(重)常见材料的力学性能
材料的力学性能包括

材料的力学性能包括材料的力学性能是指材料在外力作用下所表现出的力学特性,包括强度、韧性、硬度、塑性等方面。
这些性能对于材料的选择、设计和应用具有重要的指导意义。
下面将分别介绍材料的力学性能。
首先,强度是材料抵抗外力破坏的能力。
材料的强度可以分为拉伸强度、压缩强度、剪切强度等。
拉伸强度是指材料在拉伸作用下抵抗破坏的能力,压缩强度是指材料在压缩作用下抵抗破坏的能力,剪切强度是指材料在剪切作用下抵抗破坏的能力。
强度的大小直接影响着材料的使用安全性和可靠性,因此在材料选择和设计中需要充分考虑材料的强度。
其次,韧性是材料在外力作用下抵抗破坏的能力。
韧性是材料抵抗断裂的能力,通常用断裂韧性来表示。
断裂韧性是指材料在受到外力作用下能够吸收能量并抵抗断裂的能力。
韧性越大,材料在外力作用下越不容易发生断裂,具有更好的抗破坏能力。
因此,韧性是衡量材料抗破坏能力的重要指标之一。
另外,硬度是材料抵抗划伤、压痕和穿透的能力。
硬度是材料抵抗外力作用而不易产生形变或破坏的能力。
硬度的大小直接影响着材料的耐磨性和耐久性,对于一些需要长期使用的材料来说,硬度是一个非常重要的性能指标。
最后,塑性是材料在外力作用下发生形变的能力。
塑性是指材料受到外力作用后能够发生持久性形变的能力,通常用屈服点和延伸率来表示。
塑性越大,材料在外力作用下发生形变的能力越强,具有更好的加工性能和变形能力。
总的来说,材料的力学性能是材料在外力作用下所表现出的力学特性,包括强度、韧性、硬度、塑性等方面。
这些性能直接影响着材料的使用安全性、耐久性和加工性能,对于材料的选择、设计和应用具有重要的指导意义。
因此,在材料研究和工程应用中,需要充分考虑材料的力学性能,以确保材料的使用安全和可靠。
工程材料力学性能

工程材料力学性能1. 引言工程材料力学性能是指材料在外力作用下的力学行为和性能特征。
能够准确评估材料的力学性能对于工程设计和材料选择具有重要意义。
本文将介绍一些常见的工程材料力学性能参数及其测试方法。
2. 抗拉强度抗拉强度是衡量材料抗拉能力的指标,通常用Mpa(兆帕)表示。
该值表示材料能够承受的最大拉伸力。
一般情况下,抗拉强度越高,材料的抗拉性能越好。
抗拉强度的测试可以通过拉伸试验来完成。
在拉伸试验中,标准试样会受到均匀的拉力,直到发生材料破裂。
通过测量试样的最大载荷和横截面积,可以计算出抗拉强度。
3. 弹性模量弹性模量是衡量材料刚性和变形能力的指标,通常用Gpa (千兆帕)表示。
弹性模量越大,材料的刚性越好,变形能力越小,即材料在外力作用下不容易发生变形。
弹性模量的测试可以通过弹性试验来完成。
在弹性试验中,标准试样会受到一定的载荷,然后释放。
通过测量载荷-变形关系的斜率,即应力-应变的比值,可以计算出弹性模量。
4. 屈服强度屈服强度是材料在拉伸过程中突破弹性极限后的抗拉能力,通常用Mpa表示。
屈服强度代表了材料的韧性和延展性。
材料的屈服强度越高,其抗变形性能越好。
屈服强度的测试可以通过拉伸试验或压缩试验来完成。
在拉伸试验中,标准试样会受到逐渐增加的拉力,直到发生塑性变形。
通过测量试样的屈服点和横截面积,可以计算出屈服强度。
5. 硬度硬度是衡量材料抗外界划痕和压痕能力的指标。
常见的硬度测试方法包括布氏硬度(HB)、维氏硬度(HV)、洛氏硬度(HRC)等。
硬度测试方法根据材料的硬度特性进行选择。
例如,布氏硬度适用于较软的金属材料,而维氏硬度适用于硬度较高的金属材料。
硬度的测试结果通常以单位压力下形成的压痕直径或者硬度值表示。
6. 断裂韧性断裂韧性是衡量材料抵抗破裂扩展的能力以及吸收塑性能力的指标。
常用的断裂韧性测试包括冲击试验和拉伸试验。
冲击试验通常用于低温下材料的断裂韧性测试。
在冲击试验中,冲击试样受到快速施加的冲击载荷,通过测量试样的断裂能量和断口形貌,可以评估材料的断裂韧性。
(重)常见材料的力学性能

(重)常见材料的力学性能附录常用材料的力学及其它物理性能一、玻璃的强度设计值 f g(MPa)JGJ102-2003表5.2.1二、铝合金型材的强度设计值 (MPa)GB50429-2007表4.3.4三、钢材的强度设计值(1-热轧钢材) f s(MPa) JGJ102-2003表5.2.3四、钢材的强度设计值(2-冷弯薄壁型钢) f s(MPa)五、材料的弹性模量E(MPa)JGJ102-2003表5.2.8、JGJ133-2001表5.3.9六、材料的泊松比υJGJ102-2003表5.2.9、JGJ133-2001表5.3.10、GB50429-2007表4.3.7七、材料的膨胀系数α(1/℃)JGJ102-2003表5.2.10、JGJ133-2001表5.3.11、GB50429-2007表4.3.7八、材料的重力密度γg (KN/m )JGJ102-2003表5.3.1、GB50429-2007表4.3.7九、板材单位面积重力标准值(MPa )JGJ133-2001表5.2.2十、螺栓连接的强度设计值一(MPa) JGJ102-2003表B.0.1-1十一、螺栓连接的强度设计值二(MPa)十二、焊缝的强度设计值(MPa) JGJ102-2003表B.0.1-3十三、不锈钢螺栓连接的强度设计值(MPa) JGJ102-2003表B.0.3十四、楼层弹性层间位移角限值GB/T21086-2007表20十五、部分单层铝合板强度设计值(MPa)JGJ133-2001表5.3.2十六、铝塑复合板强度设计值(MPa)JGJ133-2001表5.3.3十七、蜂窝铝板强度设计值(MPa)JGJ133-2001表5.3.4十八、不锈钢板强度设计值(MPa)附录常用材料的力学及其它物理性能十九、玻璃的强度设计值f g(N/mm2)二十、铝合金型材的强度设计值 f a(N/mm2)二十一、钢材的强度设计值(1-热轧钢材)f s(N/mm2)二十二、钢材的强度设计值(2-冷弯薄壁型钢) f s(N/mm2)二十三、材料的弹性模量E(N/mm2)二十四、材料的泊松比υ二十五、材料的膨胀系数α(1/℃)二十六、材料的重力密度γg (KN/m3)二十七、板材单位面积重力标准值(N/m2)二十八、螺栓连接的强度设计值(N/mm2)二十九、焊缝的强度设计值(N/mm2)三十、不锈钢螺栓连接的强度设计值(N/mm2)三十一、楼层弹性层间位移角限值钢筋混凝土框支层1/1000多、高层钢结构1/300 三十二、部分单层铝合板强度设计值(MPa)三十三、铝塑复合板强度设计值(MPa)JGJ133-2001表5.3.3板厚t(mm) 抗拉强度f ta2抗剪强度f va24 70 20 三十四、蜂窝铝板强度设计值(MPa)JGJ133-2001表5.3.4板厚t(mm) 抗拉强度f ta3抗剪强度f va320 10.5 1.4 三十五、不锈钢板强度设计值(MPa)。
轴的常用材料及其主要力学性能

320
185
280
177~213
性能接近于40CrNi,用于重载荷的轴
35CrMo
调质
>300~500
207~269
650
450
295
170
260
163~196
性能接近于40CrNi,用于重载荷的轴
35CrMo
调质
>500~800
207~269
600
400
270
155
240
150~180
性能接近于40CrNi,用于重载荷的轴
750
450
320
182
300
213~246
性能接近于40Cr,用于中小型轴
35SiMn(42SiMn)
调质
>300~400
217~255
700
400
295
170
280
196~227
性能接近于40Cr,用于中小型轴
35SiMn(42SiMn)
调质
>400~500
196~255
650
380
275
160
260
183~211
性能接近于40Cr,用于中小型轴
40MnB
调质
25
-
1000
800
485
280
400
269~323
性能接近于40Cr,用于重要的轴
40MnB
调质
≤200
241~286
750
500
335
195
300
186~223
性能接近于40Cr,用于重要的轴
40CrNi
调质
25
金属材料的力学性能指标

金属材料的力学性能指标金属材料是工程中常用的材料之一,其力学性能指标对于材料的选择和设计具有重要意义。
力学性能指标是评价金属材料力学性能的重要依据,主要包括强度、韧性、塑性、硬度等指标。
下面将对金属材料的力学性能指标进行详细介绍。
首先,强度是评价金属材料抵抗外部力量破坏能力的指标。
强度可以分为屈服强度、抗拉强度、抗压强度等。
其中,屈服强度是材料在受到外部力作用下开始产生塑性变形的应力值,抗拉强度是材料在拉伸状态下抵抗破坏的能力,抗压强度是材料在受到压缩力作用下抵抗破坏的能力。
强度指标直接影响着材料的承载能力和使用寿命。
其次,韧性是材料抵抗断裂的能力。
韧性指标包括冲击韧性、断裂韧性等。
冲击韧性是材料在受到冲击载荷作用下抵抗破坏的能力,断裂韧性是材料在受到静态载荷作用下抵抗破坏的能力。
韧性指标反映了材料在受到外部冲击或载荷作用下的抗破坏能力,对于金属材料的使用安全性具有重要意义。
再次,塑性是材料在受力作用下产生塑性变形的能力。
塑性指标包括伸长率、收缩率等。
伸长率是材料在拉伸破坏前的延展性能指标,收缩率是材料在受力破坏后的收缩性能指标。
塑性指标直接影响着金属材料的加工性能和成形性能,对于金属材料的加工工艺和成形工艺具有重要影响。
最后,硬度是材料抵抗划伤、压痕等表面破坏的能力。
硬度指标包括洛氏硬度、巴氏硬度等。
硬度指标反映了材料表面的硬度和耐磨性能,对于金属材料的耐磨性和使用寿命具有重要意义。
综上所述,金属材料的力学性能指标是评价材料性能的重要依据,强度、韧性、塑性、硬度等指标直接影响着材料的使用性能和工程应用。
在工程设计和材料选择中,需要根据具体的工程要求和使用环境,综合考虑各项力学性能指标,选择合适的金属材料,以确保工程的安全可靠性和经济性。
材料的常用力学性能有哪些

材料的常用力学性能有哪些材料的常用力学性能指标有哪些材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能.锅炉、压力容器用材料的常规力学性能指标主要包括:强度、硬度、塑性和韧性等.(1)强度强度是指金属材料在外力作用下对变形或断裂的抗力.强度指标是设计中决定许用应力的重要依据,常用的强度指标有屈服强度σS或σ0.2和抗拉强度σb,高温下工作时,还要考虑蠕变极限σn和持久强度σD.(2)塑性塑性是指金属材料在断裂前发生塑性变形的能力.塑性指标包括:伸长率δ,即试样拉断后的相对伸长量;断面收缩率ψ,即试样拉断后,拉断处横截面积的相对缩小量;冷弯(角)α,即试件被弯曲到受拉面出现第一条裂纹时所测得的角度.(3)韧性韧性是指金属材料抵抗冲击负荷的能力.韧性常用冲击功Ak和冲击韧性值αk表示.Αk值或αk值除反映材料的抗冲击性能外,还对材料的一些缺陷很敏感,能灵敏地反映出材料品质、宏观缺陷和显微组织方面的微小变化.而且Ak对材料的脆性转化情况十分敏感,低温冲击试验能检验钢的冷脆性.表示材料韧性的一个新的指标是断裂韧性δ,它是反映材料对裂纹扩展的抵抗能力.(4)硬度硬度是衡量材料软硬程度的一个性能指标.硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样.最常用的是静负荷压入法硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值表示材料表面抵抗坚硬物体压入的能力.而肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小.因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标.力学性能主要包括哪些指标材料的力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征.性能指标包括:弹性指标、硬度指标、强度指标、塑性指标、韧性指标、疲劳性能、断裂韧度.钢材的力学性能是指标准条件下钢材的屈服强度、抗拉强度、伸长率、冷弯性能和冲击韧性等,也称机械性能.金属材料的力学性能指标有哪些一:弹性指标1.正弹性模量2.切变弹性模量3.比例极限4.弹性极限二:强度性能指标1.强度极限2.抗拉强度3.抗弯强度4.抗压强度5.抗剪强度6.抗扭强度7.屈服极限(或者称屈服点)8.屈服强度9.持久强度10.蠕变强度三:硬度性能指标1.洛氏硬度2.维氏硬度3.肖氏硬度四:塑性指标1:伸长率(延伸率)2:断面收缩率五:韧性指标1.冲击韧性2.冲击吸收功3.小能量多次冲击力六:疲劳性能指标1.疲劳极限(或者称疲劳强度) 七:断裂韧度性能指标1.平面应变断裂韧度2.条件断裂韧度衡量钢材力学性能的常用指标有哪钢材的力学性能是指标准条件下钢材的屈服强度、抗拉强度、伸长率、冷弯性能和冲击韧性等,也称机械性能.1. 屈服强度钢材单向拉伸应力—应变曲线中屈服平台对应的强度称为屈服强度,也称屈服点,是建筑钢材的一个重要力学特征.屈服点是弹性变形的终点,而且在较大变形范围内应力不会增加,形成理想的弹塑性模型.低碳钢和低合金钢都具有明显的屈服平台,而热处理钢材和高碳钢则没有.2. 抗拉强度单向拉伸应力—应变曲线中最高点所对应的强度,称为抗拉强度,它是钢材所能承受的最大应力值.由于钢材屈服后具有较大的残余变形,已超出结构正常使用范畴,因此抗拉强度只能作为结构的安全储备.3. 伸长率伸长率是试件断裂时的永久变形与原标定长度的百分比.伸长率代表钢材断裂前具有的塑性变形能力,这种能力使得结构制造时,钢材即使经受剪切、冲压、弯曲及捶击作用产生局部屈服而无明显破坏.伸长率越大,钢材的塑性和延性越好.屈服强度、抗拉强度、伸长率是钢材的三个重要力学性能指标.钢结构中所有钢材都应满足规范对这三个指标的规定.4. 冷弯性能根据试样厚度,在常温条件下按照规定的弯心直径将试样弯曲180°,其表面无裂纹和分层即为冷弯合格.冷弯性能是一项综合指标,冷弯合格一方面表示钢材的塑性变形能力符合要求,另一方面也表示钢材的冶金质量(颗粒结晶及非金属夹杂等)符合要求.重要结构中需要钢材有良好的冷、热加工工艺性能时,应有冷弯试验合格保证.5. 冲击韧性冲击韧性是钢材抵抗冲击荷载的能力,它用钢材断裂时所吸收的总能量来衡量.单向拉伸试验所表现的钢材性能都是静力性能,韧性则是动力性能.韧性是钢材强度、塑性的综合指标,韧性越低则发生脆性破坏的可能性越大.韧性值受温度影响很大,当温度低于某一值时将急剧下降,因此应根据相应温度提出要求.力学性能指标符号是什么?任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用.如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等.这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力.这种能力就是材料的力学性能.金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标.1.1.1 强度强度是指金属材料在静载荷作用下抵抗变形和断裂的能力.强度指标一般用单位面积所承受的载荷即力表示,符号为σ,单位为MPa.工程中常用的强度指标有屈服强度和抗拉强度.屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示.抗拉强度是指金属材料在拉力的作用下,被拉断前所能承受的最大应力值,用σb表示.对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,而用抗拉强度作为其强度设计的依据.1.1.2 塑性塑性是指金属材料在外力作用下产生塑性变形而不断裂的能力.工程中常用的塑性指标有伸长率和断面收缩率.伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号δ表示.断面收缩率指试样拉断后,断面缩小的面积与原来截面积之比,用y表示.伸长率和断面收缩率越大,其塑性越好;反之,塑性越差.良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件.1.1.3 硬度硬度是指材料表面抵抗比它更硬的物体压入的能力.硬度的测试方法很多,生产中常用的硬度测试方法有布氏硬度测试法和洛氏硬度试验方法两种.(一)布氏硬度试验法布氏硬度试验法是用一直径为D的淬火钢球或硬质合金球作为压头,在载荷P的作用下压入被测试金属表面,保持一定时间后卸载,测量金属表面形成的压痕直径d,以压痕的单位面积所承受的平均压力作为被测金属的布氏硬度值.布氏硬度指标有HBS和HBW,前者所用压头为淬火钢球,适用于布氏硬度值低于450的金属材料,如退火钢、正火钢、调质钢及铸铁、有色金属等;后者压头为硬质合金,适用于布氏硬度值为450~650的金属材料,如淬火钢等.布氏硬度测试法,因压痕较大,故不宜测试成品件或薄片金属的硬度.(二)洛氏硬度试验法洛氏硬度试验法是用一锥顶角为120°的金刚石圆锥体或直径为f1.558mm(1/16英寸)的淬火钢球为压头,以一不定的载荷压入被测试金属材料表面,根据压痕深度可直接在洛氏硬度计的指示盘上读出硬度值.常用的洛氏硬度指标有HRA、HRB和HRC三种.采用120°金刚石圆锥体为压头,施加压为600N时,用HRA表示.其测量范围为60~85,适于测量合金、表面硬化钢及较薄零件.采用f1.588mm淬火钢球为压头,施加压力为1000N时,用HRC表示,其测量硬度值范围为25~100,适于测量有色金属、退火和正火钢及锻铁等.采用120°金刚石圆锥体为压头,施加压力为1500N时,用HRC表示,其测量硬度值范围为20~67,适于测量淬火钢、调质钢等.洛氏硬度测试,操作迅速、简便,且压痕小不损伤工件表面,故适于成品检验.硬度是材料的重要力学性能指标.一般材料的硬度越高,其耐磨性越好.材料的强度越高,塑性变形抗力越大,硬度值也越高.1.1.4 冲击韧性金属材料抵抗冲击载荷的能力称为冲击韧性,用ak表示,单位为J/cm2.冲击韧性常用一次摆锤冲击弯曲试验测定,即把被测材料做成标准冲击试样,用摆锤一次冲断,测出冲断试样所消耗的冲击AK,然后用试样缺口处单位截面积F上所消耗的冲击功ak表示冲击韧性.ak值越大,则材料的韧性就越好.ak值低的材料叫做脆性材料,ak值高的材料叫韧性材料.很多零件,如齿轮、连杆等,工作时受到很大的冲击载荷,因此要用ak值高的材料制造.铸铁的ak值很低,灰口铸铁ak值近于零,不能用来制造承受冲击载荷的零件.低碳钢的力学性能指标低碳钢由于含碳量低,它的延展性、韧性和可塑性都是高于铸铁的,拉伸开始时,低碳钢试棒受力大,先发生变形,随着变形的增大,受力逐渐减小,当试棒断开的瞬间,受力为“0”,其受力曲线是呈正弦波>0的形状.铸铁由于轫性差,拉伸开始时,受力是逐步加大的,当达到并超过它的拉伸极限时,试棒断开,受力瞬间为“0”,其受力曲线是随受力时间延长,一条直线向斜上方发展,试棒断开,直线垂直向下归“0”.同样的道理:低碳钢抗压缩的能力比铸铁要低,当对低碳钢试块进行压缩实验时,受力逐渐加大,试块随外力变形,当试块变形达到极限时,其受力也达到最大值,其受力曲线是一条向斜上方的直线.铸铁则不然,开始时与低碳钢受力情况基本相同,只是当铸铁试块受力达到本身的破坏极限时,受力逐渐减小,直到试块在外力下被破坏(裂开),受力为“0”其受力曲线与低碳钢拉伸时的受力曲线相同.以上就是低碳钢和铸铁在拉伸和压缩时力学性质的异同点.简述常用力学性能指标在选材中的意义?钢材常见的力学性能通俗解释归为四项,即:强度、硬度、塑性、韧性.简单的可这样解释:强度,是指材料抵抗变形或断裂的能力.有二种:屈服强度σb、抗拉强度σs.强度指标是衡量结构钢的重要指标,强度越高说明钢材承受的力(也叫载荷)越大;硬度,是指材料表面抵抗硬物压人的能力.常见有三种:布氏硬度HBS、洛氏硬度HRC、维氏硬度HV.硬度是衡量钢材表面变形能力的指标,硬度越高,说明钢的耐磨性越好;即不容易磨损;塑性,是指材料产生变形而不断裂的能力.有两种表示方法:伸长率δ、断面收缩率ψ.塑性是衡量钢材成型能力的指标,塑性越高,说明钢材的延展性越好,即容易拉丝或轧板;韧性也叫冲击韧性,是指材料抵抗冲击变形的能力,表示方法为冲击值αk.冲击韧性是衡量钢材抗冲击能力的指标,数值越高,说明钢材抵抗运动载荷的能力越强.一般情况下,强度低的钢材,硬度也低,塑性和韧性就高,例如钢板、型材,就是由强度较低的钢材生产的;而强度较高的钢材,硬度也高,但塑性和韧性就差,例如生产机械零件的中碳钢、高碳钢,就很少看到轧成板或拉成丝."钢材的主要力学性能指标有哪些(1)拉伸性能反映建筑钢材拉伸性能的指标,包括屈服强度、抗拉强度和伸长率.屈服强度是结构设计中钢材强度的取值依据.抗拉强度与屈服强度之比(强屈比)是评价钢材使用可靠性的一个参数.强屈比愈大,钢材受力超过屈服点工作时的可靠性越大,安全性越高;但强屈比太大,钢材强度利用率偏低,浪费材料.钢材在受力破坏前可以经受永久变形的性能,称为塑性.在工程应用中,钢材的塑性指标通常用伸长率表示.伸长率是钢材发生断裂时所能承受永久变形的能力.伸长率越大,说明钢材的塑性越大.试件拉断后标距长度的增量与原标距长度之比的百分比即为断后伸长率.对常用的热轧钢筋而言,还有一个最大力总伸长率的指标要求.预应力混凝土用高强度钢筋和钢丝具有硬钢的特点,抗拉强度高,无明显的屈服阶段,伸长率小.由于屈服现象不明显,不能测定屈服点,故常以发生残余变形为0.2%原标距长度时的应力作为屈服强度,称条件屈服强度,用σ0.2表示.(2)冲击性能冲击性能是指钢材抵抗冲击荷载的能力.钢的化学成分及冶炼、加工质量都对冲击性能有明显的影响.除此以外,钢的冲击性能受温度的影响较大,冲击性能随温度的下降而减小;当降到一定温度范围时,冲击值急剧下降,从而可使钢材出现脆性断裂,这种性质称为钢的冷脆性,这时的温度称为脆性临界温度.脆性临界温度的数值愈低,钢材的低温冲击性能愈好.所以,在负温下使用的结构,应当选用脆性临界温度较使用温度低的钢材.(3)疲劳性能受交变荷载反复作用时,钢材在应力远低于其屈服强度的情况下突然发生脆性断裂破坏的现象,称为疲劳破坏.疲劳破坏是在低应力状态下突然发生的,所以危害极大,往往造成灾难性的事故.钢材的疲劳极限与其抗拉强度有关,一般抗拉强度高,其疲劳极限也较高.硬度硬度,物理学专业术语,材料局部抵抗硬物压入其表面的能力称为硬度。
材料力学性能

材料⼒学性能第⼀章⼀.静载拉伸实验拉伸试样⼀般为光滑圆柱试样或板状试样。
若采⽤光滑圆柱试样,试样⼯作长度(标长)l0 =5d0 或l0 =10d0,d0 为原始直径。
⼆.⼯程应⼒:载荷除以试件的原始截⾯积。
σ=F/A0⼯程应变:伸长量除以原始标距长度。
ε=ΔL/L0低碳钢的变形过程:弹性变形、不均匀屈服塑性变形(屈服)、均匀塑性变形(明显塑性变形)、不均匀集中塑性变形、断裂。
三.低碳钢拉伸⼒学性能1.弹性阶段(Ob)(1)直线段(Oa):线弹性阶段,E=σ/ε(弹性模量,⽐例常数)σp—⽐例极限(2)⾮直线段(ab):⾮线弹性阶段σe—弹性极限2. 屈服阶段(bc)屈服现象:当应⼒超过b点后,应⼒不再增加,但应变继续增加,此现象称为屈服。
σs—屈服强度(下屈服点),屈服强度为重要的强度指标。
3.强化阶段(ce)材料抵抗变形的能⼒⼜继续增加,即随试件继续变形,外⼒也必须增⼤,此现象称为材料强化。
σb—抗拉强度,材料断裂前能承受的最⼤应⼒4.局部变形阶段(颈缩)(ef)试件局部范围横向尺⼨急剧缩⼩,称为颈缩。
四.主要⼒学性能指标弹性极限(σe):弹性极限即指⾦属材料抵抗这⼀限度的外⼒的能⼒屈服强度(σs):抵抗微量塑性变形的应⼒五.铸铁拉伸⼒学性能特点:(1)较低应⼒下被拉断(2)⽆屈服,⽆颈缩(3)延伸率低(4)σb—强度极限(5)抗压不抗拉讨论1:σs 、σr0.2、σb都是机械设计和选材的重要论据。
实际使⽤时怎么办?塑性材料:σs 、σr0.2脆性材料:σb屈强⽐:σs /σb讨论2:屈强⽐σs /σb有何意义?屈强⽐s / b值越⼤,材料强度的有效利⽤率越⾼,但零件的安全可靠性降低。
六.弹性变形及其实质定义:当外⼒去除后,能恢复到原来形状和尺⼨的变形。
特点:单调、可逆、变形量很⼩(<0.5~1.0%)2E 21a 2e e e e σεσ==七.弹性模量1、物理意义:材料对弹性变形的抗⼒。
常见金属材料的力学性能名称

常见金属材料的力学性能名称、代号、单位和涵义指标单位涵义说明名称符号弹性指标弹性模量E N/mm2金属在弹性范围内,外力和变形成比例地增长,即应力与应变成正比例关系时(符合虎克定理),这个比例系数就称为弹性模量,根据应力,应变的性质通常又分为:弹性模量和切变模量,弹性模量的大小,相当于引起物体单位变形时所需应力之大小,是衡量材料刚度的指标,弹性模量愈大,刚度也愈大。
切变模量G N/mm2弹性极限σe N/mm2这是表示金属最大弹性的指标,即在弹性变形阶段,试样不产生塑性变形时所能承受的最大应力强度性能指标抗拉强度σb N/mm2指外力是拉力时的强度极限,它是衡量金属材料强度的主要性能指标抗弯强度σbb或σwN/mm2指外力是弯曲力时的强度极限抗压强度σbc或σyN/mm2指外力是压力时的强度极限,压缩试验主要适用于低塑性材料,如铸铁、塑料等抗剪强度τN/mm2指外力是剪切力时的强度极限抗扭强度τb N/mm2指外力是扭转力时的强度极限屈服点σs N/mm2金属承受载荷时,当载荷不再增加,但金属本身的变形却继续增加的现象称为屈服,产生屈服现象时的应力叫屈服点屈服强度σ0.2N/mm2金属发生屈服现象时,为便于测量,通常按其产生永久残余变形量等于试样原长0.2%时的应力,作为屈服强度持久强度σb/hN/mm2指金属在一定的高温条件下,经过规定时间发生断裂时的应力,一般所指的持久强度,是指在一定温度下,试样经十万小时后的破断强度蠕变极限σ%/hN/mm2金属在高温环境下,即使所受应力小于屈服点,也会随着时间的增长而缓慢地产生永久变形,这种现象叫做蠕变,在一定的温度下经一定的时间,金属的蠕变速度仍不超过规定的数值,此时所能承受的最大应力,称为蠕变极限硬度性能指标布氏硬度HBSHBWN/mm2用淬硬小钢球或硬质合金球压入金属表面,以其压痕面积除加压在钢球上的载荷,所得之商,即为金属的布氏硬度数值。
使用钢球测定硬度≤450HBS;使用硬质合金球测定硬度>450HBW洛氏硬度C级HRC 无量钢用1471N载荷,将顶角为120°的圆锥形金刚石的压头,压入金属表面,取其压痕的深度来计算硬度的大小,即为金属的HRC硬度,HRC用来测量HB=230~700的金属材料,主要用于测定淬火钢及较硬的金属材料A级HRA 指用588.4N载荷和顶角为120°的圆锥形金刚石的压头所测定出来的硬度,一般用来测定硬度很高或硬而薄的金属材料,如碳化物、硬质合金或表面处理过的零件B级HRB 指用980.7N载荷和直径为1.59mm(即1/16in)的淬硬钢球所测得的硬度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录常用材料的力学及其它物理性能
一、玻璃的强度设计值 f g(MPa)
JGJ102-2003表5.2.1
二、铝合金型材的强度设计值 (MPa)
GB50429-2007表4.3.4
三、钢材的强度设计值(1-热轧钢材) f s(MPa)
JGJ102-2003表5.2.3
四、钢材的强度设计值(2-冷弯薄壁型钢) f s(MPa)
五、材料的弹性模量E(MPa)
JGJ102-2003表5.2.8、JGJ133-2001表5.3.9
六、 材料的泊松比υ
JGJ102-2003表5.2.9、JGJ133-2001表5.3.10、GB50429-2007表4.3.7
七、 材料的膨胀系数α(1/℃)
JGJ102-2003表5.2.10、JGJ133-2001表5.3.11、GB50429-2007表4.3.7
八、 材料的重力密度γg (KN/m )
JGJ102-2003表5.3.1、GB50429-2007表4.3.7
九、
板材单位面积重力标准值(MPa )
JGJ133-2001表5.2.2
十、 螺栓连接的强度设计值一(MPa) JGJ102-2003表B.0.1-1
十一、螺栓连接的强度设计值二(MPa)
十二、焊缝的强度设计值(MPa) JGJ102-2003表B.0.1-3
十三、不锈钢螺栓连接的强度设计值(MPa) JGJ102-2003表B.0.3
十四、楼层弹性层间位移角限值
GB/T21086-2007表20
十五、部分单层铝合板强度设计值(MPa)JGJ133-2001表5.3.2
十六、铝塑复合板强度设计值(MPa)
JGJ133-2001表5.3.3
十七、蜂窝铝板强度设计值(MPa)
JGJ133-2001表5.3.4
十八、不锈钢板强度设计值(MPa)
附录常用材料的力学及其它物理性能十九、玻璃的强度设计值 f g(N/mm2)
二十、铝合金型材的强度设计值 f a(N/mm2)
二十一、钢材的强度设计值(1-热轧钢材)f s(N/mm2)
二十二、钢材的强度设计值(2-冷弯薄壁型钢) f s(N/mm2)
二十三、材料的弹性模量E(N/mm2)
二十四、材料的泊松比υ
二十五、材料的膨胀系数α(1/℃)
二十六、材料的重力密度γg (KN/m3)
二十七、板材单位面积重力标准值(N/m2)
二十八、螺栓连接的强度设计值(N/mm2)
二十九、焊缝的强度设计值(N/mm2)
三十、不锈钢螺栓连接的强度设计值(N/mm2)
三十一、楼层弹性层间位移角限值
钢筋混凝土框支层1/1000
多、高层钢结构1/300 三十二、部分单层铝合板强度设计值(MPa)
三十三、铝塑复合板强度设计值(MPa)
JGJ133-2001表5.3.3
板厚t(mm) 抗拉强度f t
a2抗剪强度f v
a2
4 70 20 三十四、蜂窝铝板强度设计值(MPa)
JGJ133-2001表5.3.4
板厚t(mm) 抗拉强度f t
a3抗剪强度f v
a3
20 10.5 1.4 三十五、不锈钢板强度设计值(MPa)。