电工基础两种电源模型的等效变换

合集下载

第三章第五节两种电源模型的等效变换

第三章第五节两种电源模型的等效变换
例2:如图3-19所示的电路,已知:US1 = 12 V,US2 = 6 V,R1 = 3,R2 = 6,R3 = 10,试应用电源等效变换法求电阻R3中的电流。
五、电源等效变换及化简原则
1.注意点(3)
注意:
(1)IS与US的方向一致。
(2)等效变换对外电路等效,对电源内部不等效。
(3)恒压源和恒流源之间不能等效。
I
电流源
IIS
对外等效
IS
3.结论
四、举例
教学(学习)
反思
学习过程
备注
(教师复备栏及学生笔记)
课前复习:
戴维宁定理的内容。
新授:
一、电压源
1.电压源:为电路提供一定电压的电源。
2.恒压源:电源内阻为零,电源提供恒定不变的电压。
3.恒压源的特点
(1)它的电压恒定不变。
(2)通过它的电流可以是任意的,且决定于与它连接的外电路负载的大小。
4.符号
二、电流源
1.电流源:为电路提供一定电流的电源。
2.两个并联的电压源不能直接合并成一个电压源,但两个并联的电流源可以直接合并成一个电流源。
3.两个串联的电流源不能直接合并成一个电流源,但两个串联的电压源可以直接合并成一个电压源。
4.与恒压源并联的电流源或电阻均可去除;与恒流源串联的电压源或电阻均可去除。
练习:
习题(《电工基础》第2版周绍敏主编)
1.是否题(9)、(10)。
2.恒流源:电源内阻为无穷大,电源将提供恒定不变的电流。
3.恒流源的特点
(1)它提供的电流恒定不变,不随外电路而改变。
(2)电源端电压是任意的,且决定于外电路。
4.符号
三、电压源与电流源的等效变换

项目12两种电源模型的等效变换和戴维南定理验证

项目12两种电源模型的等效变换和戴维南定理验证

03
掌握电源模型等效变换的方法和步骤。
实验目的和步骤
01 实验步骤
02
1. 搭建电压源电路,测量并记录相关电压和电流数据

03
2. 将电压源电路转换为等效的电流源电路。
实验目的和步骤
3. 搭建电流源电路,测量并记录相关 电压和电流数据。
4. 对比两种电源模型下的实验数据, 验证等效变换的正确性。
其中,电压源的电压等于该网络的开路电压,电阻等于该网络内部所有独 立源置零(电压源短路、电流源开路)后的等效电阻。
定理条件和适用范围
定理条件
线性含源一端口网络。
适用范围
适用于任何线性含源一端口网络,无论其内部结构和参数如何。
定理意义和应用价值
定理意义
简化了电路分析和计算过程,提供了一种求解复杂电路的有效方法。
在项目过程中,团队成员积极协作,充分发挥各自的专业优势,共同解决了实验过程中 遇到的技术难题,提高了团队整体的研究能力和水平。
存在问题与不足
在实验过程中,由于设备精度和 实验条件的限制,部分实验数据 的测量存在一定的误差,对实验 结果的准确性产生了一定影响。
对于某些特殊电路结构,戴维南 定理的适用性有待进一步研究和 探讨。目前的研究主要集中在简 单电பைடு நூலகம்和常规电路的分析上,对 于复杂电路和特殊电路的处理方 法还有待完善。
实验目的和步骤
1
3. 根据戴维南定理,计算等效电源的参数;
2
4. 将实验电路中的电源替换为等效电源,再次测 量并记录实验数据;
3
5. 分析实验数据,验证戴维南定理的正确性。
实验数据和结果分析
电源电压:10V
电源内阻:2Ω
实验数据和结果分析

两种电源模型的等效变换

两种电源模型的等效变换
第20页/共27页
本章小结
一、基夫尔霍定律 二、支路电流法 三、叠加定理 四、戴维宁定理 五、两种实际电源模型的等效变换
第21页/共27页
一、基夫尔霍定律
1.电流定律
电流定律的第一种表述:在任何时刻,电路中流入任一节 点中的电流之和,恒等于从该节点流出的电流之和,即
I流入= I流出 。
电流定律的第二种表述:在任何时刻,电路中任一节点上的 各支路电流代数和恒等于零,即
US1
US2
图 3-19 例题 3-7
第17页/共27页
解: (1)先将两个电压源等效变换成两个电流源,如图 3-20 所示:两个电流源的电流分别为:IS1 US1 /R1 4 A, IS2 US1 /R2 1 A
图 3-20 例题 3 - 7 的两个电压源等效成两个电流源
第18页/共27页
IS= IS1 + IS2
a
a
IS1
IS2
b
IS b
第13页/共27页
3、两个电流源并联,可以用一个 等效的电流源替代,替代的条件是
IS= IS1 + IS2 RS= RS1 // RS2
第14页/共27页
【例 1】如图 3-18 所示的电路,已知电源电动势US = 6 V, 内阻 R0 = 0.2 ,当接上 R = 5.8 负载时,分别用电压源模型和 电流源模型计算负载消耗的功率和内阻消耗的功率。
对于具有 b 条支路、n 个节点的电路,可列出 (n 1) 个独 立的电流方程和 b (n 1) 个独立的电压方程。
第24页/共27页
三、叠加定理
当线性电路中有几个电源共同作用时,各支路的电流(或电 压)等于各个电源分别单独作用时在该支路产生的电流(或电压) 的代数和(叠加) 。

实际电压源与电流源的两种模型及其等效变换电工基础

实际电压源与电流源的两种模型及其等效变换电工基础

实际电压源与电流源的两种模型及其等效变换 - 电工基础1.实际电压源一个实际电压源,可用一个抱负电压源 us 与一个电阻 Rs 串联的支路模型来表征其特性。

当它向外电路供应电流时,它的端电压 u 总是小于 us ,电流越大端电压 u 越小。

us = Us时,其外特性曲线如下:Rs :电源内阻,一般很小。

2.实际电流源一个实际电流源,可用一个电流为 iS 的抱负电流源和一个内电导 GS 并联的模型来表征其特性。

当它向外电路供应电流时,并不是全部流出,其中一部分将在内部流淌,随着端电压的增加,输出电流减小。

Gs:电源内电导,一般很小。

iS = IS时,其外特性曲线如下:3.两种实际电源的等效互换实际电压源、实际电流源两种模型可以进行等效变换,所谓的等效是指端口的电压、电流在转换过程中保持不变。

即:通过比较,得等效的条件:留意事项(1)“等效”是指“对外”等效(等效互换前后对外伏—安特性全都),对内不等效。

开路的电压源中无电流流过 RS;开路的电流源可以有电流流过并联电导GS 。

电压源短路时,电阻RS有电流;电流源短路时,并联电导GS中无电流。

(2)留意转换前后US与IS的方向。

(3)进行电路分析和的计算时,恒压源(或受控电压源)串联电阻的支路和恒流源(或受控电流源)并联电阻的支路之间均可等效变换。

其中RS不肯定是电源内阻。

(4)抱负电压源和抱负电流源之间不能等效互换。

应用:利用电源转换可以简化电路计算。

例7.例8.受控源间的等效变换与独立电源相同可以用两种受控电源等效互换的方法简化受控源电路。

但简化时留意不能把把握量化简掉。

否则会留下一个没有把握量的受控源电路,使电路无法求解。

电路与电工基础项目2.2 电阻星形连接和三角形连接的等效变换

电路与电工基础项目2.2 电阻星形连接和三角形连接的等效变换

Rbc
c
(a)
(b)
图2-14电阻的星形连接与三角形连接
2.2.1电阻的星形连接和三角形连接
• 在图2-14 (a)中,三个电阻元件Ra、Rb、Rc的 一端O连在一起,另一端分别连接到电路的三 个节点,这种连接方式叫做星形连接,也叫Y 连接。在图2-14(b)中,三个电阻元件Rab、Rbc 、Rca首尾相连,接成一个三角形,这种连接 方式叫做三角形连接,也叫△连接。
1 3
R
2.2.2电阻星形连接和三角形连接的等 效变换
• 星形变换到三角形的等效关系式 :
Rab

ra rb

rb rc rc

rc ra
Rbc

ra rb
rbrc ra

rc ra
Rca

ra rb

rb rc rb

rc ra
若ra=rb=rc= rY,则Rab=Rbc=Rca=R△,且
2.2.2电阻星形连接和三角形连接的等效变换
• 三角形变换到星形的等效关系式 :
ra

Rab
Rab Rca Rbc
Rca
rb

Rab
Rbc Rab Rbc Rca
rc

Rab
Rbc Rca Rbc
Rca
若Rab=Rbc=Rca=R△,则ra= rb= rc= rY,且
rY

模块二 电路元件和电路的等效变换
项目2.1 电阻元件及其串、并联的等效变换 项目2.2 电阻星形连接和三角形连接的等效变换 项目2.3 电容元件和电感元件 项目2.4 有源元件及实际电源的等效变换
1
模块二 电路元件和电路的等效变换

中央电大(国开)专科《电工电子技术》机考题库及答案

中央电大(国开)专科《电工电子技术》机考题库及答案

电工电子技术第一套单项选择题(共8题,共40分)1.题图所示电路中,电阻R1支路的电流I为。

(B)A -3AB 5AC 2A2.三相电路中,三相对称负载做Y连接,三个线电流均为3A,则中线电流是。

(C)A 3AB 6AC 0A3.题图所示变压器,已知初级绕组N1=300匝,R=8Ω,从原方看入的电阻R i是72Ω,则变压器次级绕组N2为。

(C)A 200匝B 300匝C 100匝4.当0<s<1时,说明异步电机工作在状态。

(A)A 电动机B 发电机C 电磁制动5.题图所示电路中,硅稳压二极管VZ1的稳定电压为6V,VZ2的稳定电压为8V,两管的正向压降均为0.7V,则输出端的电压U o为。

(C)A 14VB 8V C8.7V6.放大电路引入电压串联负反馈,可以使电路的输入电阻。

(A)A增大 B 减小 C 不变7.数字电路内部电路器件如二极管、三极管、场效应管,它们一般处于___工作状态。

(C)A 截止 B 导通C 截止或导通8.JK触发器除了具有基本的置位和复位功能,还有功能。

(C)A 保持 B 翻转 C 保持和翻转判断题(共6题,共30分)1.基尔霍夫定律的理论依据是电荷守恒定律及能量守恒定律,对电路中各元件的种类、性质需加以限制。

错2.三相交流电路中,无论负载是对称还是不对称,三相电路总的有功功率都等于各相负载的有功功率之和。

对3.在三相异步电动机的三个单相绕组中,三相对称正弦交流电的幅值相等,相位互差150°。

错4.基本放大电路在输入端无输入信号时的状态被称为静态,此时电路内器件各点电位、各支路电流作静态运行,几乎不消耗直流电源提供的能量。

错5.当电路引入深度负反馈时,放大倍数A f可以认为与原放大倍数A无关,它取决于反馈回路的反馈系数F的大小。

对6.组合逻辑电路的电路结构中包含门电路和触发器。

错分析计算题(共2题,共30分)1.现有一台三相异步电动机,已知其额定功率为10KW,额定电压为380V,额定转速980r/min,额定工作效率η=95%,额定工作电流I N=18A,启动能力系数为1.5,过载系数为2.2。

电工电子技术基础知识点详解2-4-电源的两种模型及其等效变换

电工电子技术基础知识点详解2-4-电源的两种模型及其等效变换

电源的两种模型及其等效变换
理想电压源(恒压源) I
+
E
_
特点:(1)内阻R0 = 0
+
U
E
U
RL
_
O 外特性曲线 I
(2) 输出电压是一定值,恒等于电动势。
对直流电压,有 U E。
(3)恒压源中的电流由外电路决定。
例1:设 E = 10 V,接上RL 后,恒压源对外输出电流。
当 RL= 1 时, U = 10 V,I = 10A;
电压恒定,电
当 RL = 10 时, U = 10 V,I = 1A。 流随负载变化。
电源的两种模型及其等效变换
2. 电流源模型
I
电流源是由电流 IS 和内阻 R0 并联的电源的电路模型。
+
U
IS
R0 R0 U
RL
_
U

U0=ISR0
想 电流源 电


O
IS 源I
电流源的外特性
电流源模型
由图可得: U
I IS R0 若 R0 =
理想电流源 : I IS
若 R0 >>RL ,I IS ,可近似认为是理想电流源。
电源的两种模型及其等效变换
理想电流源(恒流源)
I U
+
IS
U
RL
_
特点: (1)内阻R0 = ;
O
IS
I
外特性曲线
(2)输出电流是一定值,恒等于电流 IS ;
(3)恒流源两端的电压 U 由外电路决定。
电压源 由图a: U = E- IR0
等效变换条件:
E = ISR0 E
IS R0

电工技术第一章 电路的基本概念和基本定律习题解答

电工技术第一章 电路的基本概念和基本定律习题解答

第一章 电路的基本概念和基本定律本章是学习电工技术的理论基础,介绍了电路的基本概念和基本定律:主要包括电压、电流的参考方向、电路元件、电路模型、基尔霍夫定律和欧姆定律、功率和电位的计算等。

主要内容: 1.电路的基本概念(1)电路:电流流通的路径,是为了某种需要由电工设备或电路元件按一定方式组合而成的系统。

(2)电路的组成:电源、中间环节、负载。

(3)电路的作用:①电能的传输及转换;②信号的传递及处理。

2.电路元件及电路模型(1)电路元件:分为独立电源和受控电源两类。

①无源元件:电阻、电感、电容元件。

②有源元件:分为独立电源和受控电源两类。

(2)电路模型:由理想电路元件所组成反映实际电路主要特性的电路。

它是对实际电路电磁性质的科学抽象和概括。

采用电路模型来分析电路,不仅使计算过程大为简化,而且能更清晰地反映该电路的物理本质。

(3)电源模型的等效变换①电压源及电阻串联的电路在一定条件下可以转化为电流源及电阻并联的电路,两种电源之间的等效变换条件为:0R I U S S =或0R U I SS =②当两种电源互相变换之后,除电源本身之外的其它外电路,其电压和电流均保持及变换前完全相同,功率也保持不变。

3.电路的基本物理量、电流和电压的参考方向以及参考电位 (1)电路的基本物理量包括:电流、电压、电位以及电功率等。

(2)电流和电压的参考方向:为了进行电路分析和计算,引入参考方向的概念。

电流和电压的参考方向是人为任意规定的电流、电压的正方向。

当按参考方向来分析电路时,得出的电流、电压值可能为正,也可能为负。

正值表示所设电流、电压的参考方向及实际方向一致,负值则表示两者相反。

当一个元件或一段电路上的电流、电压参考方向一致时,称它们为关联参考方向。

一般来说,参考方向的假设完全可以是任意的。

但应注意:一个电路一旦假设了参考方向,在电路的整个分析过程中就不允许再作改动。

(3)参考电位:人为规定的电路种的零电位点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章复杂直流电路
---两种电源模型及其等效变换
一.填空
1.为电路的电源称为电压源,如果电压源内阻为,电源将提供,则称为理想电压源简称恒压源。

为电路的电源称为电流源,如果电流源内阻为,电源将提供,则称为理想电流源简称恒流源。

2.电压源与电流源的等效变换中对等效,对不能等效。

3.电压源变换为等效电流源的公式为,内阻R0的数值,改为联;电流源变换为电压源的公式为内阻r的数值,改为联;
4.两种电源模型的等效变换时,I
S 与U
S
的方向应当一致,即I
S
的端与U
S
的应互相对应。

二.是非判断
1.恒压源和恒流源之间也能等效变换。

()
2.理想电流源的输出电流和电压都是恒定的,是不随负载而变化的。

()
3.理想电压源的输出电流和电压都是恒定的,是不随负载而变化的。

()三.将下图中的电流源和电压源进行互换
四.计算
1.用电压源与电流源等效变换法,求图所示电路中流过R的电流。

其中E1=E2=3V,E3=9V,R1=R2=R3=3Ω,R=1Ω。

2.利用电源的等效变换计算图中的电流I
3。

3.试用电压源与电流源等效变换的方法计算图中2Ω电阻中的电流I。

相关文档
最新文档