动车组车体铝合金焊接要求

合集下载

铝合金动车车体焊接质量控制

铝合金动车车体焊接质量控制

铝合金动车车体焊接质量控制摘要:随着科学技术的不断进步,在各个行业中,焊接工艺越发显得重要了。

焊接的质量会直接影响到机械的质量和安全,尤其是在铝合金动车车体的焊接工作上更要做到完美,而能最大程度上保证焊接的质量就需要进行焊接的质量控制。

本文介绍了铝合金动车车体焊接时存在问题的原因及危害,并对这些问题进行分析和研究,并找出来一些解决问题的方法和焊接工艺,以此来保证铝合金动车车体焊接的质量控制。

关键词:铝合金动车;车体焊接;质量控制随着经济的发展,道路成为了经济发展的重要限制因素,人们日常的生活和工作也都离不开各种交通工具,而动车组这样的快捷通行就显得越来越重要。

为了保证动车组的质量,现如今采取了铝合金的动车车体设计,在动车强度上、抗疲劳性上都有很大的提升,但是在动车车体的焊接处还是需要重视起来,这关乎着整个动车的安全,因此对铝合金动车车体焊接质量控制就是必不可少的。

1 铝合金动车车体焊接问题的原因及危害现如今,在动车的设计和制造时,一直采用的是铝合金的材质,铝合金是由多种金属熔炼而成的混合体,它拥有着各种金属的属性,同时还发挥了各种各样的优点,且在车体的焊接上也比其他金属更易加固和焊接[1]。

当然,铝合金金属也有他自身的限制,铝合金和一般的合金相同,都拥有着较大的传导系数,这就导致在对铝合金动车车体进行焊接工作时,焊接产生的巨大热量都会快速的传导到动车车体的各个位置,很容易烧毁发动机、导线、计算机或者是一些精密的仪器。

除此之外,铝合金动车车体的焊接部分和其他没有进行焊接的部分颜色极其相似,很容易在焊接过程中发生不能区分的问题,从而导致多重焊接或者是在该焊接的部分没有正确的焊接完善,这也严重影响了铝合金动车车体的质量和安全。

下图为铝合金动车车体焊接的示意图。

2 铝合金动车车体焊接质量控制存在的问题2.1 铝合金动车车体焊接质量内部问题铝合金动车车体焊接质量问题的大部分问题就是内部问题,这种问题一般情况下都是出现在铝合金动车车体焊接的内部。

铝合金车体焊接技术特点及焊接注意事项

铝合金车体焊接技术特点及焊接注意事项

铝合金车体焊接技术特点及焊接注意事项(1)铝合金与氧的亲和力很强在空气中极易与氧结合生成致密而结实的氧化铝薄膜,厚度约为0.1μm,熔点高达2050℃,远远超过铝及铝合金的熔点,而且密度很大,约为铝的1.4倍。

在焊接过程中,氧化铝薄膜会阻碍金属之间的良好结合,并易造成夹渣。

氧化膜还会吸附水分,焊接时会促使焊缝形成气孔。

这些缺陷,都会降低焊接接头的性能。

为了保证焊接质量,焊前必须严格清理焊件表面的氧化物,并防止在焊接过程中再次氧化,对熔化金属和处于高温下的金属进行有效地防护,这是铝及铝合金焊接的一个重要特点。

具体的保护措施是:焊前使用机械打磨或化学方法D40清除工件坡口及周围部分的氧化物;焊接过程中要采用合格的保护气体进行保护(例如99.99%Ar)。

(2) 铝合金的导热率和比热大铝及铝合金的导热系数、比热容都很大,在焊接过程中大量的热能被迅速传导到集体金属内部,为了获得高质量的焊接接头,必须采用能量集中、功率大的热源,8mm及以上厚板需采用预热等工艺措施,才能够实现熔焊过程。

(3)铝合金车体的线膨胀系数大铝及铝合金的线膨胀系数约为钢的2倍,凝固时体积收缩率达6.5%~6.6%,因此易产生焊接变形。

防止变形的有效措施是除了选择合理的工艺参数和焊接顺序外,采用适宜的焊接工装也是非常重要的,焊接薄板时尤其如此。

另外,某些铝及铝合金焊接时,在焊缝金属中形成结晶裂纹的倾向性和在热影响区形成液化裂纹的倾向性均较大,往往由于过大的内应力而在脆性温度区间内产生热裂纹,这是铝合金,尤其是高强度铝合金焊接时最常见的严重缺陷之一。

在实际焊接现场中防止这类裂纹的措施主要是改进接头设计,选择合理的焊接工艺参数和焊接顺序,采用适应母材特点的焊接填充材料等。

(4)铝合金部件焊接时容易形成气孔焊接接头中的气孔是铝及铝合金焊接时极易产生的缺陷,尤其是纯铝和防锈铝的焊接。

氢是铝及铝合金焊接时产生气孔的主要原因,这已经为实践所证明。

高速动车组用铝合金特种焊接技术

高速动车组用铝合金特种焊接技术

高速动车组用铝合金特种焊接技术摘要:铝合金是制造动车组车体的主要材料,其焊接主要以传统的熔化极惰性气体保护焊为主,随着技术的发展,搅拌摩擦焊、激光焊、激光-MIG复合焊等特种焊接技术也在轨道车辆铝合金车体生产制造过程中不断发展使用。

本文简要介绍特种焊接技术在高速动车组铝合金车体制造过程中的应用及展望。

关键词:动车组;铝合金;特种焊接;应用;发展1 前言随着轨道交通装备的不断发展,高速动车组已成为国内客运的主型轨道交通车辆。

近些年来高速动车轻量化生产制造是铁道运输发展的重要方向,经过大量的理论研究与试验证明,目前采用铝合金材料是实现车辆轻量化的最有效途径[1],随着列车速度的不断提高,对列车减轻自重、提高接头强度及结构安全性的要求越来越高[2]。

目前高速动车组铝合金车体广泛使用中空大截面挤压铝型材结构,这种结构强度高且重量轻,具有其他材料不可比拟的优势。

高速动车组的车身采用全铝合金设计,其焊接以MIG焊为主,车身结构复杂,而铝合金焊接焊接过程中容易出现裂纹、气孔等焊接缺陷,焊接变形大,且工艺复杂,所以成为车辆制造中的工艺难点。

随着特种焊接技术的发展,搅拌摩擦焊、激光焊、激光-MIG复合焊接作为高能束流焊接方法以其优越的性能和特点在轨道交通行业得到广泛的应用。

2特种焊接技术在轨道交通车辆铝合金车体制造中的应用2.1 搅拌摩擦焊接技术搅拌摩擦焊(FSW)是英国焊接研究所(TWI)在1991年作为固相连接技术发明的一种焊接技术。

搅拌摩擦焊(FSW)属于摩擦焊,是一种固态焊接技术,在FSW过程中,高速旋转的搅拌头和工件摩擦产生的热量使被焊材料局部塑化,在旋转搅拌头的临近区域内,形成了一层充分的塑化金属层,当搅拌头沿着焊接界面移动时,塑化材料在搅拌头的转动摩擦力作用下由搅拌头的前部移向后部,搅拌头的前段不断形成热塑性金属并出现金属的挤压流动现象,进而填补搅拌头后部的空腔,并在搅拌头的挤压下形成致密的固相焊缝。

铝合金通用焊接工艺规程

铝合金通用焊接工艺规程

铝合金通用焊接工艺规程1使用范围及目的范围:本规范是适用于地铁铝合金部件焊接全过程的通用工艺要求。

目的:与焊接相关的作业人员按标准规范作业,同时也使焊接过程检查更具可操作性。

2焊前准备的要求2.1在焊接作业前首先必须根据图纸检查来料或可见的重要尺寸、形位公差和焊接质量,来料不合格不能进行焊接作业。

2.2在焊接作业前,必须将残留在产品表面和型腔内的灰尘、飞溅、毛刺、切削液、铝屑及其它杂物清理干净。

2.3用棉布将来料或工件上的灰尘和脏物擦干净,如果工件上有油污,使用清洗液清理干净。

2.4使用风动不锈钢丝轮将焊缝区域内的氧化膜打磨干净,以打磨处呈白亮色为标准,打磨区域为焊缝两侧至少25mm 以上。

2.5焊前确认待焊焊缝区域无打磨时断掉的钢丝等杂物。

2.6钢焊和铝焊的打磨、清理工具禁止混用。

2.7原则上工件打磨后在48小时内没有进行焊接,酸洗部件在72小时内没有进行焊接,则焊前必须重新打磨焊接区域。

2.8为保证焊丝的质量,焊丝原则上用完后再到焊丝房领用,对于晚班需换焊丝的,能够在当天白班下班前领用,制止现场长工夫(24小时以上)存放焊丝。

2.9在焊接功课前,必须检查焊接装备和工装处于正常工作状态。

焊前应检查焊机喷嘴的实际气流量(允差为+3L/min),自动焊焊丝在8圈以下,手工焊焊丝在5圈以上,不然需要调换气体或焊丝;检查导电嘴是否拧紧,喷嘴是否需要清算。

导电嘴不克不及只简单的采用手动拧紧,必须采用尖嘴钳拧紧。

检查工装状态是否完好,若工装有损坏,应立刻告诉工装管理员进行核查,并组织维修,制止在工装异常状态下进行焊接操作。

2.10焊接前必须检查环境的温度和湿度。

功课区要求温度在5℃以上,MIG焊湿度小于65%,TIG焊湿度小于70%。

环境不符合要求,不克不及进行焊接功课。

2.11焊接过程中不允许有穿堂风。

因此,在焊接作业前必须关闭台位附近的通道门。

当焊接过程中,如果有人打开台位相近处的大门,则要立即停止施焊。

高速动车组铝合金车体长大型材关键焊接技术研究

高速动车组铝合金车体长大型材关键焊接技术研究

区域治理调查与发现高速动车组铝合金车体长大型材关键焊接技术研究刘任民青岛四方庞巴迪铁路运输设备有限公司,山东 青岛 266111摘要:基于对高速动车组铝合金车体长大型材关键焊接技术的分析研究,首先要明确高速动车组车体铝型材焊接结构,并在此基础上,介绍了自动焊接技术的工艺创新。

然后与其相结合,对长大铝型材的关键焊接技术进行分析,简要说明单面插接结构型材的焊接技术与弧度型材的焊接技术这两点内容,希望能够为相关人士提供帮助。

关键词:高速动车;铝合金车体;关键焊接技术作为轨道车辆铝合金车体制造的关键性构成部分之一,焊接技术能够对高速动车日后运行效率与质量产生决定性的影响。

众所周知,高速动车组在实际运行的时候,对安全性、稳定性以及舒适性有着极高的要求,所以在车体结构设计的过程中,通常会采取大量新型焊接技术,如此一来一方面要求车体关键焊接技术达到相关标准,另一方面车体焊接过程控制质量也必须要达到一个全新的高度。

基于此,相关人员必须要认识到关键焊接技术对高速动车铝合金车体制造的重要作用,才能够使车体制造质量得到真正保证。

一、高速动车组车体铝型材焊接结构铝合金的主要特征为热膨胀系数大、密度小以及热传导率高等,所以在实际焊接的时候,经常会出现明显变形,同时焊接铝合金热量传导速度高与工件质量轻,也是其被广泛应用于制订铝型材焊接工艺的重要原因。

绝大部分情况下,高速动车体由长大型材组焊构成各个部位,此时部分部件所使用的铝型材又具备各不相同的特点,动车地板、侧墙板以及车顶所采用的型材均不同。

基于此,相关人员需要充分了解各种型材的结构特点,才能够在制造动车车体时进一步保证焊接工艺的合理性,对焊接变形问题有效控制,确保焊接工作的质量,最终达成提高焊接效率的目标。

二、基于自动焊接技术的工艺创新1长大对接型材单焊枪高速动车在制造车体地板与平顶板的过程中,全对接型材结构是二者一致的。

虽然说就目前情况来看,世界上对于双焊枪焊接技术的使用更加普遍,双焊枪也具备提升焊接效率并且有效控制焊接变形的重要作用,但这种焊接技术也存在较大弊端,最主要的就是焊接操作难度较大,如此就在一定程度上要求焊接设备管理能力增强[1]。

动车组铝合金车体底架焊接变形控制

动车组铝合金车体底架焊接变形控制

动车组铝合金车体底架焊接变形控制摘要:随着经济的发展,高速列车日益成为人们交通工具,其运行稳定性和安全性直接影响着乘坐人员安全。

铝合金车体作为高速列车载体,其生产质量直接影响到车体运行安全,所以在生产铝合金车体时,要严格控制关键部件质量。

关键词:动车组;铝合金车体;底架焊接;变形控制铝合金车体作为高速列车重要部分,其质量直接关系到列车运行质量及安全,生产时要给予足够重视及严重管控,以确保列车运行质量及安全。

尤其是动车组在高速列车运行中始终处于高速运作状态,在任何时候都要承受来自车钩、转向架等的巨大外部冲击,对焊接部件质量要求高,需从根本上重视动车组底架生产,加强底架焊接变形控制,严格底架生产质量管理,为列车安全运行提供有效保障。

一、动车组铝合金车体底架结构及其焊接变形原因在列车动车组构架中,铝合金车体底架一般用框架设计结构,由枕梁、端中梁、横梁、边梁、地板等部件组成。

其中,部件构造材料为热处理增强铝合金,具有较强抗压及坚固指数,然而,铝合金熔点低,导热与热膨胀系数大,在生产尤其是焊接时,由于温度过高,易造成焊接变形,严重影响底架结构稳定性。

因此,需严格控制焊接变形,确保车体底架结构稳定性。

在动车组铝合金底架生产中,一般需经大量操作工序,如端部底架预组、底架框架组焊、底架框架部件安装、地板铺装等,生产过程繁琐,尤其是框架底部焊接有大量接头位置,需大量焊接操作且操作程序难度大。

其中,在控制底部半宽尺寸方面,由于涉及多个角度及薄厚板焊接工艺,焊接类型复杂多变,是车体底架焊接变形重点防范对象。

二、动车组铝合金车体底架焊接变形控制措施1、底架宽度尺寸控制。

某动车组宽度尺寸变化是由于地板间正反4条4V连接焊缝和地板与边梁搭接a5角焊缝焊接造成,最严重的横向收缩变形是中间正反四条4V焊缝。

在产品生产中,两侧边梁压卡从一位端到二位端每1500mm有一个约束,压卡均匀,所以预制宽度方向的工艺放量为3~4mm,然而,由于需在底架地板端焊接端部缓冲梁,端部角中部区域工艺放量增加了2mm,以抵消端部缓冲梁焊接中宽度收缩。

铝合金车体氩弧焊焊接工艺

铝合金车体氩弧焊焊接工艺

铝合金车体氩弧焊焊接工艺0 前言铝合金车体具有重量轻、耐腐蚀、外观平整度好和易于制造复杂美观曲面车体的优点,因而受到世界各城市交通公司和铁道运输部门的欢迎,在世界范围内,生产制造铝合金车体是铁路运输事业和城市轨道车辆发展的必然趋势。

1 铝合金的焊接特点铝合金材料具有活性强、热导率和比热容大(均约为碳素钢和低合金钢的两倍多)、线膨胀系数大、收缩率高等特点,决定了铝合金焊接有其自身的特点。

1)极易氧化。

铝与氧的亲和力极大,常温下极易氧化,在母材表面生成的氧化铝(Al2O3)熔点高、组织致密、非常稳定。

焊接时该氧化膜阻碍母材的熔化和熔合,易出现未焊透、未融合缺陷;氧化膜的比重大,不易浮出表面,易生成夹渣缺欠;表面氧化膜(特别是有MgO存在的不很致密的氧化膜)可吸附大量的水分而成为焊缝气孔形成的重要原因。

2)热导率和比热容大,导热快尽管铝合金的熔点远比钢低,但是在焊接过程中,大量的热量被迅速传导到基体金属内部,消耗于熔化金属熔池外,这种无用能量的消耗要比钢的焊接更为显著。

为了获得高质量的焊接接头,应当尽量采用能量集中、功率大的热源,有时也可采用预热等工艺措施。

3)线膨胀系数大,收缩率高铝合金的线膨胀系数约为钢的两倍,凝固时体积收缩率达6.5%--6.6%,焊接时焊件的变形和应力较大,熔池凝固时容易产生缩孔、缩松、热裂纹及较高的内应力。

生产中可采用调整焊丝成分、选择合理的工艺参数和焊接顺序、适宜的焊接工装等措施防止热裂纹的产生。

4)氢的溶解度存在突变铝及铝合金在液态能溶解大量的氢,固态几乎不溶解氢。

在焊接熔池凝固和快速冷却的过程中,氢来不及溢出,极易形成氢气孔。

氢是铝合金焊接时产生气孔的主要原因。

弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中氢气的重要来源。

因此,对氢的来源要严格控制,以防止气孔的形成。

5) 光、热的反射能力较强铝合金对光、热的放射能力较强,固、液转态时,没有明显的色泽变化,焊接操作时判断较难。

铝合金通用焊接工艺规程

铝合金通用焊接工艺规程

铝合金通用焊接工艺规程1 使用范围及目的范围:本规范是适用于地铁铝合金部件焊接全过程的通用工艺要求。

目的:与焊接相关的作业人员按标准规范作业,同时也使焊接过程检查更具可操作性。

2 焊前准备的要求在焊接作业前首先必须根据图纸检查来料或可见的重要尺寸、形位公差和焊接质量,来料不合格不能进行焊接作业。

在焊接作业前,必须将残留在产品表面和型腔内的灰尘、飞溅、毛刺、切削液、铝屑及其它杂物清理干净。

用棉布将来料或工件上的灰尘和脏物擦干净,如果工件上有油污,使用清洗液清理干净。

使用风动不锈钢丝轮将焊缝区域内的氧化膜打磨干净,以打磨处呈白亮色为标准,打磨区域为焊缝两侧至少25mm以上。

焊前确认待焊焊缝区域无打磨时断掉的钢丝等杂物。

钢焊和铝焊的打磨、清理工具禁止混用。

原则上工件打磨后在48小时内没有进行焊接,酸洗部件在72小时内没有进行焊接,则焊前必须重新打磨焊接区域。

为保证焊丝的质量,焊丝原则上用完后再到焊丝房领用,对于晚班需换焊丝的,可以在当天白班下班前领用,禁止现场长时间(24小时以上)存放焊丝。

在焊接作业前,必须检查焊接设备和工装处于正常工作状态。

焊前应检查焊机喷嘴的实际气流量(允差为+3L/min),自动焊焊丝在8圈以下,手工焊焊丝在5圈以上,否则需要更换气体或焊丝;检查导电嘴是否拧紧,喷嘴是否需要清理。

导电嘴不能只简单的采用手动拧紧,必须采用尖嘴钳拧紧。

检查工装状态是否完好,若工装有损坏,应立即通知工装管理员进行核查,并组织维修,禁止在工装异常状态下进行焊接操作。

焊接前必须检查环境的温度和湿度。

作业区要求温度在5℃以上,MIG焊湿度小于65%,TIG焊湿度小于70%。

环境不符合要求,不能进行焊接作业。

焊接过程中不允许有穿堂风。

因此,在焊接作业前必须关闭台位附近的通道门。

当焊接过程中,如果有人打开台位相近处的大门,则要立即停止施焊。

如果台位附近的空调风影响到焊接作业,也必须将该处空调的排风口关闭,才能进行焊接作业。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动车组车体铝合金焊接要求
1. 简介
动车组车体铝合金焊接是动车组制造过程中的重要环节,对车体的强度和稳定性有着至关重要的影响。

本文将介绍动车组车体铝合金焊接的要求和技术细节。

2. 车体铝合金选择
动车组车体一般采用高强度铝合金,以确保车体的轻量化和强度要求。

常用的铝合金材料有6061、6063、5083等,这些材料具有良好的焊接性能和强度。

3. 焊接方法选择
动车组车体铝合金焊接可以采用多种方法,常用的有TIG焊接和MIG焊接。

TIG焊
接适用于较薄的铝合金板材,焊缝质量高,但速度较慢。

MIG焊接适用于较厚的铝
合金板材,焊接速度快,但焊缝质量稍差。

4. 焊接参数控制
在动车组车体铝合金焊接过程中,需要控制好焊接参数,以保证焊缝的质量和强度。

主要的焊接参数包括焊接电流、焊接电压、焊接速度等。

焊接参数的选择需要根据具体的板厚和焊接位置来确定。

5. 焊接工艺控制
动车组车体铝合金焊接需要严格控制焊接工艺,以确保焊缝的质量和强度。

焊接工艺包括预热、焊接顺序、焊接速度等。

预热可以提高焊接区域的温度,减少应力和变形。

焊接顺序需要根据具体的焊缝形状和结构来确定,以保证焊缝的均匀性和强度。

6. 焊接检测和评估
动车组车体铝合金焊接完成后,需要进行焊缝的检测和评估,以确保焊接质量符合要求。

常用的检测方法包括X射线检测、超声波检测和可视检测等。

通过这些检测方法可以检测焊缝中的缺陷和裂纹,并评估焊接质量。

7. 焊接质量控制
为了保证动车组车体铝合金焊接的质量,需要进行焊接质量控制。

焊接质量控制包括焊工的培训和认证、焊接材料的选择和质量检验、焊接设备的维护和校准等。

通过这些控制措施可以保证焊接质量的稳定性和可靠性。

8. 焊接后处理
动车组车体铝合金焊接完成后,还需要进行焊接后处理,以提高焊接区域的耐腐蚀性和表面质量。

常用的焊接后处理方法包括除渣、打磨、抛光和阳极氧化等。

这些处理方法可以使焊接区域的表面光滑、均匀,并提高其耐腐蚀性能。

9. 结论
动车组车体铝合金焊接是一个复杂而关键的工艺过程,需要严格遵循焊接要求和技术细节。

通过选择合适的焊接材料、控制好焊接参数和工艺,以及进行焊接质量控制和后处理,可以确保动车组车体铝合金焊接的质量和可靠性。

在动车组制造过程中,应重视动车组车体铝合金焊接的工艺控制和质量保证,以提高动车组的安全性和稳定性。

相关文档
最新文档