中性点直接接地系统.

合集下载

电力系统的中性点接地方式

电力系统的中性点接地方式

电力系统的中性点接地方式电力系统中发电机绕组通常用Y联结、变压器高压绕组通常Y联结,Y联结绕组中性点统称电力系统中性点。

中性点接地方式有直接接地、不接地和经消弧线圈接地。

中性点接地方式要综合考虑电力系统的过电压与绝缘、继电保护与自动装置的配置、短路电流、供电可靠性。

中性点直接接地方式,系统发生单相接地故障时短路电流很大;中性点不接地和中性点经消弧线圈接地方式,系统发生单相接地故障时短路电流小。

1.中性点直接接地系统110kV及以上电网采用中性点直接接地方式。

实际运行时电网中性点并非全部同时接地,只有一部分接地,即合上中性点接地刀开关,其余则不接地即拉开其中性点接地刀开关。

系统单相接地时短路电流在合适范围,满足继电保护动作灵敏度需要,但不能过大。

一般单相短路电流不大于同一地点三相短路电流。

此系统正常运行时,系统中性点没有入地电流或只有极小的三相不平衡电流。

当发生单相接地时,短路电流足够大,继电保护装置动作,迅速切除故障电路;系统非故障部分仍正常运行。

接地故障线路停电,可在线路加装自动重合闸装置,如发生瞬时性接地故障,重合闸成功,停电约0.5s,系统供电可靠。

单相接地电流较大,对邻近通信线路电磁干扰较强。

我国380/220V三相四线系统,中性点直接接地。

2.中性点不接地系统我国3kV、6kV、10kV、35kV系统,当单相接地时根据电容电流中性点不接地,具体规定为3~6kV电网单相接地电容电流不大于30A;10kV电网单相接地电容电流不大于20A;35kV电网单相接地电容电流不大于10A。

因中性点未接地,当发生单相接地时,只能通过线路对地电容构成单相接地回路,故障点流过很小的容性电流(电弧)自行熄灭。

同时,系统三个线电压对称性未变化,用电设备正常工作,可靠性高。

规程规定,中性点不接地系统发生单相接地故障可继续运行2h,在2h内找到接地点并消除。

单相接地时电容电流近似计算公式如下:对架空线IC=UL/350;对电缆IC=UL/10。

电力系统中性点接地方式

电力系统中性点接地方式

电力系统中性点接地方式概述在电力系统中,中性点接地方式是指将电力系统中的中性点直接接地或通过特定的接地装置接地。

中性点接地方式的选择对电力系统的安全运行和人身安全至关重要。

本文将介绍电力系统中性点接地方式的常见类型和其特点。

直接接地方式直接接地方式是最常见的中性点接地方式之一。

它通过将电力系统中的中性点直接接地,使中性点与地之间形成低阻抗的电气连接。

直接接地方式有以下特点:1.简单:直接接地方式的接地装置相对简单,仅需将中性点与地之间连接即可。

2.易于检测故障:由于中性点直接接地,当系统中发生接地故障时,电流会通过接地装置流入地,形成接地电流,容易被检测到。

3.易产生大地电流:直接接地方式容易导致大地电流的产生,对于电力系统的线路和设备会产生一定的烧毁和损坏风险。

4.容易产生人身伤害:直接接地方式下,接地电阻较低,因此会产生较大的接触电压,存在人身触电的风险。

直接接地方式适用于施工成本低、电力系统规模较小、对电网故障检测要求较高的场景。

绝缘中性点接地方式绝缘中性点接地方式是在电力系统中采用绝缘装置将中性点与地之间隔离,以实现中性点接地的方式。

绝缘中性点接地方式有以下特点:1.较低的接触电阻:绝缘中性点接地方式中,中性点与地之间存在绝缘装置,可以降低接地电阻,减小接触电压。

2.减少地电流:由于绝缘装置的隔离作用,绝缘中性点接地方式可以降低地电流的产生,减小对电力系统的烧毁和损坏风险。

3.难以检测故障:由于中性点与地之间的隔离,当系统发生接地故障时,可能无法轻易检测到接地电流,增加了故障诊断的难度。

绝缘中性点接地方式适用于电力系统规模较大、对地电流要求较低、对接触电压要求较高的场景。

高阻中性点接地方式高阻中性点接地方式是在电力系统中采用高阻抗装置将中性点与地之间接地的方式。

高阻中性点接地方式有以下特点:1.高接地电阻:高阻中性点接地方式中,通过引入高阻抗装置,使中性点与地之间形成高阻抗连接,有效提高了接地电阻。

中性点接地方式

中性点接地方式

1 中性点直接接地中性点直接接地方式,即是将中性点直接接入大地。

该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。

这种大电流接地系统,不装设绝缘监察装置。

中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。

中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。

当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。

中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。

此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。

对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。

其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。

2 中性点不接地中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。

适用于农村10kV架空线路为主的辐射形或树状形的供电网络。

该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。

中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。

中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。

在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。

由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。

中性点直接接地和不直接接地系统中发生单相接地故障时各有什么特点

中性点直接接地和不直接接地系统中发生单相接地故障时各有什么特点

地 。直 接 接地 系统 供 电可 靠 性 相对
(贵 州 省 独 山 县 欧 阳 丹 )
遇 有 下 列 情 况 ,现 场 运 行 人 员 较 低 。 这 种 系 统 中 发 生 单 相 接 地 故 欧 阳 丹 同 志 :
必 须 请 示 值 班 调 度 员 并 得 到 许 可 后 t ̄ n,-J,出 现 了 除 中 性 点 外 的 另 一 个
电 力 系 统 中 性 点 运 行 方 式 主 要 有 几 种 ? 什 么 叫 大 电 流 、小 电 流 接
送 电 ? (辽 宁 省 铁 岭 市 肖 会 云 ) 分 两 类 ,即 直 接 接 地 和 不 直 接 接 地 系 统 ? 其 划 分 标 准 如 何 ?
肖 会 云 同 志 :
闸 ,没 有 查 出 明 显 故 障 点 时 ;
中 性 点 不 直 接 接 地 方 式 (包 括 中 性 速 切 除接 地相 甚 至 三 相 。 不直 接接
(2)环 网线 路 故 障 跳 闸 ;
地 系 统 供 电 可 靠 性 相 对 较 高 ,但 对 点 经 消 弧 线 圈 接 地 方 式 )。
(6)拉 合 励 磁 电 流 不 超 过 2 A的 机 等 ),引 发 系 统 事 故 ,威 胁 电 力 系
并 列 有 关 的 二 次 回 路 检 修 时 改 动 空 载 变 压 器 、电 抗 器 和 电 容 电 流 不 统 的 安 全 运 行 。
过 ,也 须 核 对 相 位 、相 序 。 若 相 位 或 超 过 5 A的 空 载 线 路 (但 20 kV及 以
接 地 故 障 时 ,接 地 短 路 电 流 很 大 ,这
E重蛋盈 墼堑
主●…持 :-晓。… 敏
N O NG C U N DIA N G O N G

中性点接地系统及分类

中性点接地系统及分类

中性点接地系统及分类中性点接地系统及分类中性点接地系统:earthedneutralsystem一种系统,其中性点直接接地,或是通过电阻或电抗接地,其阻值低到既能抑制暂态振荡,又能得到充足的电流供接地故障保护选择用。

中性点接地系统依据接地方式不同,可以分为:1、直接接地系统2、阻抗接地系统3、谐振接地系统中性线接地是什么?.依据现行的国家标准《低压配电设计规范》(GB50054)的定义,将低压配电系统分为三种,即TN、TT、IT三种形式。

其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。

第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。

TN系统:电源变压器中性点接地,设备外露部分与中性线相连。

TT系统:电源变压器中性点接地,电气设备外壳采纳保护接地。

IT系统:电源变压器中性点不接地(或通过高阻抗接地),而电气设备外壳电气设备外壳采纳保护接地。

1、TN系统电力系统的电源变压器的中性点接地,依据电气设备外露导电部分与系统连接的不同方式又可分三类:即TNC系统、TNS系统、TNCS系统。

下面分别进行介绍。

1.1、TNC系统其特点:电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。

(1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由于短路电流大,因此可采纳过电流保护器切断电源。

TNC系统一般采纳零序电流保护;(2)TNC系统适用于三相负荷基本平衡场合,假如三相负荷不平衡,则PEN线中有不平衡电流,再加一些负荷设备引起的谐波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设备机壳带电,对人身造成不安全,而且还无法取得稳定的基准电位;(3)TNC系统应将PEN线重复接地,其作用是当接零的设备发生相与外壳接触时,可以有效地降低零线对地电压。

中性点接地方式分类

中性点接地方式分类

预调
随调
带有载调节开关的调匝式消弧线圈、高短路阻抗变压器式消弧系统、 具有可动铁芯的调气隙式消弧线圈 等
调容式消弧线圈、8421并联电 抗器组合式消弧线圈等
预调
随调
1、调匝式自动调谐消弧线圈
调匝式自动调谐消弧线圈采用有载调压开关调节电感线圈的抽头改变 电感值,为了限制在接近全补偿时中性点出现过高的位移电压,电感
线圈必须串联或者并联阻尼电阻。当电网发生永久性单相接地故障时,
阻尼电阻自动退出,以防止过电流损坏。 调匝式自动调谐消弧线圈一次设备的结构如右图所示,一次设备包括: ①Z型接地变压器(当系统具有中性点时可不用);②消弧线圈;③阻
母线
断路器
尼电阻箱;④避雷器;⑤CT和PT。
接地变压 器
它可以在电网正常运行时,通过实时测量消弧线圈电压、电流的幅值 和相位变化,计算出电网当前方式下的对地电容电流,根据预先设定 的最小残流值或脱谐度,由控制器调节有载调节开关,使消弧线圈调 节到所需要的补偿档位,在发生接地故障后,故障点的残流可以被限 制在设定的范围之内。它的不足之处是不能连续调节,需要合理的选 择各个档位电流和档位总数,保证残流在各种运行方式下都能限制在 5A以内,以满足工程需要。
PT 避雷器
消弧线圈 阻尼电阻
CT
调匝式自动调谐消弧线圈原理接线图
2、调气隙式自动调谐消弧线圈 调气隙式消弧线圈是将铁芯分成上下两部分,下部分铁芯同线圈固定在框架上,
上部分铁芯用电动机带动传动机构可调,通过调节气隙的大小达到改变消弧线
圈电抗值的目的。它能够自动跟踪无级连续可调,安全可靠。其缺点是振动和 噪声比较大,在结构设计中应采取措施控制噪声。这类装置也可以将接地变压 器和消弧线圈共用铁芯,做成“三相五柱式”结构,使结构更为紧凑。

TT系统是配电网中性点直接接地

TT系统是配电网中性点直接接地

1TT 系统是配电网中性点直接接地,用电设备外壳接地也承受接地措施的系统。

对。

2 剩余电流淌作保护装置主要用于1000V 以下的低压系统。

对。

3RCD 后的中性点可以接地。

错。

4电动机铭牌数值工作时,短上运行的定额工作制用S2 表示。

对。

5对线绕型异步电动机应常常检查电刷与集电环的接触及电刷的磨损,压力,火花等。

对。

6能耗制动这种方法是将转子的动能转化为电能,并消耗在转子回路的电阻上。

对。

7电机特别发响发热的同时,转速急剧下降,应马上切断电源,停机检查。

对。

8电机检修后,经各项检查合格后,就可对电机进展空载试验和短路试验。

对9使用转变磁极对数来调速度电机一般都是绕线型转子电动机。

错10载流导体在磁场中确定受到磁场力的作用。

错11并联电路中各支路上的电流不愿定相等。

对12在三相沟通电路中负载为三角形接法时,其相电压等于三相电源的线电压。

对13磁力线是一种闭合曲线。

对14规定小磁针的北极所指的方向是磁力线的方向。

对15220V 的沟通电压的最大值为380V。

错16 我国的正弦沟通电的频率为50HZ。

对1710KV 以下运行的阀型避雷器的绝缘电阻应每年测量一次。

错18雷电时,应制止在屋外高空检修,试验和屋内验电等作业。

对19雷电可通过其它带电体或直接对人体放电,使人的身体遭到巨大的破坏直至死亡。

对20电工刀可以用于带电作业。

错21系统凹凸压一次侧负荷电流无论多大,电流互感器的二次电流都统一为1A。

错22断路器的合闸回路串接其自身的常闭接点。

对23与断路器并联的隔离开关,必需在断路器的分闸状态时才能进展操作。

错24高压开关操作机构机械指示牌是观看开关状态的重要局部。

对25高压开关柜之间送电的操作挨次是:计量柜-保护柜-电源柜-各馈出柜-电容补偿柜。

对26断路器在合闸状态时,在操作机构指示牌可看到指示“合”字。

对27箱式变电站箱体内的一次设备为全封闭高压开关柜,产品无暴露带电局部为全封闭,全绝缘构造,完全能到达零触电事故。

中性点直接接地系统.

中性点直接接地系统.
n 2、单相短路时:
U 0

故障相的对地电压为零, 非故障相的对地电压基本 保持不变,仍接近于相电 压。
项目二 电力变压器、互感器的认识及维护 3、中性点直接接地系统的特点
(1).中性点直接接地系统的主要优点
任务二 分析变压器中性点的运行方式
单相接地短路时,非故障相的对地电压基本保持不 变,仍接近于相电压。设备和线路对地绝缘按相电压设 计,降低了造价。电压等级愈高,节约投资的经济效益 愈显著。
三、中性点直接接地系统
1、正常运行时:
发生单相接地时:
项目二 电力变压器、互感器的认识及维护 任务二 分析变压器中性点的运行方式
中性点的电压为零,中性点没有电流流过。
由于接地相直接通过大地与电源构成单相回路,形成单相 ,断路器 断开,迅速切除故障部分。 当中性点直接接地时, 接地电阻近似为0,所以 中性点与地之间的电位相 同,即 。
(2).中性点直接接地系统的缺点
1)中性点直接接地系统供电可靠性较低。中性点直接接 地系统的线路上,通常都装设有自动重合闸装置。
2)单相接地时的短路电流很大,必须选用较大容量的开 关设备。 3)单相接地时,对附近通信线路将产生电磁干扰。以减 少电磁干扰,电力线路应尽量避免和通信线路平行架设。
4、适用范围
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆水利电力职业技术学院
学习任务四 电力系统中性点运行方式
中性点直接接地系统
随着电力网电压等级的升高,供电线路的增长,单 相接地电流也增大。如果继续采用小电流接地方式, 因电弧过电压的影响,其中花费在绝缘上的代价将显
著提高,因而我国在110kV以上电力网广泛采用中性
点直接接地方式。
中性点直接接地方式就是将变压器中性点直接与大地
点接地,以保证接地保护的正确动作。
于架空线路上的故障绝大多数是暂时性的,在线路上加装自
动重合闸装置,其成功率较高,将可大大提高供电可靠性。
这种系统的单相接地短路电流可能很大,为了 限制单相接地短路电流,经济而有效的方法是减少 中性点的接地数,这样做可以减少单相地短路电
流,同时还可以使接地保护的整定值稳定。
中性点直接接地系统的主要优点是:单相接地时, 其中性点电位不变,非故障相对地电压接近于相电压 (可能略有增大),因此降低了电力网绝缘的投资,而且电
压越高,其经济效益也越大,所以,目前我国对110KV及以
上电力网一般都采用中性点直接接地系统。缺点之一
是单相接地短路对邻近通讯线路的干扰。为此,电力
线路假设要远离通信线路。
运行中为了限制单相接地短路电流,并不将系统
中所有的电源中性点都接地,而是由系统调度确定中
性点接地的数量,每个电源点通常有一个或几个中性
直接连接,使得中性点保持地点位。这种系统中性点始终
保持地电位。正常运行时,中性点无电流通过,单相接地时 (C相),因系统中出现了除中性点外的另一个接地点,构成 了短路回路,接地相短路电流很大,各相之间电压不再是对 称的。这时,为了防止损坏设备,需要由继电保护装置迅速
将故障线路切除,以保证系统中非故障部分的正常运行。由
相关文档
最新文档