技术基础一、时间的概念一般来说,任何一个周期运动只要具有下列条件,都可以成为确定时间的基准。
·运动是连续的、周期的。
·运动的周期具有充分的稳定性。
·运动的周期必须具有复现性,即要求在任何地点与时间,都可以通过观察和实验复现这种周期运动。
最常用的时间系统有三大类:世界时、原子时与力学时。
力学时系统通常在天文学中使用,在这里不作介绍。
1.世界时系统世界时系统是以地球自转运动为基准的时问系统。
由于观察地球自转时所选择空间参考点的不同,世界时系统又有几种形式:恒星时、平太阳时和世界时。
以平子夜为零时起算的格林威治平太阳时称为世界时。
平太阳时是地方时,地球上各地点的平太阳时不同。
为了使用方便,将地球按子午线划分为24个时区,每个时区以中央子午线的平太阳时为该区的区时。
零时区的平太阳时即为世界时。
由于地球自转轴在地球内部的位置是不固定的(极移),而且地球自转速度是不均匀的,它不仅包含有长期减缓的趋势,还包含一些短周期的变化和季节性的变化。
城市轨道交通视频监控系统时钟出现不同步故障及优化分析

城市轨道交通视频监控系统时钟出现不同步故障及优化分析摘要:轨道交通中的视频监控系统是为城市轨道交通提供指示、保障轨道交通平稳正常运营的关键系统构成。
目前,为缓解我国城市地面交通压力,轨道交通的建设规模也在不断扩大,而视频监控系统的运作能够使地下轨道交通车辆有条不紊地运行,一旦视频监控系统在运行过程中出现时间不同步的故障问题,就会影响到轨道交通车辆的指挥安全性。
因此,进一步探究解决时间不同步故障问题的相关对策,更成了保障轨道交通正常运行的关键切入点。
本文主要是以我国某市的轨道交通运行为例,分析了轨道交通视频监控系统时钟不同步的故障现象,并且就解决该故障问题的有效对策进行了探讨,希望能够为确保轨道交通视频监控系统的正常运行提供参考意见。
关键词:轨道交通;视频监控系统;时间不同步故障;解决对策视频监控系统本身就是城市轨道交通中最为关键的构成部分,视频监控系统的运行具有指挥列车运行、提示列车安全驾驶、实现对列车自动跟踪和调度等多方面的作用价值,是提升城市轨道交通运营效率和行车规划安全性的关键点。
而考虑到视频监控系统是由自动列车控制系统、计算机通信系统、运营维护支持系统、列车自动保护系统、自动监控系统等多个子系统相互构成的,如果视频监控系统中的时钟同步出现异常问题,就不利于多个子系统之间相互配合运转,更不能有效地维护城市轨道交通运行的整体效率和可靠性。
甚至,时钟不同步还会导致列车运营或停车点的准确率降低导致开关门的时间点过短等安全问题。
因此,进一步针对轨道交通视频监控系统的时间不同步故障问题进行分析并找到解决故障问题的有效对策具有现实意义。
一、轨道交通视频监控系统时间不同步故障问题的实践案例(一)故障问题的概述我国某地铁交通线路由于视频监控系统的外部时钟跳变,导致视频监控系统中子系统的衔接点出现了变化,随之列车上的时钟也出现了时间不同步的问题,而为了确保列车的运行安全性,安全保护系统识别之后,针对自动运行系统进行了限速,甚至其中部分车站的信息显示系统中,也没有对应地列出列车到站的相关信息和指示。
城市轨道交通时钟系统控制中心设备及其功能

城市轨道交通时钟系统控制中心设备及其功能1. 中心母钟中心母钟作为整个时钟系统的基础主时钟,能够接收来自标准时间信号接收单元的信号,进行时间的校准,避免产生累计误差,同时,中心一级母钟提供严格同步的时钟码,能够定时将校准后的时标信号通过接口分配给各车站及车辆段的二级母钟以及其他需要标准时间的系统,作为各系统的时钟同步信号,使其按统一的时间标准运行。
中心母钟包括主备用高稳定度工作时钟模块、信号切换模块等。
工作时钟模块以高稳定度、恒温晶振为本地频率源,接受标准时间信号的同步校准。
当高稳晶振因老化等原因发生频率偏移时,可利用全球卫星定位系统模块和管理维护终端监测软件对其进行调校修正。
信号切换模块负责对主备两路高稳定度时钟信号进行监测判断和输出切换,通常选择主路信号。
当主路信号丢失时,会自动切换到各路信号;当主路信号恢复正常时,又会切回主路。
2. 中心接口单元中心信号分配器接收中心母钟产生的时钟码信号,进行分配放大,产生多路标准接口信号后分配输出,提供给城市轨道交通各相关系统时钟同步信号。
除提供各系统的输出接口外,还预留备用的输出接口。
同时,中心传输接口接收二级母钟回送的各站时钟的运行状态信息,经单元面板简单显示后,送往中心的监控计算机,由监控终端进行点对点监控。
中心接口单元还接收中心管理维护终端的控制命令,并与时间信号同时下传至各车站及车辆段二级母钟。
3. 标准时间信号接收系统标准时间信号接收系统为中心母钟系统提供高精度的时间基准,以实现时间系统的无累积误差运行。
标准时间的引入方式有国家授时中心BPL/BPM、卫星GPS/GLONAS、电视CCTV 16H、广播时码同步等。
一般城市轨道交通时钟系统可采用GPS和CCTV接收方式。
4. 监控系统监控系统通过数据传输通道可以实时监测全线时钟系统主要设备的运行状态,可以实现故障管理、性能管理、配置管理及安全管理等集中维护功能,同时设声光告警指示器,对本系统的任何故障告警做同步传输,指示故障部位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轨道交通时钟系统解决方案
轨道交通时钟系统解决方案
地铁通信系统一般包括:
时钟系统是轨道交通重要的组成部分之一,而其在地铁站的主要作用是为上班族、来往的游客工作人员提供准确的时间信息,同时时钟系统要为其他监控系统、控制系统等弱电子系统提供统一的时钟信号,使各系统的定时集中同步,在整个地铁系统中使用相同的定时标准。
站厅及站台位置的时钟可以为旅客提供准确的时间信息;各车站办公室内及其它停车场内的时钟可以为工作人员提供准确的时间信息;向其它地铁通信子系统提供的时钟信息为地铁运行提供了标准的时间,保证了轻轨系统运行的准时,安全。
时钟子系统能够向地铁全部通信子系统提供准确的时钟信号。
时钟信号以卫星自动定位系统所发的格林威治标准世界时间为准辅以铷原子钟或石英钟。
时钟系统的控制中心向各分站或车场二级母钟发送时钟信号,再由二级母钟向其对应的子钟发送时钟信号;同时每站的各路时钟信号均需上传至时钟系统的监控中心,使之可以完成对全路各站所有时钟工作状态的监测和控制,并可在相应的管理客户机上完成各种需要的管理及配置功能.
设计区域:换乘大厅、进出口、监控室、控制室控制中心调度大厅和各车站的站厅、站台、车站控制室、公安安全室、票务室、变电所
控制室及其它与行车有关的处所,并在车辆段/停车场信号楼运转室、值班员室、停车列检库、联合检修库等有关地点设置子钟。
相关产品。