9.2空间几何体的表面积与体积(教师版)

合集下载

空间几何体的表面积与体积教案

空间几何体的表面积与体积教案

空间几何体的表面积与体积教案一、教学目标:1. 让学生掌握空间几何体的表面积和体积的计算公式。

2. 培养学生运用空间几何知识解决实际问题的能力。

3. 提高学生的空间想象能力和逻辑思维能力。

二、教学内容:1. 空间几何体的表面积和体积的定义。

2. 常见空间几何体的表面积和体积计算公式。

3. 空间几何体表面积和体积的求解方法。

4. 空间几何体表面积和体积在实际问题中的应用。

三、教学重点与难点:1. 教学重点:空间几何体的表面积和体积的计算公式,求解方法及实际应用。

2. 教学难点:空间几何体表面积和体积的求解方法,实际问题的解决。

四、教学方法:1. 采用讲解法,引导学生掌握空间几何体的表面积和体积的计算公式。

2. 采用案例分析法,让学生通过实际问题,运用空间几何知识解决问题。

3. 采用讨论法,激发学生思考,提高学生的空间想象能力和逻辑思维能力。

五、教学过程:1. 导入:通过展示生活中常见空间几何体,引导学生思考空间几何体的表面积和体积的计算方法。

2. 新课导入:讲解空间几何体的表面积和体积的定义及计算公式。

3. 案例分析:分析实际问题,运用空间几何体的表面积和体积计算公式解决问4. 课堂练习:让学生独立完成练习题,巩固所学知识。

6. 课后作业:布置作业,让学生进一步巩固空间几何体的表面积和体积的计算方法。

7. 课后反思:教师反思教学过程,针对学生的掌握情况,调整教学策略。

六、教学评价:1. 评价学生对空间几何体表面积和体积计算公式的掌握程度。

2. 评价学生运用空间几何知识解决实际问题的能力。

3. 评价学生的空间想象能力和逻辑思维能力。

七、教学拓展:1. 引导学生研究空间几何体的表面积和体积在实际工程中的应用。

2. 引导学生探索空间几何体表面积和体积的求解方法的创新。

八、教学资源:1. 教学课件:制作课件,展示空间几何体的表面积和体积的计算公式及实际问题。

2. 练习题库:整理空间几何体表面积和体积的练习题,供学生课堂练习及课后巩固。

关于空间几何体的表面积和体积数学教案

关于空间几何体的表面积和体积数学教案

关于空间几何体的表面积和体积一、教学目标:1. 让学生掌握常见空间几何体的表面积和体积的计算公式。

2. 培养学生运用空间几何知识解决实际问题的能力。

3. 提高学生对数学知识的兴趣,培养学生的空间想象力。

二、教学内容:1. 立方体、立方体的表面积和体积计算。

2. 圆柱体、圆柱体的表面积和体积计算。

3. 球体、球体的表面积和体积计算。

4. 锥体、锥体的表面积和体积计算。

5. 空间几何体表面积和体积在实际问题中的应用。

三、教学重点与难点:重点:掌握常见空间几何体的表面积和体积计算公式。

难点:空间几何体表面积和体积在实际问题中的应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究空间几何体的表面积和体积计算方法。

2. 利用多媒体课件,展示空间几何体的形状,增强学生的空间想象力。

3. 通过实例分析,让学生学会将空间几何知识应用于实际问题。

五、教学过程:1. 导入新课:回顾平面几何知识,引出空间几何体的概念。

2. 讲解立方体的表面积和体积计算公式,让学生动手计算实例。

3. 讲解圆柱体的表面积和体积计算公式,让学生动手计算实例。

4. 讲解球体的表面积和体积计算公式,让学生动手计算实例。

5. 讲解锥体的表面积和体积计算公式,让学生动手计算实例。

6. 分析空间几何体表面积和体积在实际问题中的应用,让学生尝试解决实际问题。

7. 课堂练习:布置练习题,让学生巩固所学知识。

9. 布置课后作业,要求学生运用所学知识解决实际问题。

六、教学评价:1. 通过课堂问答、练习题和课后作业,评估学生对空间几何体表面积和体积计算公式的掌握情况。

2. 观察学生在解决实际问题时是否能灵活运用所学知识,评价其运用能力。

3. 结合学生的课堂表现和作业完成情况,对学生的学习态度、合作精神和创新能力进行评价。

七、教学资源:1. 多媒体课件:用于展示空间几何体的形状,增强学生的空间想象力。

2. 练习题:用于巩固学生对空间几何体表面积和体积计算公式的掌握。

数学教案立体几何中的体积与表面积

数学教案立体几何中的体积与表面积

数学教案立体几何中的体积与表面积教案立体几何中的体积与表面积【引言】立体几何是数学中的一个重要分支,它研究的是三维空间中的几何图形。

其中,体积和表面积是立体几何中的两个基本概念。

本教案将介绍体积和表面积的定义、计算方法以及它们在实际问题中的应用。

【第一部分:体积的概念与计算】【小节1】体积的定义在几何学中,三维物体所占据的空间大小被称为体积。

体积可以用单位立方体的个数来度量,常用的单位有立方米、立方厘米等。

【小节2】体积的计算方法2.1 直角棱柱的体积计算直角棱柱是一种底面为矩形、侧面为矩形的立体。

其体积可以通过底面积乘以高来计算。

2.2 直角三棱柱的体积计算直角三棱柱是一种底面为直角三角形、侧面为直角三角形的立体。

其体积可以通过底面积乘以高再除以2来计算。

2.3 圆柱的体积计算圆柱是一种底面为圆的立体。

其体积可以通过底面积乘以高来计算。

球是一种由点到球心的距离都相等的立体。

其体积可以通过4/3乘以π乘以半径的立方来计算。

2.5 其他几何体的体积计算除了上述几何体,还有许多其他的几何体,如圆锥、棱台、球台等。

它们的体积计算方法略有不同,需要具体情况具体分析。

【第二部分:表面积的概念与计算】【小节1】表面积的定义除了研究体积,立体几何中还需要研究表面积。

表面积是指几何体外侧的总面积。

【小节2】表面积的计算方法2.1 直角棱柱的表面积计算直角棱柱的表面积可以通过底面积加上侧面积的和来计算。

2.2 直角三棱柱的表面积计算直角三棱柱的表面积可以通过底面积加上两个侧面积的和来计算。

2.3 圆柱的表面积计算圆柱的表面积可以通过底面积加上两个底面与高相乘的矩形的面积的和来计算。

球的表面积可以通过4乘以π乘以半径的平方来计算。

2.5 其他几何体的表面积计算类似于计算体积的情况,其他几何体的表面积计算方法也需要具体情况具体分析。

【第三部分:体积与表面积的应用】【小节1】体积与容量的关系体积在物理中有着广泛的应用,例如计算容器容量、液体体积以及物体的质量等。

苏教版高中数学必修二空间几何体的表面积和体积教案

苏教版高中数学必修二空间几何体的表面积和体积教案

空间几何体的表面积和体积预习提纲1.平面展开图2.概念:直棱柱:正棱柱:正棱锥:正棱台:3.面积公式:S直棱柱侧=S正棱锥侧=S正棱台侧=S圆柱侧==S圆锥侧==S圆台侧==S球面=相互间的关系:4.体积公式:V长方体==V柱体=V锥体=V台体=V球=相互间的关系:空间几何体的表面积和体积教案例1:已知直三棱柱底面各边的比为17∶10∶9,侧棱长为16 cm,全面积为1440 cm2,求底面各边之长.例2:正三棱锥底面边长为a,侧棱与底面成45°角,求此棱锥的侧面积与全面积.例3:从一个正方体中,如图那样截去4个三棱锥后,得到一个正三棱锥A—BCD,求它的体积是正方体体积的几分之几?例4:假设正棱锥的底面边长为a ,侧棱长为2a ,求对角面的面积和侧面积.例5:如图,圆柱的底面直径与高都等于球的直径,求证: (1)球的表面积等于圆柱的侧面积; (2)球的表面积等于圆柱全面积的23例6:有三个球,第一个球内切于正方体的六个面,第二个球与这个正方体各条棱都相切,第三个球过这个正方体的各顶点,求这三个球的表面积之比.例7:已知圆锥的全面积是它内切球表面积的2倍,求圆锥侧面积与底面积之比.练习:1.已知球面上A、B、C三点的截面和球心的距离等于球的半径的一半,且AB=BC=CA=2,求球的体积.2.一个体积为8的正方体的各个顶点都在球面上,求此球的体积.例8:求球与它的外切圆柱、外切等边圆锥的体积之比.例9:半径为R的球的内接四面体内有一内切球,求这两球的体积比?空间几何体的表面积和体积教案例1:已知直三棱柱底面各边的比为17∶10∶9,侧棱长为16 cm ,全面积为1440 cm 2,求底面各边之长.分析:这是一道跟直棱柱侧面积有关的问题,从结论出发,欲求底面各边之长,而各边之比已知,可分别设为17a 、10a 、 9a ,故只须求出参数a 即可,那么如何利用已知条件去求 a 呢?[生]设底面三边长分别是17a 、10a 、9a , S 侧=(17a +10a +9a )·16=576a 设17a 所对三角形内角α,则cos α=(10a )2+(9a )2-(17a )22×10a ×9a =-35 ,sin α=45S 底=12 ·10a ·9a ·45=36a 2∴576a +72a 2=1440 解得:a =2 ∴三边长分别为34 cm ,20 cm ,18 cm.[师]此题中先设出参数a ,再消去参数,很有特色. 例2:正三棱锥底面边长为a ,侧棱与底面成45°角,求此棱锥的侧面积与全面积. 分析:可根据正棱锥的侧面积与全面积公式求得.解:如图所示,设正三棱锥S —ABC 的高为SO ,斜高为SD ,在Rt △SAO 中,∴AO =SA ·cos45°∵AO =23 AD =23 32a ∴SA =63a在Rt △SBD 中 SD =a a a 615)21()36(22=- ∴S 侧=12 ·3a ·SD =154a 2. ∵S 底=34a 2∴S 全=(154+34)a 2 例3:从一个正方体中,如图那样截去4个三棱锥后,得到一个正三棱锥A —BCD ,求它的体积是正方体体积的几分之几?分析:在准确识图的基础上,求出所截得的每个三棱锥的体积和正三棱锥A —BCD 的体积即可.解:设正方体体积为Sh ,则每个截去的三棱锥的体积为 13 ·12 Sh =16 Sh . ∵三棱锥A —BCD 的体积为 Sh -4·16 Sh =13Sh .∴正三棱锥A —BCD 的体积是正方体体积的13 .例4:假设正棱锥的底面边长为a ,侧棱长为2a ,求对角面的面积和侧面积. 解:如图所示,在正四棱锥P —ABCD 中,AB =a ,PB =2a , 作PO ⊥底面ABCD 于O .连结BD ,则O ∈BD ,且PO ⊥BC , 由AB =a ,得BD = 2 a ,在Rt △P AB 中, PO 2=PB 2-BO 2=(2a )2-(22a )2∴PO =142a ,S 对角面=12 PO ·BD =72a 2. 又作PE ⊥BC 于E ,这时E 是BC 的中点 ∴PE 2=PB 2-BE 2=(2a )2-(12 a )2∴PE =152a ∴S 侧=4×21PE ·BC =15 a 2 ∴对角面面积为72a 2,侧面积为 15 a 2. 例5:如图,圆柱的底面直径与高都等于球的直径,求证: (1)球的表面积等于圆柱的侧面积; (2)球的表面积等于圆柱全面积的23证明:(1)设球的半径为R ,则圆柱的底面半径为R , 高为2R ,得S 球=4πR 2,S 圆柱侧=2πR ·2R =4πR 2 ∴S 球=S 圆柱侧(2)∵S 圆柱全=4πR 2+2πR 2=6πR 2 S 球=4πR 2 ∴S 球=23S 圆柱全例6:有三个球,第一个球内切于正方体的六个面,第二个球与这个正方体各条棱都相切,第三个球过这个正方体的各顶点,求这三个球的表面积之比.解:设正方体的棱长为a ,则第一个球的半径为 a 2 ,第二个球的半径是22a ,第三个球的半径为32a . ∴r 1∶r 2∶r 3=1∶ 2 ∶ 3 ∴S 1∶S 2∶S 3=1∶2∶3例7:已知圆锥的全面积是它内切球表面积的2倍,求圆锥侧面积与底面积之比.解:过圆锥的轴作截面截圆锥和内切球分别得轴截面SAB 和球的大圆⊙O ,且⊙O 为 △SAB 的内切圆.设圆锥底面半径为r ,母线长为l ;内切圆半径为R ,则S 锥全=πr 2+πrl ,S 球=4πR 2,∴r 2+rl =8R 2① 又∵△SOE ∽△S A O 1∴r l rl rl r l r R +-=--=22 ②由②得:R 2=r 2·r l r l +-代入①得:r 2+rl =8r 2·rl rl +-,得: l =3r ∴32===rlr rl S S ππ底锥侧 ∴圆锥侧面积与底面积之比为3∶1. 练习:1.已知球面上A 、B 、C 三点的截面和球心的距离等于球的半径的一半,且AB =BC =CA =2,求球的体积.2.一个体积为8的正方体的各个顶点都在球面上,求此球的体积. 例8:求球与它的外切圆柱、外切等边圆锥的体积之比.解:如图所示,等边△SAB 为圆锥的轴截面,此截面截圆柱得正方形C 1CDD 1,截球面得球的大圆圆O 1.设球的半径O 1O =R ,则它的外切圆柱的高为2R ,底面半径为R ,则有OB =O 1O ·cot30°= 3 R SO =OB ·tan60°= 3 R ·3 =3R ∴V 球=43 πR 3,V 柱=πR 2·2R =2πR 3V 锥=13π( 3 R )2·3R =3πR 3∴V 球∶V 柱∶V 锥= 4∶6∶9[师]以上题目,通过作球及外切圆柱、等边圆锥的公共截面暴露这些几何体之间的相互关系.让我们继续体会有关球的相接切问题.例9:半径为R 的球的内接四面体内有一内切球,求这两球的体积比?解:如图所示,大球O 的半径为R ;设正四面体 A —BCD 的棱长为a ,它的内切球半径为r ,依题意BO 1=23 32a =33a ,AO 1=AB 2-BO 12 =a 2-(33a )2 =63a 又∵BO 2=BO 12+OO 12,∴R 2=(22)36()33R a a -+ ∴a =362R 连结OA ,OB ,OC ,OD ,内切球球心到正四面体各面距离为r , V O —BCD =V O —ABC +V O —ACD +V O —AOB +V O —BCD ∴r S AO S BCD BCD ⋅⋅⋅=⋅⋅∆∆314311 ∴r =41AO∴r =R R a 31362126126=⋅= ∴V 小球∶V 大球=34π·(31R )3∶34π·R 3=1∶27∴内切球与外接球的体积比为1∶27.。

高中数学教案:立体几何中的体积和表面积

高中数学教案:立体几何中的体积和表面积

高中数学教案:立体几何中的体积和表面积一、引言在高中数学教学中,立体几何是一个重要的内容模块。

其中,体积和表面积是立体几何的核心概念,也是解题的关键点。

本文将围绕立体几何中的体积和表面积展开讨论,旨在帮助教师们更好地掌握教学方法和策略。

二、体积的基本概念与计算方法2.1 体积的定义在立体几何中,体积是指三维物体所占据的空间大小。

通常用单位立方米(m³)来表示。

2.2 体积的计算方法根据不同几何形状的特点,计算其体积有不同的方法。

(1)直角棱柱:直角棱柱的底面可以是任意多边形,通过底面面积乘以高即可计算得到。

(2)圆柱:圆柱由两个平行且相等的底面及其之间的曲面组成。

通过底面面积乘以高得到侧面积,并加上两个底面的圆形部分,可以求得整个圆柱的体积。

(3)球:球是由所有与所定球心距离相等于半径r处点组成的集合。

球的体积计算公式为4/3πr³,其中π取近似值3.14即可。

(4)其他几何体:如圆锥、棱锥、棱台等均有特定的体积计算公式。

三、表面积的概念及应用3.1 表面积的定义在立体几何中,表面积指一个物体外部所包围的总面积,常用单位平方米(m²)表示。

3.2 表面积与实际问题表面积在实际生活中有广泛的应用,例如:(1)家具选购:购买家具时,我们需要考虑其空间占用和布置情况,因此了解家具的表面积是很有帮助的。

(2)建筑施工:工程项目需要测量建筑物或构件的表面积以确定所需材料和成本。

(3)图形包装:在设计礼品包装或产品包装时,需要计算其表面积以保证材料质量和成本控制。

四、教学策略与方法4.1 概念理解与示例讲解相结合针对不同几何体的体积和表面积计算方法,可以先通过简单而常见的示例进行讲解和演示,帮助学生理解概念,并引导学生运用公式进行计算练习。

4.2 多角度观察与实物操作在教学中,可以让学生多角度观察不同几何体的形状,并利用实物进行操作。

通过直观的展示,能够加深学生对体积和表面积的认知。

高中数学必修2《空间几何体的表面积与体积》教案

高中数学必修2《空间几何体的表面积与体积》教案

⾼中数学必修2《空间⼏何体的表⾯积与体积》教案 ⾼中数学必修2《空间⼏何体的表⾯积与体积》教案 1教学⺫标 1.知道柱体、锥体、台体侧⾯展开图,弄懂柱体、锥体、台体的表⾯积的求法. 2.能运⽤公式求解柱体、锥体和台体的表⾯积,并知道柱体、锥体和台体表⾯积之间的关系. 2学情分析 通过学习空间⼏何体的结构特征,空间⼏何体的三视图和直观图,了解了空间⼏何体和平⾯图形之间的关系,从中反映出⼀个思想⽅法,即平⾯图形和空间⼏何体的互化,尤其是空间⼏何问题向平⾯问题的转化。

该部分内容中有些是学⽣已经熟悉的,在解决这些问题的过程中,⾸先要对学⽣已有的知识进⾏再认识,提炼出解决问题的⼀般思想——化归的思想,总结出⼀般的求解⽅法,在此基础上通过类⽐获得解决新问题的思路,通过化归解决问题,深化对化归、类⽐等思想⽅法的应⽤。

3重点难点 重点:知道柱体、锥体、台体侧⾯展开图,弄懂柱体、锥体、台体的表⾯积公式。

难点:会求柱体、锥体和台体的表⾯积,并知道柱体、锥体和台体表⾯积之间的关系. 4教学过程 4.1 第⼀学时教学活动活动1【导⼊】第1课时 柱体、锥体、台体的表⾯积 (⼀)、基础⾃测: 1.棱⻓为a的正⽅体表⾯积为__________. 2.⻓、宽、⾼分别为a、b、c的⻓⽅体,其表⾯积为___________________. 3.⻓⽅体、正⽅体的侧⾯展开图为__________. 4.圆柱的侧⾯展开图为__________. 5.圆锥的侧⾯展开图为__________. (⼆).尝试学习 1.柱体的表⾯积 (1)侧⾯展开图:棱柱的侧⾯展开图是____________,⼀边是棱柱的侧棱,另⼀边等于棱柱的__________,如图①所⽰;圆柱的侧⾯展开图是_______,其中⼀边是圆柱的⺟线,另⼀边等于圆柱的底⾯周⻓,如图②所⽰. (2)⾯积:柱体的表⾯积S表=S侧+2S底.特别地,圆柱的底⾯半径为r,⺟线⻓为l,则圆柱的侧⾯积S侧=__________,表⾯积S表=__________. 2.锥体的表⾯积 (1)侧⾯展开图:棱锥的侧⾯展开图是由若干个__________拼成的,则侧⾯积为各个三⾓形⾯积的_____,如图①所⽰;圆锥的侧⾯展开图是_______,扇形的半径是圆锥的______,扇形的弧⻓等于圆锥的__________,如图②所⽰. (2)⾯积:锥体的表⾯积S表=S侧+S底.特别地,圆锥的底⾯半径为r,⺟线⻓为l,则圆锥的侧⾯积S侧=__________,表⾯积S表=__________. 3.台体的表⾯积 (1)侧⾯展开图:棱台的侧⾯展开图是由若干个__________拼接⽽成的,则侧⾯积为各个梯形⾯积的______,如图①所⽰;圆台的侧⾯展开图是扇环,其侧⾯积可由⼤扇形的⾯积减去⼩扇形的⾯积⽽得到,如图②所⽰. (2)⾯积:台体的表⾯积S表=S侧+S上底+S下底.特别地,圆台的上、下底⾯半径分别为r′,r,⺟线⻓为l,则侧⾯积S侧=____________,表⾯积S表=________________________. (三).互动课堂 例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱⻓为b,则其侧⾯积为( ) A. B.ab C.(+)ab D.ab 例2:(1)若⼀个圆锥的轴截⾯是等边三⾓形,其⾯积为,则这个圆锥的侧⾯积是( )A.2πB.C.6πD.9π (2)已知棱⻓均为5,底⾯为正⽅形的四棱锥S-ABCD,如图,求它的侧⾯积、表⾯积. 例3:⼀个四棱台的上、下底⾯都为正⽅形,且上底⾯的中⼼在下底⾯的投影为下底⾯中⼼(正四棱台)两底⾯边⻓分别为1,2,侧⾯积等于两个底⾯积之和,则这个棱台的⾼为( ) A. B.2 C. D. (四).巩固练习: 1.⼀个棱柱的侧⾯展开图是三个全等的矩形,矩形的⻓和宽分别为6 cm,4 cm,则该棱柱的侧⾯积为________. 2.已知⼀个四棱锥底⾯为正⽅形且顶点在底⾯正⽅形射影为底⾯正⽅形的中⼼(正四棱锥),底⾯正⽅形的边⻓为4 cm,⾼与斜⾼的夹⾓为30°,如图所⽰,求正四棱锥的侧⾯积________和表⾯积________(单位:cm2). 3.如图所⽰,圆台的上、下底半径和⾼的⽐为1:4:4,⺟线⻓为10,则圆台的侧⾯积为( )A.81πB.100πC.14πD.169π (五)、课堂⼩结: 求柱体表⾯积的⽅法 (1)直棱柱的侧⾯积等于它的底⾯周⻓和⾼的乘积;表⾯积等于它的侧⾯积与上、下两个底⾯的⾯积之和. (2)求斜棱柱的侧⾯积⼀般有两种⽅法:⼀是定义法;⼆是公式法.所谓定义法就是利⽤侧⾯积为各侧⾯⾯积之和来求,公式法即直接⽤公式求解. (3)求圆柱的侧⾯积只需利⽤公式即可求解. (4)求棱锥侧⾯积的⼀般⽅法:定义法. (5)求圆锥侧⾯积的⼀般⽅法:公式法:S侧=πrl. (6)求棱台侧⾯积的⼀般⽅法:定义法. (7)求圆台侧⾯积的⼀般⽅法:公式法S侧=2(r+r′)l. 五、当堂检测 1.(2011·北京)某四棱锥的三视图如图所⽰,该四棱锥的表⾯积是( )A.32B.16+16C.48D.16+32 ⺴] 2.(2013·重庆)某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为( )A.180B.200C.220D.240 3.(2013⼲东)若⼀个圆台的正视图如图所⽰,则其侧⾯积等于( )A.6B.6πC.3πD.6π 六、作业:(1)课时闯关(今晚交) 七、课后反思:本节课你会哪些?还存在哪些问题? 1.3 空间⼏何体的表⾯积与体积 课时设计课堂实录 1.3 空间⼏何体的表⾯积与体积 1第⼀学时教学活动活动1【导⼊】第1课时 柱体、锥体、台体的表⾯积 (⼀)、基础⾃测: 1.棱⻓为a的正⽅体表⾯积为__________. 2.⻓、宽、⾼分别为a、b、c的⻓⽅体,其表⾯积为___________________. 3.⻓⽅体、正⽅体的侧⾯展开图为__________. 4.圆柱的侧⾯展开图为__________. 5.圆锥的侧⾯展开图为__________. (⼆).尝试学习 1.柱体的表⾯积 (1)侧⾯展开图:棱柱的侧⾯展开图是____________,⼀边是棱柱的侧棱,另⼀边等于棱柱的__________,如图①所⽰;圆柱的侧⾯展开图是_______,其中⼀边是圆柱的⺟线,另⼀边等于圆柱的底⾯周⻓,如图②所⽰. (2)⾯积:柱体的表⾯积S表=S侧+2S底.特别地,圆柱的底⾯半径为r,⺟线⻓为l,则圆柱的侧⾯积S侧=__________,表⾯积S表=__________. 2.锥体的表⾯积 (1)侧⾯展开图:棱锥的侧⾯展开图是由若干个__________拼成的,则侧⾯积为各个三⾓形⾯积的_____,如图①所⽰;圆锥的侧⾯展开图是_______,扇形的半径是圆锥的______,扇形的弧⻓等于圆锥的__________,如图②所⽰. (2)⾯积:锥体的表⾯积S表=S侧+S底.特别地,圆锥的底⾯半径为r,⺟线⻓为l,则圆锥的侧⾯积S侧=__________,表⾯积S表=__________. 3.台体的表⾯积 (1)侧⾯展开图:棱台的侧⾯展开图是由若干个__________拼接⽽成的,则侧⾯积为各个梯形⾯积的______,如图①所⽰;圆台的侧⾯展开图是扇环,其侧⾯积可由⼤扇形的⾯积减去⼩扇形的⾯积⽽得到,如图②所⽰. (2)⾯积:台体的表⾯积S表=S侧+S上底+S下底.特别地,圆台的上、下底⾯半径分别为r′,r,⺟线⻓为l,则侧⾯积S侧=____________,表⾯积S表=________________________. (三).互动课堂 例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱⻓为b,则其侧⾯积为( ) A. B.ab C.(+)ab D.ab 例2:(1)若⼀个圆锥的轴截⾯是等边三⾓形,其⾯积为,则这个圆锥的侧⾯积是( )A.2πB.C.6πD.9π (2)已知棱⻓均为5,底⾯为正⽅形的四棱锥S-ABCD,如图,求它的侧⾯积、表⾯积. 例3:⼀个四棱台的上、下底⾯都为正⽅形,且上底⾯的中⼼在下底⾯的投影为下底⾯中⼼(正四棱台)两底⾯边⻓分别为1,2,侧⾯积等于两个底⾯积之和,则这个棱台的⾼为( ) A. B.2 C. D. (四).巩固练习: 1.⼀个棱柱的侧⾯展开图是三个全等的矩形,矩形的⻓和宽分别为6 cm,4 cm,则该棱柱的侧⾯积为________. 2.已知⼀个四棱锥底⾯为正⽅形且顶点在底⾯正⽅形射影为底⾯正⽅形的中⼼(正四棱锥),底⾯正⽅形的边⻓为4 cm,⾼与斜⾼的夹⾓为30°,如图所⽰,求正四棱锥的侧⾯积________和表⾯积________(单位:cm2). 3.如图所⽰,圆台的上、下底半径和⾼的⽐为1:4:4,⺟线⻓为10,则圆台的侧⾯积为( )A.81πB.100πC.14πD.169π (五)、课堂⼩结: 求柱体表⾯积的⽅法 (1)直棱柱的侧⾯积等于它的底⾯周⻓和⾼的乘积;表⾯积等于它的侧⾯积与上、下两个底⾯的⾯积之和. (2)求斜棱柱的侧⾯积⼀般有两种⽅法:⼀是定义法;⼆是公式法.所谓定义法就是利⽤侧⾯积为各侧⾯⾯积之和来求,公式法即直接⽤公式求解. (3)求圆柱的侧⾯积只需利⽤公式即可求解. (4)求棱锥侧⾯积的⼀般⽅法:定义法. (5)求圆锥侧⾯积的⼀般⽅法:公式法:S侧=πrl. (6)求棱台侧⾯积的⼀般⽅法:定义法. (7)求圆台侧⾯积的⼀般⽅法:公式法S侧=2(r+r′)l. 五、当堂检测 1.(2011·北京)某四棱锥的三视图如图所⽰,该四棱锥的表⾯积是( )A.32B.16+16C.48D.16+32 ⺴] 2.(2013·重庆)某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为( )A.180B.200C.220D.240 3.(2013⼲东)若⼀个圆台的正视图如图所⽰,则其侧⾯积等于( )A.6B.6πC.3πD.6π 六、作业:(1)课时闯关(今晚交) 七、课后反思:本节课你会哪些?还存在哪些问题? ⼩编推荐各科教学设计: 、、、、、、、、、、、、 ⼩编推荐各科教学设计: 、、、、、、、、、、、、。

公开课优质课课件第2课时空间几何体的表面积和体积(精)

公开课优质课课件第2课时空间几何体的表面积和体积(精)
公开课优质课课件第2课时空 间几何体的表面积和体积
汇报人:某某
2023-12-26

CONTENCT

• 空间几何体的表面积 • 空间几何体的体积 • 空间几何体表面积和体积的应用 • 空间几何体表面积和体积的积
圆柱体的表面积
01
圆柱体的侧面积
$2pi rh$
进阶练习题2
求一个长为6cm,宽为4cm,高为 2cm的长方体的体积。
综合练习题
综合练习题1
求一个底面半径为4cm,高为 6cm的球体的表面积。
综合练习题2
求一个长为8cm,宽为6cm,高 为5cm的长方体的表面积。
综合练习题3
求一个棱长为6cm的正方体的表 面积和体积。
THANK YOU
感谢聆听
体积计算
根据公式,先确定球的半径,然后代入公式计算体积 。
实例分析
以一个半径为5cm的球体为例,计算其体积。
03
空间几何体表面积和体积的应用
实际应用场景
80%
建筑设计
在建筑设计过程中,计算几何体 的表面积和体积是评估材料需求 、预算和设计方案可行性的关键 步骤。
100%
包装工业
在包装工业中,精确计算产品的 表面积和体积对于优化包装材料 使用、降低成本和提高运输效率 至关重要。
圆锥体的体积
圆锥体的体积公式
V = (1/3)πr²h,其中r是底面 圆的半径,h是高。
体积计算
根据公式,先确定底面圆的半 径和高,然后代入公式计算体 积。
实例分析
以一个底面半径为4cm,高为 6cm的圆锥体为例,计算其体 积。
球体的体积
02
01
03
球体的体积公式

空间几何体的表面积与体积教案

空间几何体的表面积与体积教案

空间几何体的表面积与体积教案一、教学目标:1. 让学生掌握空间几何体的表面积和体积的计算方法。

2. 培养学生空间想象能力和思维能力。

3. 培养学生解决实际问题的能力。

二、教学内容:1. 空间几何体的表面积和体积的定义。

2. 常见空间几何体的表面积和体积的计算公式。

3. 空间几何体表面积和体积的计算方法。

三、教学重点与难点:1. 教学重点:空间几何体的表面积和体积的计算方法。

2. 教学难点:空间几何体的表面积和体积的计算公式的推导和应用。

四、教学方法:1. 采用讲解法,讲解空间几何体的表面积和体积的定义及计算方法。

2. 采用案例分析法,分析常见空间几何体的表面积和体积的计算。

3. 采用练习法,巩固所学知识。

五、教学过程:1. 导入新课:通过生活中的实例,引入空间几何体的表面积和体积的概念。

2. 讲解新课:讲解空间几何体的表面积和体积的定义,介绍常见空间几何体的表面积和体积的计算公式,讲解计算方法。

3. 案例分析:分析常见空间几何体的表面积和体积的计算,如正方体、长方体、圆柱体等。

4. 课堂练习:布置练习题,让学生巩固所学知识。

5. 总结与拓展:总结本节课的主要内容,布置课后作业,引导学生进行拓展学习。

六、课后作业:1. 复习本节课所学内容,整理笔记。

2. 完成课后练习题,巩固所学知识。

3. 探索空间几何体表面积和体积的计算规律,进行拓展学习。

七、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 课后作业:检查学生作业完成情况,评估学生对知识的掌握程度。

3. 单元测试:进行单元测试,了解学生对本节课知识的掌握情况。

八、教学资源:1. 教案、课件、教学素材。

2. 练习题、测试题。

3. 空间几何体模型、图片等。

九、教学时间安排:1. 课时:本节课计划用2课时完成。

2. 教学时间安排:第一课时讲解空间几何体的表面积和体积的定义及计算方法,分析常见空间几何体的表面积和体积的计算;第二课时进行案例分析、课堂练习、总结与拓展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

科 目 数学 年级 高三 备课人 高三数学组 第 课时 9.2空间几何体的表面积与体积
考纲定位 了解求、棱柱、棱锥、台的表面积和体积的计算公式;培养学生的空间想象力、逻辑
推理能力和计算能力,会利用所学公式进行必要的计算;注意提高认识图、理解图、
应用图的能力.
一、考点梳理
1.柱、锥、台、球的侧面积和体积
(1)棱柱、棱锥、棱台的侧面积、表面积是指: ;
(2)棱柱的体积公式: ;棱锥的体积公式: ;球的体积: .
2. 旋转体的面积和体积公式
名称 圆柱
圆锥 圆台 球 S 侧
S 表
V
二、典型例题
例1、已知几何体的三视图如图所示,它的表面积是( )
.42
.22.32.6A B C D +++
例2、一个几何体的三视图如图所示,则这个几何体的体积等于
( )
A .4
B .6
C .8
D .12
例3、已知一个几何体的三视图如图所示,则此几何体的体积是____.
三、高考真题 1.(2012·安徽)某几何体的三视图如图所示,该几何体的表面积是
.92
2.(2012·江西)若一个几何体的三视图如图所示,则此几何体的
体积为( )D
(A)
112 (B)5 (C)92
(D)4
3.(2012·新课标)如图,网格纸上小正方形的边长为1,粗线画出的
是某几何体的三视图,则此几何体的体积为( )B
(A)6 (B)9 (C)12 (D)18
4.(2012·全国)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC=2,则此棱锥的体积为( )A 2.
6A (B) 36 (C)23 (D)22
5.(2012·全国)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( ) B
(A )6π (B )43π (C )46π (D )63
π
6.(2012·广东)某几何的三视图如图所示,它的体积为( )C
(A)72π (B)48π (C)30π (D)24π
【课后反思】。

相关文档
最新文档