材料力学总结
(完整版)材料力学重点总结

(完整版)材料力学重点总结材料力学阶段总结一. 材料力学的一些基本概念 1. 材料力学的任务:解决安全可靠与经济适用的矛盾. 研究对象:杆件强度:抵抗破坏的能力 刚度:抵抗变形的能力稳定性:细长压杆不失稳。
2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。
均匀性:构件内各处的力学性能相同。
各向同性:物体内各方向力学性能相同。
3。
材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。
内力:附加内力。
应指明作用位置、作用截面、作用方向、和符号规定。
应力:正应力、剪应力、一点处的应力。
应了解作用截面、作用位置(点)、作用方向、和符号规定。
正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。
剪切虎克定律:两线段——拉伸或压缩。
拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内。
5。
材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s pσσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=126. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。
过小,使构件安全性下降;过大,浪费材料。
许用应力:极限应力除以安全系数.塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学的研究方法1) 所用材料的力学性能:通过实验获得。
2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。
3) 截面法:将内力转化成“外力”。
材料力学知识点总结

材料力学总结一、基本变形轴向拉压扭转弯曲外力外力合力作用线沿杆轴线力偶作用在垂直于轴的平面内外力作用线垂直杆轴,或外力偶作用在杆轴平面内力轴力:N规定:拉为“+”压为“-”扭转:T规定:矩矢离开截面为“+”反之为“-”剪力:Q规定:左上右下为“+”弯矩:M规定:左顺右逆为“+”微分关系:qdxdQ;QdxdM应力几何方面变形现象:平面假设:应变规律:dxld常数变形现象:平面假设:应变规律:dxd弯曲正应力弯曲剪应力变形现象:平面假设:应变规律:y应力公式ANPITtWTmaxZIM yZWMmaxbIQSbIQSzzzmaxmax*应力分布应用条件等直杆外力合力作用线沿杆轴线圆轴应力在比例极限内平面弯曲应力在比例极限内应力-应变关系E(单向应力状态)G(纯剪应力状态)强度条件nANumaxmax塑材:su脆材:bumaxmaxtWT弯曲正应力1.ctmax2.ctccmactt max弯曲剪应力bISQzmaxmaxmax轴向拉压扭转弯曲刚度条件max180PGIT注意:单位统一yy maxmax变形EAN dxl d ;EANL LEA —抗拉压刚度ZGIT dx d PGITL GI p —抗扭刚度EIx M x )()(1EIx M y)(''EI —抗弯刚度应用条件应力在比例极限圆截面杆,应力在比例极限小变形,应力在比例极限矩形A=bh 6;1223bh W bhI ZZ实心圆A=42d 16;3234dW dI tP32;6434dW dI ZZ空心圆)1(422DA)1(16)1(324344dW d I tP)1(6444dI Z )1(3243dW Z其它公式(1)'(2))1(2E G剪切(1)强度条件:AQ A —剪切面积(2)挤压条件:bsJbsbsA P A j —挤压面积矩形:A Q23max圆形:A Q 34max环形:AQ 2maxmax均发生在中性轴上二、还有:(1)外力偶矩:)(9549m N n N m N —千瓦;n —转/分(2)薄壁圆管扭转剪应力:tr T 22(3)矩形截面杆扭转剪应力:hb G T hb T32max;三、截面几何性质(1)平行移轴公式:;2A a I I ZCZ abAI I cc Y Z YZ(2)组合截面:1.形心:ni ini ci i cA y A y 11;ni ini cii cA z A z 112.静矩:ci i Zy A S ;cii y z A S 3. 惯性矩:iZ ZI I )(;iy yI I )(四、应力分析:(1)二向应力状态(解析法、图解法)a .解析法:b.应力圆::拉为“+”,压为“-”:使单元体顺时针转动为“+”:从x 轴逆时针转到截面的法线为“+”2sin 2cos 22xyx y x 2cos 2sin 2xyxyxxtg 2222minmax22xy x y xc :适用条件:平衡状态(2)三向应力圆:1m a x;3min ;231maxxyxnD'DAcB(3)广义虎克定律:)(13211E )(1zy xxE )(11322E )(1xz y y E )(12133E)(1yx z z E*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态1.纯剪切应力状态:1,02,32.一种常见的二向应力状态:2231222234r 2243r 五、强度理论破坏形式脆性断裂塑性断裂强度理论第一强度理论(最大拉应力理论)莫尔强度理论第三强度理论(最大剪应力理论)第四强度理论(形状改变比能理论)破坏主要因素单元体内的最大拉应力单元体内的最大剪应力单元体内的改变比能破坏条件b1smaxfsfuu 强度条件131适用条件脆性材料脆性材料塑性材料塑性材料*相当应力:r11r ,313r ,][212132322214r 13x六、材料的力学性质脆性材料<5%塑性材料≥5%低碳钢四阶段:(1)弹性阶段(2)屈服阶段(3)强化阶段(4)局部收缩阶段强度指标bs,塑性指标,Etg拉压扭低碳钢断口垂直轴线剪断s b铸铁拉断断口垂直轴线b剪断拉断断口与轴夹角45o b七.组合变形类型斜弯曲拉(压)弯弯扭弯扭拉(压)简图公式)sincos(yZ IzIyMWMAP][4223r][3224r][4)(223NMr][3)(224NMr强度条件)sincos(maxmaxyZ WWM][WMAP maxmaxmax][圆截面][223ZWTMr][75.0224ZWTMr22)(4)(3tZ WTANWMr][22)(4)(4tZ WTANWMr][中性轴tgIIZytgyZyZyZeiAeIy2*bsαe4545o中性轴ZαMp滑移线与轴线45,剪断只有s,无b八、压杆稳定欧拉公式:2min2)(l EI P cr,22Ecr,应用范围:线弹性范围,cr <p ,>p柔度:iul ;E;ba s,柔度是一个与杆件长度、约束、截面尺寸、形状有关的数据,λ↑P cr ↓σcr ↓>p ——大柔度杆:22Ecro <<p ——中柔度杆:cr=a-b <0——小柔度杆:cr =s稳定校核:安全系数法:w Icr n P P n ,折减系数法:][AP 提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度;断裂特征:断裂前无显著塑性变形;断口特征:断口成光滑区和粗糙区。
工程力学-材料力学部分总结

5. 梁弯曲变形计算
(1)积分法
EIz EIz M dx C
EIz Mdx dx Cx D
(2)叠加法
边界条件确定
约束条件 光滑连续条件
作图规律
无外力段 外
力
q=0
均布载荷段
q>0
q<0
集中力 集中力偶
P
m
c
c
水平直线
Q Q>0 图Q 特
Q<0
Q
上升直线
下降直线
自左向右, 突变与P同
2
( 3
Q
Q
Q Q1
征
X
X
X
X
X
c
Q2
Q1-Q2=P
M 上升直线 下降直线 开口向上曲线 开口向下曲线 M 转折
图M
M
M
M
M
特
征
X
X
X
X
cX
无变化
Q
X
c
自左向右, 突变与M同
M M1
cX
M2 M1-M2=m
6 静不定问题 (1)静不定问题的求解步骤
判断系统静不定的次数
建立变形协调方程 力与变形间的物理关系
EIz
y My EIz
max
max
M max
Wz
FS max
S
z
Izb
w w max
max
1. 一些基本概念
(1)变形固体的四个基本假设及其作用
(2)应力、应变的概念
应力 正应力σ 切应力τ
应变
线应变ε 切应变γ
(3)内力分析的截面法及其求解步骤
2. 一些基本定理
45
材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)K点相邻的微小面积取得越来越小,使得合力趋近于一个点力,这个点力就是在K点处的应力。
因此,应力是指杆件横截面上单位面积内的内力分布情况,通常用符号σ表示。
应力的单位是帕斯卡(Pa),即XXX/平方米。
第三章:应变、XXX定律和XXX模量1.应变的概念:应变是指固体在外力作用下发生形状和尺寸改变的程度,通常用符号ε表示。
应变分为线性应变和非线性应变两种。
线性应变是指应变与应力成正比,即应变与内力的比值为常数,这个常数被称为材料的弹性模量。
非线性应变则不满足这个比例关系。
2.胡克定律:胡克定律是描述材料弹性变形的基本定律,它规定了应力和应变之间的关系,即在弹性阶段,应力与应变成正比,比例系数为弹性模量。
3.XXX模量:杨氏模量是描述材料抗拉、抗压变形能力的物理量,它是指单位面积内拉应力或压应力增加一个单位时,材料相应的纵向应变的比值。
XXX模量的大小反映了材料的柔软程度和刚度。
杨氏模量的单位是帕斯卡(Pa)或兆帕(MPa)。
综上所述,材料力学是研究构件在外力作用下内力、变形、破坏等规律的科学。
构件应具备足够的强度、刚度和稳定性以负荷所承受的载荷。
截面法是求解内力的基本方法,应力是指杆件横截面上单位面积内的内力分布情况,应变是指固体在外力作用下发生形状和尺寸改变的程度。
胡克定律描述了材料弹性变形的基本定律,而XXX模量则描述了材料抗拉、抗压变形能力的物理量。
应力是指在截面m-m上某一点K处的力量。
它的方向与内力N的极限方向相同,并可分解为垂直于截面的分量σ和切于截面的分量τ。
其中,σ称为正应力,τ称为切应力。
将应力的比值称为微小面积上的平均应力,用表示。
在国际单位制中,应力的单位是帕斯卡(Pa),常用兆帕(MPa)或吉帕(GPa)。
杆件是机器或结构物中最基本的构件之一,如传动轴、螺杆、梁和柱等。
某些构件,如齿轮的轮齿、曲轴的轴颈等,虽然不是典型的杆件,但在近似计算或定性分析中也可简化为杆。
(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
材料力学重点总结要点

材料力学重点总结要点1、材料力学的任务:解决安全可靠与经济适用的矛盾。
研究对象:杆件强度:抵抗破坏的能力刚度:抵抗变形的能力稳定性:细长压杆不失稳。
2、材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。
均匀性:构件内各处的力学性能相同。
各向同性:物体内各方向力学性能相同。
3、材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同;理力:刚体,材力:变形体。
内力:附加内力。
应指明作用位置、作用截面、作用方向、和符号规定。
应力:正应力、剪应力、一点处的应力。
应了解作用截面、作用位置(点)、作用方向、和符号规定。
正应力应变:反映杆件的变形程度变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4、物理关系、本构关系虎克定律;剪切虎克定律:适用条件:应力~应变是线性关系:材料比例极限以内。
5、材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量E,剪切弹性模量G,泊松比v,塑性材料与脆性材料的比较:变形强度抗冲击应力集中塑性材料流动、断裂变形明显拉压的基本相同较好地承受冲击、振动不敏感脆性无流动、脆断仅适用承压非常敏感6、安全系数、许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。
过小,使构件安全性下降;过大,浪费材料。
许用应力:极限应力除以安全系数。
塑性材料脆性材料7、材料力学的研究方法1)所用材料的力学性能:通过实验获得。
2)对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。
3)截面法:将内力转化成“外力”。
运用力学原理分析计算。
8、材料力学中的平面假设寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。
1)拉(压)杆的平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。
材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm ∙= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += a b A I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1m a x σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r xσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
材料力学知识点总结

材料力学知识点总结材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。
它是工程力学的一个重要分支,对于机械、土木、航空航天等工程领域具有重要的意义。
以下是对材料力学主要知识点的总结。
一、拉伸与压缩拉伸和压缩是材料力学中最基本的受力形式。
在拉伸或压缩时,杆件的内力称为轴力。
通过截面法可以求出轴力的大小,轴力的正负规定为拉力为正,压力为负。
胡克定律描述了应力与应变之间的线性关系,在弹性范围内,应力与应变成正比,即σ =Eε,其中σ为正应力,ε为线应变,E 为材料的弹性模量。
材料在拉伸和压缩过程中会经历不同的阶段。
低碳钢的拉伸实验是研究材料力学性能的重要手段,其拉伸曲线可分为弹性阶段、屈服阶段、强化阶段和颈缩阶段。
通过拉伸实验可以得到材料的屈服极限、强度极限等重要力学性能指标。
二、剪切与挤压剪切是指在一对大小相等、方向相反、作用线相距很近的横向外力作用下,杆件的横截面发生相对错动的变形形式。
剪切面上的内力称为剪力,其大小可以通过截面法求得。
在工程中,通常还需要考虑连接件的挤压问题。
挤压面上的应力称为挤压应力,其大小与挤压面的面积和外力有关。
三、扭转扭转是指杆件受到一对大小相等、方向相反、作用面垂直于杆件轴线的力偶作用时,杆件的横截面将绕轴线发生相对转动的变形形式。
圆轴扭转时,横截面上的内力为扭矩。
扭矩的正负规定为右手螺旋法则,拇指指向截面外为正,指向截面内为负。
根据材料力学的理论,圆轴扭转时横截面上的切应力呈线性分布,最大切应力发生在圆周处。
四、弯曲弯曲是指杆件在垂直于轴线的外力或外力偶作用下,轴线由直线变为曲线的变形形式。
梁在弯曲时,横截面上会产生弯矩和剪力。
弯矩的正负规定为使梁下侧受拉为正,上侧受拉为负;剪力的正负规定为使截面顺时针转动为正,逆时针转动为负。
弯曲正应力和弯曲切应力是弯曲问题中的重要应力。
弯曲正应力沿截面高度呈线性分布,最大正应力发生在截面的上下边缘处。
弯曲切应力在矩形截面梁中,其分布规律较为复杂,但在一些常见的情况下,可以通过公式进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学总结材料力学名词解释及填空名词解释1、Stress(应力)the force per unit area , or intensity of the force distributed over a given section, is called stress. σ=F/A2、normal stress(正应力)The internal force is therefore normal to the plane of the section and the corresponding stress is described as the normal stress.3、Shearing stress(剪应力)The internal force is the shear on the plane of the section and the corresponding stress is described as the shearing stress.4、Linear Strain(应变)The normal strainεin a member can be defined as the deformation of the meter of the per unit length.8、effective length (有效长度)is defined as real length multiplied by factor of length9、principle plane(主平面)is the plane in which the shearing stress equals zero, and normal stresses achieve maximum or minimum.Principle stress(主应力)The normal stress which is exerted on the principle plane is called the principle stress.10、Radius of radius of gyration【revolution】(惯性半径)of an area can be calculated by the following formula i=I/AWhere i =the moment of inertia of an areaA=the area of an cross section11、isotropic materials (各向同性材料)are the materials whose elastic constants are independent of direction.12、homogeneous materials (均匀性材料)are the materials whose elastic properties are the same everywhere.13、The strain energy density(应变能密度)The strain energy in the unit volume can be defined as the strain energy density.14、Hooke’s law (胡克定律)may be expressed more fully by saying that1】when the stress increases,the measured strain increases in the same ratio2】when the stress diminishes, the measured strain diminishes in the same ratio3】when the stress is removed, no strain can be measuredFor a small deformation,the stress is directly proportional to the strain.15、Hooke’s law for shearing stress(剪切胡克定律)The relation τ=Gγis known as Hooke’s law for shearing stress. Strain and constant Gis called the modulus of rigidity or shear modulus of material.16、Generalized Hooke’s law(广义胡可定律)17、Poisson ratio (泊松比)is defined as the ratio of lateral contraction (strain) to longitudinal extension (strain) of a bar under terminal tension.18、factor of safety (安全因数)ultimate load over allowable load19、stress-concentration factor k(应力集中因数K)=maximum stress over average stress20、statically indeterminate problem(静不定问题)is the problem in which the reactions and internal forces can not be determined by staticonly , analysis of deformation is needed.21、neutral surface(中性层)is defined as the surface between the top and bottom of a beam in which longitudinal line do not change.22、Neutral axis (中性轴)①The neutral surface intersects a transverse section along a straight line called the neutral axis of the section.②The intersection of the neutral surface with a transverse section is called the neutral axis of the section.23、principle of superposition(叠加原理)for all linear systems (a beam can be modeled as a linear system ),24、the quantity the term λ=μl /i (柔度) is known as the slenderness ratio of the column. Where μl= effective lengthi= the radius of gyration25、The theory of strength(强度理论)The assumption concerning the damage or the losing effect of the material is called the theory of strength.26、buckling (失稳)A stage when the column suddenly becomes sharply curved instead of remaining straight as the load is applied is called buckling.27、The critical force (临界压力)The value of the compressive force which is right on the boundary between the stable balance and the unstable balance is called the critical force.28、The critical stress (临界应力)The corresponding stress of the critical force is described as the critical force.29、Euler’s Formula (欧拉公式)Euler’s Formula can be expressed asFcr=π²EI/le²in which: Fcr denotes the critical loadE denotes the modulusI denotes the minimum moment of inertia of areale denotes the equivalent length30、Assumption for a bar (拉压的平面假设) The hypothesis assumes that the section keeps being a plane after deformation.31、Assumption for torsion (扭转平面假设) When a circular shaft is subjected to a torsion, every cross section remains plane and undamaged.32、Assumption for bending (弯曲平面假设) Under bending, the cross section of the beam remains plane and has a constant curvature. And the new cross section still perpendicular to axis.32、极惯性矩The polar moment of inertia of an area is defined as the polar moment of inertia of an area with respect to a point as the integral Ip=∫ρ²dA33、惯性矩The moment of inertia of an area is defined as the second moment of the area with respect to an axis as the integral I=∫y²dA.34、静矩The static moment of an area is defined as the first moment of an area with respect to an axis as the integral Sz=∫ydA.填空题1 三个材料假设Homogeneousity assumption 、Continuity assumption 、Isotropy assumption2 三个关系Geometric relation 、Physical relation、Equilibrium relation3 限制梁挠度的三个条件Boundary condition 、Constraint condition、Continuity condition4 三种约束方式1)固定端fixed end2)固定铰支座fixed support of pin joint3)可动铰支座roller support of pin joint5 三种梁1)简支梁simply supported beam2)外伸梁overhang beam3)悬臂梁cantilever beam6 For perfect column, the factor of length for conditions both pinned; both fixed; one fixed the other free; one fixed the other pinned are 1、0.5、2、0.7 respectively.7 The four classic strength theories include maximum tensile stress theory、maximum elongated normal strain theory、maximum shearing stress theory and maximum distortional strain energy theory.8 The tensile diagram of low carbon steel consist of four stages: elastic stage 、yielding stage、hardening stage and necking stage.。