材料力学性能总结
材料的力学性能重点总结

名词解释:1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。
2弹性比功:表示金属材料吸收塑性变形功的能力。
3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。
4包申格效应:金属材料通过预先加载产生少来塑性变形,卸载后再同向加载,规定参与伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5塑性:金属材料断裂前发生塑性变形的能力。
常见塑性变形方式:滑移和孪生6应力状态软性系数:最大切应力最大正应力应力状态软性系数α越大,最大切应力分量越大,表示应力状态越软,材料越易产生塑性变形α越小,表示应力状态越硬,则材料越容易产生脆性断裂7缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生拜年话,产生所谓―缺口效应―①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。
②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。
8缺口敏感度:有缺口强度的抗拉强度ζbm与等截面尺寸光滑试样的抗拉强度ζb的比值. NSR=ζbn / ζs NSR越大缺口敏感度越小9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状,这种现象称为低温脆性12 脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。
材料屈服强度急剧升高的温度,或断后延伸率,断后收缩率,冲击吸收功急剧减小的温度就是韧脆转变温度tk,tk是一个温度区间13疲劳贝纹线:以疲劳源为中心的近于平行的一簇同心圆.是疲劳源裂纹扩展时前沿的痕迹14疲劳条带:具有略显弯曲并相互平行的沟槽花样,是疲劳断口最典型的微观特征15驻留滑移带:金属在循环应力长期作用下,形成永久留或再现的循环滑移带称为驻留滑移带,具有持久驻留性.16应力场强度因子KI :表示应力场的强弱程度,对于某一确定的点的大小直接影响应力场的大小,KI 越大,则应力场各应力分量也越大17应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后产生的低应力脆断现象18氢致延滞断裂:高强度钢或α+β钛合金中,含有适量的处于固溶状态的氢,在低于屈服强度的应力持续作用下经过一段时间的孕育期后在金属内部,特别是在三向拉应力区形成裂纹,裂纹的逐步扩展,最后突然发生脆性断裂,这种由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂第一章2.力学性能指标的意义(1)δ0.2 对于拉伸曲线上没有屈服平台的材料,塑性变形硬化过程是连续的,产生0.2%残余伸长应力时刻的屈服强度。
材料的力学性能 概念 总结

第四章 切口试件在静载和冲击载荷作用下的力学性能(六)
切口强度:用带切口的拉伸试件测定其断裂时的名义应力(净断面平均应力)。bn =
切口敏感度(NSR)
:切口强度对抗拉强度的比值。 NSR =
bn
bn
若 NSR≥1.0,表示材料对切口不敏感;
若 NSR<1.0,则材料对切口敏感。
微孔聚集断裂:通过微孔形核长大聚合而导致的断裂。常用金属材料一般均产生这类性质的断裂。
正断:断裂面垂直于外加应力。
切断:断裂面平行于外加应力。
断口:材料或构件受力断裂后的自然表面。
宏观断口:用肉眼或 20 倍以下的放大镜观察的断口,它反映了断口的全貌。
微观断口:用光学显微镜或扫描电镜观察的断口。
晶体的理论断裂强度(σm):将晶体原子分离开所需的最大应力。σ = √
得的布氏硬度值为 150
2、洛氏硬度(HR)
o
HRA(120 金钢石圆锥压头、60kgf 负荷),应用范围:70~85;
HRB(直径 1.588mm 钢球压头、100kgf 负荷),应用范围:25~100;
o
HRC(120 金钢石圆锥压头、150kgf 负荷),应用范围:20~67;
标注方法:HRC28
第三章
材料的硬度(四)
金属的硬度:金属在表面上的不大体积内抵抗变形或者破裂的能力。
1、布氏硬度(HB) 一般在 HB450 以上就不能使用了
标注方法:硬度值 HBW(或 HBS)球的直径/载荷大小/保压时间(注:淬硬钢球(HBS),硬质合金球(HBW),保压时间 10~15s 不用记)
150HBW10/1000/30 表示压头直径为 10mm 的硬质合金球,在 1000kgf 试验力的作用下,保持 30s 时测
2024年材料力学性能总结

2024年材料力学性能总结材料科学与工程是一个不断发展的领域,随着科技的进步和经济的发展,新材料的研发和应用越来越受到关注。
在2024年,材料力学性能方面取得了一系列的突破和进展。
以下是对2024年材料力学性能的总结。
一、新材料的涌现在2024年,新材料的研发持续推进,涌现了一批具有优异力学性能的新材料。
其中包括高性能金属材料、高强度复合材料、高韧性陶瓷材料等。
这些新材料的力学性能远超传统材料,具有更高的强度、硬度、韧性、耐磨性等特点,为各行各业提供了更多的选择和可能。
二、金属材料的强度与塑性提升在金属材料领域,研究人员通过优化合金配方和热处理工艺,成功提升了金属材料的强度和塑性。
新型高强度钢材广泛应用于汽车、轨道交通、航空航天等领域,有效提高了产品的安全性和使用寿命。
同时,新型金属材料的塑性也得到了极大改善,使其更容易成形和加工,满足不同行业对材料的需求。
三、复合材料的应用扩展复合材料在2024年得到了进一步的应用扩展。
高强度复合材料被广泛应用于航空、航天、船舶等领域,可以减轻结构重量,提高载荷能力,提升产品性能。
新型的纳米复合材料在电子、光电、能源等领域也得到了广泛应用,具有优异的电、磁、光等特性,为新一代电子产品和能源装置的研发提供了重要支持。
四、陶瓷材料的韧性提升传统陶瓷材料脆性大,容易破裂,限制了其在工程应用中的广泛使用。
在2024年,陶瓷材料的韧性得到了重大突破。
通过引入纤维增强、晶体设计等手段,成功提升了陶瓷材料的韧性。
新型韧性陶瓷材料在航空、航天、汽车等领域得到了广泛应用,具有较高的强度和韧性,能够承受更大的载荷和冲击,提高了产品的安全性和可靠性。
五、仿生材料的发展仿生材料是以自然界生物体结构和性能为蓝本设计的新型材料。
在2024年,仿生材料得到了更多的关注和研究。
通过模仿昆虫翅膀、植物叶片等自然结构,研究人员开发出了一系列具有优异力学性能的仿生材料。
这些材料具有轻量化、高强度、高韧性的特点,适用于飞行器、船舶、建筑等领域。
材料力学性能复习总结

材料力学性能复习总结材料力学性能是指材料在外力作用下所表现出的力学特性和性能。
在材料力学性能的学习中,不仅需要了解材料的基本力学性质,还需要掌握材料的破坏机制、变形行为以及材料的力学性能测试方法等方面的知识。
以下是对材料力学性能复习的总结。
1.材料的破坏机制和破坏形态材料的破坏机制是指材料在受力作用下发生破坏的方式和过程。
常见的破坏机制有拉伸破坏、压缩破坏、剪切破坏等。
拉伸破坏时,材料会发生断裂;压缩破坏时,材料会出现压缩变形和压碎现象;剪切破坏时,材料会出现剪切变形和断裂等。
材料的破坏形态是指材料在受力作用下发生的形态变化。
常见的破坏形态有脆性断裂、塑性变形和疲劳破坏等。
脆性断裂是指材料在受静态或低应力下发生迅速断裂的性质;塑性变形是指材料在受力作用下发生塑性流动,而不发生断裂;疲劳破坏是指材料在反复受力下产生裂纹并最终导致断裂。
2.材料的变形行为和变形机制材料的变形行为是指材料在受力作用下发生的形变现象。
常见的变形行为有弹性变形、塑性变形和粘弹性变形等。
弹性变形是指材料在受力作用下发生的可逆性变形。
材料在弹性变形时能够恢复到原始形状和尺寸。
弹性变形的机制是原子之间的键能发生弹性形变,即在受力作用下原子间的距离发生变化,但不改变原子间的相对位置。
塑性变形是指材料在受力作用下发生的不可逆性变形。
材料在塑性变形时会发生晶格的滑移和位错的运动。
塑性变形的机制是原子间的键能发生塑性形变,即原子间的相对位置发生改变。
粘弹性变形是指材料在受力作用下表现出介于弹性变形和塑性变形之间的性质。
材料在粘弹性变形时有一部分能量会被消耗掉,导致材料的不完全恢复。
粘弹性变形的机制是在外力作用下,分子间的键发生的弹性形变和分子间的长距离位移。
3.材料力学性能的测试方法拉伸试验是指将材料置于拉力下进行测试。
通过拉伸试验可以了解材料的弹性性能、破坏强度、延展性以及断裂形态等。
压缩试验是指将材料置于压力下进行测试。
通过压缩试验可以了解材料的强度和刚度等。
材料力学性能总结

材料力学性能:材料在各类外力作用下抵抗变形和断裂的能力。
屈服现象:外力不增加,试样仍然继续伸长,或外力增加到必然数值时突然下降,随后在外力不增加或上下波动情况下,试样继续伸长变形。
屈服进程:在上屈服点,吕德斯带形成;在下屈服点,吕德斯带扩展;当吕德斯带扫过整个试样时,屈服伸长结束。
屈服变形机制:位错运动与增殖的结果。
屈服强度:开始产生塑性变形的最小应力。
屈服判据:屈雷斯加最大切应力理论:在复杂应力状态下,当最大切应力达到或超过相同金属材料的拉伸屈服强度时产生屈服。
米赛斯畸变能判据:在复杂应力状态下,当比畸变能等于或超过相同金属材料在单向拉伸屈服时的比畸变能时,将产生屈服。
消除办法:加入少量能夺取固溶体合金中溶质原子的物质,使之形成稳定化合物的元素;通过预变形,使柯氏气团被破坏。
影响因素:1.内因:a)金属本性及晶格类型:金属本性及晶格类型不同,位错运动所受的阻力不同。
b)晶粒大小和亚结构:减小晶粒尺寸将使屈服强度提高。
c)溶质元素:固溶强化。
d)第二相2.外因:温度(-);应变速率(+);应力状态。
第二相强化(沉淀强化+弥散强化):通过第二相阻碍位错运动实现的强化。
强化效果:在第二相体积比相同的情况下,第二相质点尺寸越小,强度越高,强化效果越好;在第二相体积比相同的情况下,长形质点的强化效果比球形质点的强化效果好;第二相数量越多,强化效果越好。
细晶强化:通过减小晶粒尺寸增加位错运动障碍的数量(阻力大),减小晶粒内位错塞积群的长度(应力小),从而使屈服强度提高的方式。
同时提高塑性及韧性的机理:晶粒越细,变形分散在更多的晶粒内进行,变形较均匀,且每一个晶粒中塞积的位错少,因应力集中引发的开裂机缘较少,有可能在断裂之前经受较大的变形量,即表现出较高的塑性。
细晶粒金属中,裂纹不易萌生(应力集中少),也不易传播(晶界曲折多),因此在断裂进程中吸收了更多能量,表现出较高的韧性。
固溶强化:在纯金属中加入溶质原子形成固溶合金,将显著提高屈服强度。
2024年材料力学性能总结范文

2024年材料力学性能总结范文____年材料力学性能总结摘要:本文对____年新材料的力学性能进行了总结。
通过对新材料的力学性能研究,可以更好地应用于工程实践中,提高产品的性能和可靠性。
本文主要对新材料的强度、硬度、韧性、耐热性等性能进行了介绍,并对其应用前景进行了展望。
关键词:新材料;力学性能;强度;硬度;韧性;耐热性一、强度强度是材料抵抗外力的能力,是一个材料最基本的力学性能之一。
____年新材料的强度有了显著的提高,主要得益于新材料结构和组成的优化。
新材料采用了多种复合材料技术,在不同材料的复合过程中,不同材料之间形成了一种互补的关系,使得新材料的强度得到了有效提升。
此外,新材料还采用了新的加工工艺,如纳米技术和超塑性成型技术,通过精确控制材料微观结构和缺陷,使新材料的强度得到了进一步提升。
二、硬度硬度是材料抵抗外界划痕和压痕的能力,表征了材料的抗磨性能。
____年新材料的硬度也得到了大幅提升。
在新材料的研发中,科学家们发现了一些新的硬化机制,如晶体缺陷的控制、固溶体弥散硬化和位错强化等。
通过合理地控制这些硬化机制,新材料的硬度可以得到有效提升。
此外,新材料还采用了一些表面处理技术,如化学镀、电沉积和离子注入等,通过改变材料表面的化学组成和相结构,来提高材料的硬度。
三、韧性韧性是材料抵抗破坏的能力,是反映材料抗拉伸、抗压和抗弯曲能力的重要指标。
____年新材料的韧性也得到了显著改善。
新材料采用了一些新的加工工艺,如冷变形和等离子注入等,通过调整材料的晶界和位错密度,使新材料的韧性得到了提高。
此外,新材料还采用了一些新的复合技术,如纳米复合和纤维复合等,通过增加材料内部的弥散相和增强相,来提高材料的韧性。
四、耐热性耐热性是材料在高温条件下能保持稳定性和性能的能力。
____年新材料的耐热性也得到了显著提升。
新材料采用了一些新的材料组成和结构设计,如金属间化合物、金属陶瓷复合材料和增强材料等,来提高材料的热稳定性。
材料力学性能与应用总结

材料力学性能与应用总结在我们的日常生活和工业生产中,材料无处不在。
从建筑结构中的钢梁到汽车发动机的零部件,从电子产品中的芯片到航空航天领域的飞行器部件,材料的性能决定了其应用的范围和效果。
而材料力学性能则是评估材料质量和适用性的关键指标。
材料的力学性能主要包括强度、硬度、塑性、韧性、疲劳性能等。
强度是材料抵抗外力破坏的能力,通常用屈服强度和抗拉强度来表示。
屈服强度是材料开始产生明显塑性变形时的应力,而抗拉强度则是材料在拉伸过程中所能承受的最大应力。
例如,在建筑领域,高强度的钢材能够承受更大的载荷,使建筑物更加稳固可靠。
硬度反映了材料抵抗局部塑性变形的能力。
常见的硬度测试方法有布氏硬度、洛氏硬度和维氏硬度等。
硬度高的材料通常具有较好的耐磨性,如用于制造刀具的高速钢,其硬度较高,能够在切削过程中保持锋利的刃口。
塑性是材料在断裂前产生塑性变形的能力,通常用伸长率和断面收缩率来衡量。
具有良好塑性的材料,如铝合金,在加工过程中容易成型,可以制造出各种复杂形状的零件。
韧性则是材料抵抗冲击载荷的能力。
韧性好的材料在受到突然的冲击时不容易断裂。
例如,汽车的保险杠通常采用具有高韧性的材料,以在碰撞时吸收能量,保护乘客的安全。
疲劳性能对于那些承受周期性载荷的零件至关重要。
长期的反复加载可能导致材料在低于其抗拉强度的应力下发生疲劳断裂。
例如,飞机的机翼在飞行过程中不断受到气流的冲击,其材料必须具备良好的疲劳性能,以确保飞行安全。
不同的材料具有不同的力学性能,这使得它们在不同的领域有着各自的应用。
金属材料,如钢铁、铝合金等,由于其良好的强度和塑性,广泛应用于机械制造、汽车工业、航空航天等领域。
钢铁具有较高的强度和硬度,常用于制造建筑结构和机械零部件;铝合金则具有轻质、高强度和良好的塑性,常用于航空航天和汽车工业中。
高分子材料,如塑料、橡胶等,具有重量轻、耐腐蚀、绝缘性好等优点。
塑料在电子设备、日用品和包装行业中应用广泛;橡胶则因其良好的弹性和耐磨性,常用于制造轮胎、密封件等。
材料的力学性能名词解释总结

屈服强度:表示金属对塑性变形的抗力
抗拉强度:试样断裂前所能承受的最大工程应力
断裂强度:指材料发生断裂时的最大应力与断裂横截面积的比值
断裂延性:拉伸断裂时的真塑性应变
段裂韧性:表征材料阻止裂纹扩展的能力
静力韧度:单位体积材料在断裂前所吸收的能量
冲击韧性:材料在冲击载荷下吸收变形功和断裂功的能力
疲劳强度:金属材料在无限多次交变载荷作用下而不破坏的最大应力持久强度:在给定的温度下和规定时间内,试样发生断裂的应力值蠕变极限:材料在高温长时间载荷作用下的塑性变形抗力指标
疲劳极限:在给定的疲劳寿命下,试件所能承受的上限应力幅值
强度:对塑性变形和断裂的抵抗力
塑性:材料产生不可逆变形的能力
韧性:表示材料在塑性变形和断裂过程中吸收能量的能力
解理断裂:材料在拉应力的作用下,由于原子间结合键遭到破坏,严格地沿一定的结晶学平面劈开而造成的
脆性断裂:断裂前不发生可测得塑性变形
冷脆转变温度:材料从韧性断裂变为脆性断裂时的温度
形变(应变)强化:阻止材料继续发生塑性变形的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学性能:材料在各种外力作用下抵抗变形与断裂得能力。
屈服现象:外力不增加,试样仍然继续伸长,或外力增加到一定数值时突然下降,随后在外力不增加或上下波动情况下,试样继续伸长变形。
屈服过程:在上屈服点,吕德斯带形成;在下屈服点,吕德斯带扩展;当吕德斯带扫过整个试样时,屈服伸长结束。
屈服变形机制:位错运动与增殖得结果。
屈服强度:开始产生塑性变形得最小应力。
屈服判据:屈雷斯加最大切应力理论:在复杂应力状态下,当最大切应力达到或超过相同金属材料得拉伸屈服强度时产生屈服。
米赛斯畸变能判据:在复杂应力状态下,当比畸变能等于或超过相同金属材料在单向拉伸屈服时得比畸变能时,将产生屈服。
消除办法:加入少量能夺取固溶体合金中溶质原子得物质,使之形成稳定化合物得元素;通过预变形,使柯氏气团被破坏。
影响因素:1.内因:a)金属本性及晶格类型:金属本性及晶格类型不同,位错运动所受得阻力不同。
b)晶粒大小与亚结构:减小晶粒尺寸将使屈服强度提高。
c)溶质元素:固溶强化。
d)第二相2.外因:温度(-);应变速率(+);应力状态。
第二相强化(沉淀强化+弥散强化):通过第二相阻碍位错运动实现得强化。
强化效果:在第二相体积比相同得情况下,第二相质点尺寸越小,强度越高,强化效果越好;在第二相体积比相同得情况下,长形质点得强化效果比球形质点得强化效果好;第二相数量越多,强化效果越好。
细晶强化:通过减小晶粒尺寸增加位错运动障碍得数目(阻力大),减小晶粒内位错塞积群得长度(应力小),从而使屈服强度提高得方法。
同时提高塑性及韧性得机理:晶粒越细,变形分散在更多得晶粒内进行,变形较均匀,且每个晶粒中塞积得位错少,因应力集中引起得开裂机会较少,有可能在断裂之前承受较大得变形量,即表现出较高得塑性。
细晶粒金属中,裂纹不易萌生(应力集中少),也不易传播(晶界曲折多),因而在断裂过程中吸收了更多能量,表现出较高得韧性。
固溶强化:在纯金属中加入溶质原子形成固溶合金,将显著提高屈服强度。
原因:溶质原子与位错得弹性相互作用,使溶质原子扩散到位错周围,形成柯氏气团;柯氏气团钉扎位错,提高位错运动阻力。
强化效果:间隙固溶体得强化效果大于置换固溶体;溶质与溶剂原子尺寸差越大,强化效果越好;溶质浓度越大,强化效果越好。
应变硬化(形变强化):金属材料塑性变形过程中所需要得外力不断增大,表明金属材料有一种阻止继续塑性变形得能力。
原因:塑性变形过程中,位错不断增殖,运动受阻所致。
断裂韧度:临界或失稳状态下得应力场强度因子得大小。
塑性变形:作用在物体上得外力取消后,物体得变形不完全恢复而产生得永久变形。
1.单晶体:滑移+孪生;2.多晶体:各个晶粒塑性变形得综合结果。
特点:各晶粒变形得不同时性;不均匀性;相互协调性。
弹性变形:当外力去除后,能恢复到原来形状或尺寸得变形。
物理实质:晶格中原子自平衡位置产生可逆位移得反映。
特点:可逆性;单值性;全程性;变形量很小。
构件得刚度:构件产生单位弹性变形所需要得载荷。
物理意义:表示构件得弹性稳定性得参量,刚度越大,构件工作时越稳定。
在工程上,为了减轻重量,必须选择E较大得材料。
弹性极限:金属产生弹性变形而不产生塑性变形时所受得最大应力。
它表示材料发生弹性变形得极限抗力。
缩颈:韧性金属材料在拉伸试验时变形集中于局部区域得特殊现象。
原因:应变硬化与截面积减小共同作用得结果。
当应变硬化引起得承载力增加不能补偿截面积减小引起得承载力减小时,就会产生缩颈。
缩颈判据1:当应变硬化速率等于该处得真应力时,发生缩颈。
缩颈判据2:当应变硬化指数等于最大真实均匀塑性应变量时,发生缩颈。
为什么真实应力-应变曲线需要校正?因为缩颈产生后,应力状态由单向应力变为三向应力,为了求得仍然就是均匀轴向应力状态下得真实应力,以得到真正得真实应力-应变曲线。
为什么校正后得曲线应力下降?因为三向应力状态下,材料塑性变形比较困难,所以必须提高轴向应力,使塑性变形继续发生。
静力韧度:金属材料光滑试样在静载荷作用下拉伸至断裂,单位体积材料所吸收得能量。
韧度指能量,韧性指能力。
韧度:指金属材料拉伸断裂前单位体积材料所吸收得能量。
韧性:指金属材料断裂前吸收塑性变形功与断裂功得能力。
纯剪切断裂:特征:在切应力作用下,金属产生塑性变形,沿滑移面分离而造成得断裂。
试样内部不产生孔洞,位错只能从试样表面放出。
微孔聚集型断裂:1.通过微孔形核、长大聚合而导致材料分离得。
2.宏观特征:杯锥状断口;微观特征:韧窝。
3.微孔形核:位错运动到第二相与基体界面处,塞积产生应力集中,使第二相质点与基体分离,形成微孔。
4.长大与聚合:每个微型拉伸试样产生缩颈而断裂,相邻微孔聚合,形成微裂纹。
然后在裂纹尖端得三向拉应力区及应力集中区形成新得微孔,借助内缩颈与裂纹连通,如此扩展直到裂纹断裂。
5.韧窝大小得影响因素:第二相质点得大小与密度;应变硬化指数;基体材料得塑性变形能力。
6.韧窝形状得影响因素:正应力:等轴韧窝;切应力:拉长韧窝;撕裂应力:撕裂韧窝。
解理断裂:在一定条件下,当外加正应力达到一定数值后,以极快速率沿解理面产生得穿晶断裂。
基本微观特征:河流花样,解理台阶,舌状花样。
解理裂纹得形成与扩展:1. 甄纳-斯特罗位错塞积理论a) 形成:一群刃型位错沿滑移面运动遇到晶界等障碍而形成位错塞积群,产生得应力集中有可能达到断裂强度而在材料内部沿某一晶体学平面拉出一个裂口。
b) 长大扩展:塑性变形形成裂纹;裂纹在同一晶粒内初期长大;裂纹越过晶界向相邻晶粒扩展。
晶粒尺寸小于临界值时,材料受力后先屈服,后断裂;晶粒尺寸大于临界值时,材料受力后直接脆性断裂。
2. 柯垂尔位错反应理论a) 位错反应必须满足柏氏矢量守恒性与能量降低性。
b) 原理:通过各相交滑移面上得位错滑移,相遇后发生反应形成新位错,新位错塞积产生应力集中,使解理面开裂。
3. 相同点:都就是由于位错运动受阻产生应力集中,从而形成初始裂纹得,即裂纹形成前都有少量塑性变形;裂纹扩展力学条件相同。
4. 不同点:甄纳-斯特罗位错塞积理论得位错在晶界处受阻,裂纹产生于晶界;柯垂尔位错反应理论得位错在晶内解理面处受阻,裂纹产生于晶内。
理论断裂强度(理想晶体解理):就是指在正应力作用下,将晶体得两个原子面沿垂直于外力方向拉断所需得应力。
就是晶体在弹性状态下得最大结合力。
σm =(Eγs a 0)12 其中γs 为表面能,E 为弹性模量,a 0为原子间得平衡距离。
适用于脆性断裂。
格雷菲斯公式(裂纹物体得实际断裂强度):σc =(2Eγs )12 其中γs 为表面能,a 为裂纹得半长度,只适用于薄板。
适用于有裂纹试样得脆性断裂。
断裂判据:外加应力大于σc 时裂纹扩展;裂纹半长度大于a c 时裂纹扩展。
位错塞积及位错反应理论(解理裂纹断裂应力):σc =2Gγk y √d其中G为切变模量,k y 为钉扎常数,d为晶粒直径。
适用于塑性变形中得断裂及无裂纹得完整试样。
金属在单向静拉伸载荷下得性能1. 名词解释a) 弹性比功:金属开始塑性变形前单位体积吸收得最大弹性变形功。
b) 弹性模量E:表征材料对弹性变形得抗力,其值越大,则在相同应力下产生弹性变形就越小。
影响因素:原子本性及晶格类型。
c) 滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变,即应变落后于应力得现象。
d) 循环韧性:金属材料在交变载荷作用下吸收不可逆变形功得能力。
e) 包申格效应:材料经预先加载并产生少量塑性变形,卸载后,再同向加载,规定残余伸长应力增加,反向加载规定残余伸长应力降低得现象。
f)塑性:金属断裂前发生塑性变形(不可逆永久变形)得能力。
意义:i.延伸率与断面收缩率就是安全性能指标,一定得塑性可缓与应力集中,避免脆性断裂;ii.金属得塑变能力就是压力加工成型工艺得基础;iii.用纵横向延伸率之差也可评定钢材得质量。
g)断后伸长率δ:试样拉断后标距得伸长与原始标距得百分比。
h)断面收缩率ψ:试样拉断后缩颈横截面积得最大缩减量与原始横截面积得百分比。
对于在单一拉伸条件下工作得长形零件,用断后伸长率δ评定其塑性;对于非长形零件,用断面收缩率ψ评定其塑性。
i)脆性:材料在外力作用下产生很小得变形即断裂破坏得能力。
j)韧性:指金属材料断裂前吸收塑性变形功与断裂功得能力。
k)解理台阶:相互平行且位于不同高度得解理面连接形成得台阶。
l)河流花样:若干解理台阶汇合形成得花样。
m)解理刻面:大致以晶粒大小为单位得解理面。
解理裂纹得扩展:晶界应力集中→一系列相互平行而位于不同高度得解理面相互连接形成解理台阶→若干解理台阶汇合形成河流状花样(支流汇合方向即为裂纹扩展方向)n)解理面:金属材料在外力作用下严格沿着一定晶体学平面发生解理断裂时得平面,一般就是低指数晶面或表面能最低得晶面。
o)穿晶断裂:裂纹穿过晶内发生得断裂;p)沿晶断裂:裂纹沿晶界扩展发生得断裂;q)韧脆转变:在一定温度下,材料由韧性状态转变为脆性状态得现象。
r)σ0.2:规定残余伸长率为0、2%时得应力,用以表示材料得屈服强度。
s)屈服点σs:屈服状态得金属材料拉伸时,试样在外力不增加仍能继续伸长时得应力。
t)抗拉强度σb:韧性金属材料拉断过程中最大载荷所对应得应力。
u)应变硬化指数n:表示金属得应变硬化能力,反映了金属材料抵抗均匀塑性变形得能力。
(其值越大,曲线越陡,抵抗均匀塑性变形得能力就越强,并不代表其塑性差。
)2.金属得弹性模量主要取决于什么?为什么说它就是一个对结构不敏感得力学性能?弹性模量主要取决于原子本性及晶格类型。
由于弹性变形就是原子间距在外力作用下可逆变化得结果,应力与应变关系实际上就是原子间作用力与原子间距得关系,所以弹性模量与原子间作用力与原子间距有关,导致合金化,热处理,冷塑性变形对弹性模量得影响较小,因此说它对结构不敏感。
3.今有45、40Cr、35CrMo钢与灰铸铁几种材料,您选择那种材料作为机床机身?为什么?机床床身需要良好得减震性能,即选择高循环韧性得材料。
而灰铸铁得循环韧性最高,消振性最好,因此选择灰铸铁。
4.试举出几种能显著强化金属而又不降低其塑性得方法。
a)细晶强化:通过减小晶粒尺寸增加位错运动障碍得数目(阻力大),减小晶粒内位错塞积群得长度(应力小),从而使屈服强度提高得方法。
由于细化晶粒后晶界面积增大,而晶界就是位错运动得障碍,因此可以提高屈服强度。
而且细晶可以使塑性变形分散到每个晶粒内进行,以此提高塑性与韧性。
b)应变硬化:金属材料塑性变形过程中所需要得外力不断增大,因此可以通过使金属材料发生塑性变形来强化金属得方法。
由于它只就是提高了金属抵抗均匀塑性变形得能力,并没有影响金属得塑性变形量,因此它可以在不影响塑性得情况下强化金属。
5.为何工程应力-应变曲线上,塑性变形到一定程度时应力却开始下降?因为工程应力-应变曲线上得应力与应变就是用试样原始截面积与原始标距长度来度量得,并不代表实际瞬时得应力与应变。