(完整版)平面向量基本定理及经典例题

(完整版)平面向量基本定理及经典例题
(完整版)平面向量基本定理及经典例题

平面向量基本定理

一.教学目标:

了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件;

教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习

1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2

2.下列各组向量,共线的是 ( )

()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r

()C (1,2),(7,14)a b =-=r r ()

D (3,2),(6,4)a b =-=-r r 3.已知点)4,3(),1,3(),4,2(----C B A ,且?=?=2,3,则=____ 4.已知点(1,5)A -和向量a =(2,3),若AB =3a ,则点B 的坐标为 三.知识归纳

1. 平面向量基本定理:如果12,e e u r u u r

是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。其中12,e e u r u u r

叫做这一平面的一组____________,即对基底的要求是向量___________________;

2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ?,j ?

作基底,

则对任一向量a ?,有且只有一对实数x ,y ,使j y i x a ???+=、就把_________叫做向量a ?

的坐标,记作____________。

3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为

21P P =___________________,即平面内任一向量的坐标等于表示它的有向线段的____点坐标减去____点坐标.

4.线段中点坐标公式:A (1x ,1y ),B (2x ,2y )线段中点为M ,则有:

OM =________________,M 点的坐标为_____________.

5.两个向量平行的充要条件是:向量形式:_____________)0(//?≠ρ

ρρρb b a ;

坐标形式: _____________)0(//?≠ρ

ρρρb b a .

6.a

?

=(x,y),则

a=___________.与a?

共线的单位向量是:

a

e=

四.例题分析:

例1.(1)、已知M(-2,7)、N(10,-2),点P是线段MN上的点,且

?→

?

PN=-2

?→

?

PM,则P 点的坐标为()

A(-14,16)(B)(22,-11)(C)(6,1)(D)(2,4)

(2)、已知两点A(4,1), B(7,-3), 则与向量AB同向的单位向量是()

(A)?

?

?

?

?

-

5

4

,

5

3 (B)

?

?

?

?

?

-

5

4

,

5

3 (C)

?

?

?

?

?

-

5

3

,

5

4 (D)

?

?

?

?

?

-

5

3

,

5

4

(3)、若a

r

=(2,3),b

r

=(-4,7),则a

r

在b

r

方向上的投影为____________。

例2.(1)已知向量(1,2),(,1),2

a b x u a b

===+

r r r r r

,2

v a b

=-

r r r

,且//

u v

r r

,求实数x的值。

(2)已知向量a=,1),b=(0,-1),c=(k。若a-2b与c共线,则k=______

例3.已知(1,0),(2,1)

a b

==

v

v

,(1)求|

3

|b

a

?

?

+;(2)当k为何实数时,k-

a

?

b

?

与b

a

?

?

3

+平行,平行时它们是同向还是反向?

例4.如图,平行四边形ABCD中,,E F分别是,

BC DC的中点,G为交点,若AB

uuu r

a

=

r

,= b

r

(1)试以a

r

,b

r

为基底表示、BF

u u u r

;(2)求证:A、G、C三点共线。

例5. 如图,平行四边形ABCD中,BE=

4

1

BA,BF=

5

1

BD,求证:E,F,C

三点共线。(利用向量证明)

33

C

E F

五.课后作业:

1.31

(,sin ),(cos ,)23

a b αα==r r 且//a b r r ,则锐角α为 ( )

()A 30o ()B 60o ()C 45o ()D 75o

2.平面内有三点(0,3),(3,3),(,1)A B C x --,且∥,则x 的值是 ( )

()A 1 ()B 5 ()C 1- ()D 5-

3.如果1e ,2e 是平面α内所有向量的一组基底,那么下列命题中正确的是( )

()A 若实数12,λλ使11220e e λλ+=u r u u r r

,则 120λλ==

()B 空间任一向量a 可以表示为1122a e e λλ=+r u r u u r

,这里12,λλ是实数 ()C 对实数12,λλ,向量1122e e λλ+u r u u r

不一定在平面α内

()D 对平面内任一向量a ,使1122a e e λλ=+r u r u u r

的实数12,λλ有无数对

4.下列各组向量中:①)2,1(1-=e )7,5(2=e ②)5,3(1=e )10,6(2=e ③)3,2(1-=e )

4

3

,21(2-=e 其中能作为表示它们所在平面内所有向量的基底的是( ) A .① B .①③ C .②③ D .①②③

5.若A(-1,-2),B(4,8),且CB AC 3-=,则C 点坐标为 ;

6.已知)2,3(=a ,)1,2(-=b ,若b a b a λλ++与平行,则λ= ;

7.已知向量(1,2)a =-r ,b 与a 方向相反,且||2||b a =r r

,那么向量b 的坐标是_ _

8.已知(5,4),(3,2)a b ==r r

,则与23a b -r r 平行的单位向量的坐标为 。

9.已知(3,1),(1,2),(1,7)a b c =-=-=r r r ,求p a b c =++u r r r r ,并以,a b r r 为基底来表示p u r

。 10.向量(,12),(4,5),(10,)OA k OB OC k ===u u u r u u u r u u u r

,当k 为何值时,,,A B C 三点共线?

平面向量的数量积

一、教学目标:掌握平面向量的数量积及其性质,掌握两向量夹角及两向量垂直的

充要条件和向量数量积的简单运用.

教学重点:平面向量数量积及其应用 二、课前预习:

1.已知向量(3,4),(2,1)a b ==-r r

,如果向量a xb +r r 与b r 垂直,则x 的值为( )

()

A 323 ()

B 233 ()

C 2 ()

D 25- 2.下列命题正确的是 ___________

①0AB BA +=u u u r u u u r r ; ②00AB ?=r u u u r r ; ③AB AC BC -=u u u r u u u r u u u r ; ④00AB ?=u u u r

3.平面向量,a b r r 中,已知(4,3),||1a b =-=r r

,且5a b ?=r r ,则向量b =r ___ __ ____. 4.已知向量,a b r r 的方向相同,且||3,||7a b ==r r ,则|2|a b -=r r

___ ____。

5.已知向量a ρ和b ρ

的夹角是120°,且2||=a ρ,5||=b ρ,则a b a ρρρ?-)2(= 。 三、知识归纳

1.平面向量的数量积:

(1)定义:a ?·0,0__(__________ρρρρρ≠≠=b a b ,θ为a ?与b ?

的夹角,)0πθ≤≤;

特例:0ρ·0=a ρ,a ?2 =a ?·a ?=|a ?

|2;

()

cos cos a b θθr r 叫做向量()

a b b a r r r r

在方向上在方向上的________________;

._________cos ==

θθ

(2).坐标运算:若a ?=(1x ,1y ),b ?=(2x ,2y )则a ?·b ?

=______________.

2.两个向量的夹角与长度

已知向量a ?

=(1x ,1y ),b ?=(2x ,2y )

(1)两个向量a ?与b ?

的夹角θ:向量形式:θcos =__________________;

坐标形式:θcos =__________________.

注: 0

.0cos ,2

,0cos ,2

;0cos ,2

0

>?><

θπ

θθπ

θ

?=?=?=?=,,0,即反向时,即同向时πθθ

(2)向量a ?的长度|a ?|2=a ?2 =a ?·a ?=___________。|a ?|=___________其中a ?

=),(y x ;

==+

两点间的距离公式:|21P P |=___________________ 其中1P =(1x ,1y ),2P =(2x ,2y ). 3.向量的平行、垂直

如果,两个向量a ?

=(1x ,1y ),b ?=(2x ,2y )那么,

(1)两个向量平行的充要条件是:向量形式:_____________)0(//?≠ρ

ρρρb b a ;

坐标形式: _____________)0(//?≠ρ

ρρρb b a .

(2)两个向量垂直的充要条件是:向量形式:a ?⊥b ?

?____________;

坐标形式:a ?⊥b ?

?____________.

四:例题分析:

例1.已知平面上三个向量a ρ、b ρ、c ρ

的模均为1,它们相互之间的夹角均为120°,

(1)求证:)(b a ρρ-⊥c ρ

;(2)若1||>+b a k ρρ)(R k ∈,求k 的取值范围.

例2.已知:a 、b 、c 是同一平面内的三个向量,其中a =(1,2) (1)若||52=,且//,求的坐标; (2)若||=,2

5

且2+与b a -2垂直,求与的夹角θ.

例3.1.若向量a,b,c满足a∥b且a⊥c ,则 A .4 B .3 C .2 D .0

2.已知单位向量,的夹角为60°,则__________

3.在正三角形中,是上的点,,则 。

4.已知向量满足

,且

,则a 与b 的夹角为 .

5.在边长为1的正三角形ABC 中, 设则__________________.

例4.(1) 已知由向量=(3,2),=(1,k )确定的△ABC 为直角三角形,求k 的值。 (2) 设=(3,1),=(-1,2),⊥,∥,试求满足 +=的的坐标(O 为原点)。

(2)c a b ?+=

1e 2e

122e e -=ABC D BC 3,1

AB BD ==AB AD ?=u u u r u u u r

,a b

()()a b a b +2?-=-6

1

a =2

b =2,3,BC BD CA CE ==u u u v u u u u vu u u v u u u v AD BE ?=u u u v u u u v

五.课后作业:

1.平面内有三点(0,3),(3,3),(,1)A B C x --,且∥,则x 的值是 ( ) ()A 1 ()B 5 ()C 1- ()D 5-

2.已知a =r b =r

3a b ?=-r r ,则a r 与b r 的夹角是( ) A 、150? B 、120? C 、60? D 、30?

3.已知向量)75sin ,75(cos ο

ορ=a ,)15sin ,15(cos οορ=b ,那么||b a ρρ-的值是( )

()

A 2

1

()B 22 ()C 23 ()D 1

4.已知向量)sin ,(cos θθ=,向量)1,3(-=则|2|-的最大值,最小值分别是( )

()A 0,24 ()B 24,4

()C 16,0 ()D 4,0

5.在ABC ?中,0

,若3||=,5||=,则BAC ∠=

()A 6π ()

B 3

()C 43π ()D 65π

6.在ΔABC 中,060,43=∠==BAC ,则=? ( )

A 、6

B 、4

C 、-6

D 、-4

7.已知向量(1,2)a =-r ,b 与a 方向相反,且||2||b a =r r

,那么向量b 的坐标是_ _ 平面上有三个点A(1,3),B(2,2) ,C(7,x),若B=ο90,则x=_______

8.已知|a r |=1,|b r | =2,且向量a r + b r 与2a r -b r

互相垂直,则与的夹角=____

9.已知(5,4),(3,2)a b ==r r

,则与23a b -r r 平行的单位向量的坐标为 。

10.(1)已知向量(6,2)a =r 与(3,)b k =-r

的夹角是钝角,则k 的取值范围是 。

(2)已知向量(6,2)a =r 与(3,)b k =-r

的夹角大于ο90,则k 的取值范围是 。

11.(1) 已知向量(3,4),(2,1)a b ==-r r

,则a 在b 上的投影为____________

(2) 已知||=||=2,与的夹角为600,则+在上的投影为 。

12.设,,,O A B C 为平面上四个点,a ρ=,b ρ=,c ρ

=,且0ρρρρ=++c b a ,c b b a ρρρρ?=?=a

c ρρ?1-=,则||||||c b a ρ

ρρ++=___________________。

13.已知|a r |=1,|b r | =2,(1)若与平行,求b a ρ

ρ?; (2)若与的夹角为600

求|a b +r r | (3) 向量a r + b r 与a r

互相垂直,求a 与b 的夹角.

14.已知1e u r 、2e u u r 是夹角为60°的两个单位向量,1232a e e =-r u r u u r ,1223b e e =-r u r u u r

,求:

(1) a b ?r r ; (2)|a b +r r |与|a b -r r |;(3)a b +r r 与a b -r r 的夹角.

15.向量,a b r r 都是非零向量,且(3)(75),(4)(72)a b a b a b a b +⊥--⊥-r r r r r r r r

,求向量a r 与b r 的夹角.

韦达定理经典例题复习课程

一元二次方程根与系数的关系培优训练 例1.已知1x 、2x 是关于x 的一元二次方程0)1(4422=+-+m x m x 的两个非零实数根,问:1x 与2x 能否同号?若能同号请求出相应的m 的取值范围;若不能同号,请说明理由。 例2.已知1x 、2x 是一元二次方程01442=++-k kx kx 的两个实数根。 (1)是否存在实数k ,使23)2)(2(2121- =--x x x x 成立?若存在,求出k 的值;若不存在,请说明理由。 (2)求使 21221-+x x x x 的值为整数的实数k 的整数值。 例3.已知关于x 的一元二次方程 有两个相等的实数根。求证:(1)方程 有两个不相等的实数根; (2)设方程 的两个实数根为 ,若 ,则 .

例4.在等腰三角形ABC 中,∠A、∠B、∠C的对边分别为a、b、c,已知a=3,b和c是关于x的方程的两个实数根,求△ABC的周长. 例5.在解方程x2+px+q=0时,小张看错了p,解得方程的根为1与-3;小王看错了q,解得方程的根为4与-2。这个方程的根应该是什么? 例6.已知x1,x2是关于x的方程x2+px+q=0的两根,x1+1、x2+1是关于x的方程x2+qx+p=0的两根,求常数p、q的值。

练习:1.先阅读下列第(1)题的解法,再解答第(2)题. (1)若α、β是方程x2-3x-5=0的两个实数根,求α2+2β2-3β的值; 解:∵α、β是方程x2-3x-5=0的两个实根, ∴α2-3α-5=0,β2-3β-5=0,且α+β=3. ∴α2=3α+5,β2=3β+5 ∴α2+2β2-3β=3α+5+2(3β+5)-3β=3α+3β+15=3(α+β)+15=24. (2)已知x 1、x 2 是方程x2+x-7=0的两个实数根,不解方程求的值. 2.已知关于X的一元二次方程m2x2+2(3-m)x+1=0的两实数根为α,β, 若s=1 α + 1 β ,求s的取值范围。 3.如果关于x的实系数一元二次方程x2+2(m+3)x+m2+3=0有两个实数根α、β,那么(α-1)2+(β-1)2的最小值是多少? 4.已知关于x的方程x2-(2a-1)x+4(a-1)=0的两个根是斜边长为5的直角三角形的两条直角边的长,求这个直角三角形的面积。

整式的加减典型例题

整式的加减典型例题 类型一:用字母表示数量关系 1.填空题: (1)商店运来一批梨,共9箱,每箱n个,则共有___________个梨. (2)小明x岁,小华比小明的岁数大5岁,则小华___________岁. (3)一个正方体边长为a,则它的体积是___________. (4)一个梯形,上底为3 cm,下底为5 cm,高为h cm,则它的面积是___________cm2. (5)一辆客车行驶在长240千米的公路,设它行驶完共用a个小时,则它的速度是每小时_______千米. 解析:1.9n 2.x+5 3.a3 4.4h 5. 总结升华:用字母表示实际问题中的数量关系时,若式子是积或商形式,则将单位名称写在式子的后面即可;若式子是和或差的形式,则应把整个式子用括号括起来,再将单位名称写在后面。 举一反三: [变式一] (1)香蕉每千克售价3元,m千克售价____________元。 (2)温度由5℃上升t℃后是__________℃。 (3)每台电脑售价x元,降价10%后每台售价为____________元。 (4)某人完成一项工程需要a天,此人的工作效率为__________。 解析:用字母表示数量关系,关键是理解题意,抓住关键词句,再用适当的式子表达出来。 答案:(1)3m (2)(5+t) (3) 0.9x (提示:(1-10%)x=0.9x)(4) [变式二]某校学生给“希望小学”邮寄每册元的图书240册,若每册图书的邮费为书价的5%,则共需邮费______________元。 解析:邮费是书价的5%,因此,共需邮费是元。 答案:12a

类型二:整式的概念 2.把下列式子按单项式、多项式、整式进行归类。 x2y,a-b,x+y2-5,,-29,2ax+9b-5,600xz,axy,xyz -1,。 思路点拨:本题的实质就是识别单项式、多项式和整式。单项式中数和字母、字母和字母之间必须是相乘的关系,多项式必须是几个单项式的和的形式。 解析:单项式有:x2y,-,-29,600xz,axy 多项式有:a-b,x+y2-5,2ax+9b-5,xyz-1 整式有:x2y,a-b,x+y2-5,-,-29,2ax+9b-5,600xz,axy,xyz-1。 举一反三: [变式]指出下列各式中哪些是整式,哪些不是。 (1)x+1;(2)a=2;(3)π;(4)S=πR2;(5);(6). 分析:根据整式的定义,x+1是整式;单独的一个数或一个字母也是整式,所以π和也是整式;而a=2,S=πR2,,含有等号或不等号,因此它们都不是整式。 答案:(1) x+1,(3)π,(5) 都是整式; (2)a=2,(4)S=πR2,(6)都不是整式。 总结升华:判断是不是整式,关键是了解整式的概念,注意整式与等式、不等式的区别,

韦达定理公式介绍及典型例题

?韦达定理公式介绍及典型例题 ?韦达定理说明了一元n次方程中根和系数之间的关系。法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。 ?这里讲一元二次方程两根之间的关系。 ?一元二次方程aX+bX+C=0﹙a0﹚中,两根X1,X2有如下关系:X1+X2=-b/a,X1X2=c/a ?【定理内容】 一元二次方程ax^2+bx+c=0(a0 且△=b^2-4ac0)中,设两个根为x1,x2 则 ?X1+X2= -b/a ?X1X2=c/a 1/X1+1/X2=X1+X2/X1X2 ?用韦达定理判断方程的根一元二次方程ax+bx+c=0 (a0)中, 若b-4ac0则方程没有实数根 若b-4ac=0 则方程有两个相等的实数根 ?若b-4ac0 则方程有两个不相等的实数根 【定理拓展】 ?(1)若两根互为相反数,则b=0 (2)若两根互为倒数,则a=c ?(3)若一根为0,则c=0 (4)若一根为1,则a+b+c=0 ?(5)若一根为-1,则a-b+c=0 ?(6)若a、c异号,方程一定有两个实数根

【例题】 已知p+q=198,求方程x^2+px+q=0的整数根.(94祖冲之杯数学邀请赛试题) 解:设方程的两整数根为x1、x2,不妨设x1x2.由韦达定理,得?x1+x2=-p,x1x2=q. 于是x1x2-(x1+x2)=p+q=198, ?即x1x2-x1-x2+1=199. ?运用提取公因式法(x1-1)(x2-1)=199. 注意到(x1-1)、(x2-1)均为整数, ?解得x1=2,x2=200;x1=-198,x2=0.

概率论复习题及答案

复习提纲 (一)随机事件和概率 (1)理解随机事件、基本事件和样本空间的概念,掌握事件之间的关系与运算。 (2)了解概率的定义,掌握概率的基本性质和应用这些性质进行概率计算。 (3)理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、Bayes 公式, 以及应用这些公式进行概率计算。 (4)理解事件的独立性概念,掌握应用事件独立性进行概率计算。 (5)掌握Bernoulli 概型及其计算。 (二)随机变量及其概率分布 (1)理解随机变量的概念。 (2)理解随机变量分布函数)}{)((x X P x F ≤=的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分布计算有关事件的概率。 (3)掌握二项分布、Poisson 分布、正态分布、均匀分布和指数分布。 (4)会求简单随机变量函数的概率分布。 (三)二维随机变量及其概率分布 (1)了解二维随机变量的概念。 (2)了解二维随机变量的联合分布函数及其性质,了解二维离散型随机变量的联合分布律 及其性质,并会用它们计算有关事件的概率。 (3)了解二维随机变量分边缘分布和条件分布,并会计算边缘分布。 (4)理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算。 (5)会求两个随机变量之和的分布,计算多个独立随机变量最大值、最小值的分布。 (6)理解二维均匀分布和二维正态分布。 (四)随机变量的数字特征 (1)理解数学期望和方差的概念,掌握它们的性质与计算。 (2)掌握6种常用分布的数学期望和方差。 (3)会计算随机变量函数的数学期望。 (4)了解矩、协方差和相关系数的概念和性质,并会计算。 (五)大数定律和中心极限定理 (1)了解Chebyshev 不等式。 (2)了解Chebyshev 大数定律和Benoulli 大数定律。 (3)了解独立同分布场合的中心极限定理和De Moivre-Laplace 中心极限定理的应用条件 和结论,并会用相关定理近似计算有关随机事件的概率。

《整式的加减》知识点归纳及典型例题分析

整式的加减知识点归纳及典型例题分析 一、认识单项式、多项式 1、下列各式中,书写格式正确的是 ( ) A.4· 21 B.3÷2y C.xy ·3 D .a b 2、下列代数式书写正确的是( ) A 、48a B 、y x ÷ C 、)(y x a + D 、2 1 1abc 3、在整式5abc,-7x 2+1,- 52x ,2131,2 4y x -中,单项式共有 ( ) A.1个 B.2个 C.3个 D.4个 4、代数式,21 a a + 4 3,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D、6 5、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。 6、下列说法正确的是( ) A 、0不是单项式 B 、x 没有系数 C 、 37 x x +是多项式 D 、5xy -是单项式 二、整式列式 .1、一个梯形教室内第1排有n 个座位,以后每排比前一排多2个座位,共10排.(1)写出表示教室座位总数的式子,并化简; (2)当第1排座位数是A 时,即n=A,座位总数是140;当第1排座位数是B,即n=B 时,座位总数是160,求A 2+B 2的值. 2、若长方形长是2a +3b ,宽为a+b,则其周长是( ) A.6a+8b B.12a +16b ? C.3a+8b ? D.6a +4b 3、a是一个三位数,b 是一个两位数,若把b 放在a 的左边,组成一个五位数,则这个五位数为( )

A.b+a B.10b +a C. 100b +a D . 1000b+a 4、(1)某商品先提价20%,后又降价20%出售,现价为a 元,则原价为 元。 (2)香蕉每千克售价3元,m千克售价____________元。 (3)温度由5℃上升t ℃后是__________℃。?(4)每台电脑售价x 元,降价10%后每台售价为____________元。?(5)某人完成一项工程需要a 天,此人的工作效率为__________。 三、同类项的概念 1、2 275b a b a k m m k ++与为同类项,且k 为非负整数,则满足条件的k 值有( ) A.1组?? B.2组?? ? C.3组 D.无数组 2、合并下列各题中的同类项,得下列结果: ①4x +3y=7xy;② 4xy -y=4x;③ 7a-2a +1=5a+1;④ m n-3mn+2m=4mn;⑤ -2x 2 +12 x 2-x 2 =-\f(5,2)x 2; ⑥ p 2q-q 2p=0.其中结果正确的是( ) A.③⑤ ? B .⑤⑥ ? C.②③④ ?? D.②③④⑥ 3、已知y x x n m n m 2652与-是同类项,则( ) A.1,2==y x B.1,3==y x C.1,2 3 ==y x D.0,3==y x 4、下列各对单项式中,不是同类项的是( ) A .130与1 3 B.-3x n+2ym 与2y mx n+2 C.13x2y 与25yx 2? D .0.4a 2b 与0.3a b2 5、下列各组中,不是同类项的一组是( ) A.b a ab 2 272.036.0与 B.222013yx y x 与 C.1324 1-和 D .n n n n x y y x 11++与 四、去括号、添括号 1、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。 2、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。 3、下列等式中正确的是( ) A 、)25(52x x --=- B 、)3(737+=+a a C 、-)(b a b a --=- D、)52(52--=-x x

整式的加减知识点总结与典型例题(人教版初中数学)

整式的加减知识点总结与典型例题 一、整式——单项式 1、单项式的定义: 由数或字母的积组成的式子叫做单项式。 说明:单独的一个数或者单独的一个字母也是单项式. 2、单项式的系数: 单项式中的数字因数叫这个单项式的系数. 说明:⑴单项式的系数可以是整数,也可能是分数或小数。如2 3x 的系数是3;3 2 ab 的 系数是 3 1 ;a 8.4的系数是4.8; ⑵单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号, 如24xy -的系数是4-;() y x 22-的系数是2-; ⑶对于只含有字母因数的单项式,其系数是1或-1,不能认为是0,如2 ab -的 系数是-1;2 ab 的系数是1; ⑷表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将 其作为系数的一部分,而不能当成字母。如2πxy 的系数就是2. 3、单项式的次数: 一个单项式中,所有字母的指数的和叫做这个单项式的次数. 说明:⑴计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1 的情况。如单项式z y x 2 4 2的次数是字母z ,y ,x 的指数和,即4+3+1=8, 而不是7次,应注意字母z 的指数是1而不是0; ⑵单项式的指数只和字母的指数有关,与系数的指数无关。如单项式 43242z y x -的次数是2+3+4=9而不是13次; ⑶单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式 是单独的一个常数时,一般不讨论它的次数; 4、在含有字母的式子中如果出现乘号,通常将乘号写作“? ”或者省略不写。 例如:t ?100可以写成t ?100或t 100 5、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数. ※典型例题 考向1:单项式 1、代数式 中,单项式的个数是( ) A .1 B .2 C .3 D .4 2、下列式子: 中,单项式的个数是( ) A .1 B .2 C .3 D .4

充分条件与必要条件·典型例题

充分条件与必要条件·典型例题 能力素养 例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x 1+x2=-5,则p是q的 [ ] A.充分但不必要条件B.必要但不充分条件 C.充要条件D.既不充分也不必要条件 分析利用韦达定理转换. 解∵x1,x2是方程x2+5x-6=0的两根, ∴x1,x2的值分不为1,-6, ∴x1+x2=1-6=-5. 因此选A. 讲明:判定命题为假命题能够通过举反例. 例2 p是q的充要条件的是 [ ] A.p:3x+2>5,q:-2x-3>-5 B.p:a>2,b<2,q:a>b C.p:四边形的两条对角线互相垂直平分,q:四边形是正方形 D.p:a≠0,q:关于x的方程ax=1有惟一解 分析逐个验证命题是否等价.

解对A.p:x>1,q:x<1,因此,p是q的既不充分也不必要条件; 对B.p q但q p,p是q的充分非必要条件; 对C.p q且q p,p是q的必要非充分条件; D p q q p p q p q D ??? 对.且,即,是的充要条件.选. 讲明:当a=0时,ax=0有许多个解. 例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的 [ ] A.充分条件B.必要条件 C.充要条件D.既不充分也不必要条件 分析通过B、C作为桥梁联系A、D. 解∵A是B的充分条件,∴A B① ∵D是C成立的必要条件,∴C D② ? ∵是成立的充要条件,∴③ C B C B 由①③得A C④ 由②④得A D. ∴D是A成立的必要条件.选B. 讲明:要注意利用推出符号的传递性. 例4 设命题甲为:0<x<5,命题乙为|x-2|<3,那么甲是乙的 [ ] A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件

《整式的加减》专项练习题(有答案)

1、3(a+5b)-2(b-a) 2、3a-(2b-a)+b > 3、2(2a2+9b)+3(-5a2-4b) 4、(x3-2y3-3x2y)-(3x3-3y3-7x2y) 5、3x2-[7x-(4x-3)-2x2] ] 6、(2xy-y)-(-y+yx) 7、5(a2b-3ab2)-2(a2b-7ab) — 8、(-2ab+3a)-2(2a-b)+2ab 9、(7m2n-5mn)-(4m2n-5mn) ` 10、(5a2+2a-1)-4(3-8a+2a2) 11、-3x2y+3xy2+2x2y-2xy2 # 12、2(a-1)-(2a-3)+3 13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab] ^ 14、(x2-xy+y)-3(x2+xy-2y)

15、3x2-[7x-(4x-3)-2x2] ? 16、a2b-[2(a2b-2a2c)-(2bc+a2c)] 17、 17、-2y3+(3xy2-x2y)-2(xy2-y3) 18、2(2x-3y)-(3x+2y+1) } 19、-(3a2-4ab)+[a2-2(2a+2ab)] 20、5m-7n-8p+5n-9m-p ` 21、(5x2y-7xy2)-(xy2-3x2y) 22、 22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a] ) 23、3a2-9a+5-(-7a2+10a-5) 24、-3a2b-(2ab2-a2b)-(2a2b+4ab2) 25、(5a-3a2+1)-(4a3-3a2) 26、 ! 26、-2(ab-3a2)-[2b2-(5ab+a2)+2ab] 27、(8xy-x2+y2)+(-y2+x2-8xy) > 28、(2x2- 2 1 +3x)-4(x-x2+ 2 1 )

2021年韦达定理经典例题

一元二次方程根与系数的关系 培优训练 欧阳光明(2021.03.07) 例1.已知1x 、2x 是关于x 的一元二次方程0)1(4422=+-+m x m x 的两个非零实数根,问:1x 与2x 能否同号?若能同号请求出相应的 m 的取值范围;若不能同号,请说明理由。 例2.已知1x 、2x 是一元二次方程01442=++-k kx kx 的两个实数根。 (1)是否存在实数k ,使23)2)(2(2121-=--x x x x 成立?若存在,求出k 的值;若不存在,请说明理由。 (2)求使21221-+x x x x 的值为整数的实数k 的整数值。 例3.已知关于x 的一元二次方程 有两个相等的实数根。求证:(1)方程 有两个不相等的实数根; (2)设方程 的两个实数根为 ,若 ,则 . 例4.在等腰三角形ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,已知a=3,b 和c 是关于x 的方程 的两个实数根,求△ABC 的周长.

例5.在解方程x2+px+q=0时,小张看错了p,解得方程的根为1与-3;小王看错了q,解得方程的根为4与-2。这个方程的根应该是什么? 例6.已知x1,x2是关于x的方程x2+px+q=0的两根,x1+1、x2+1是关于x的方程x2+qx+p=0的两根,求常数p、q的值。 练习:1.先阅读下列第(1)题的解法,再解答第(2)题. (1)若α、β是方程x2-3x-5=0的两个实数根,求α2+2β2-3β的值; 解:∵α、β是方程x2-3x-5=0的两个实根, ∴α2-3α-5=0,β2-3β-5=0,且α+β=3. ∴α2=3α+5,β2=3β+5 ∴α2+2β2-3β=3α+5+2(3β+5)- 3β=3α+3β+15=3(α+β)+15=24. (2)已知x1、x2是方程x2+x-7=0的两个实数根,不解方程求 的值. 2.已知关于X的一元二次方程m2x2+2(3-m)x+1=0的两 实数根为α,β,若s=1 α + 1 β ,求s的取值范围。 3.如果关于x的实系数一元二次方程x2+2(m+3)x+m2+3=0有两个实数根α、β,那么(α-1)2+(β-1)2的最小值是多少? 4.已知关于x的方程x2-(2a-1)x+4(a-1)=0的两个根是斜边长为5的直角三角形的两条直角边的长,求这个直角三角形的面 积。

概率论与数理统计(经管类)复习试题及答案

概率论和数理统计真题讲解 (一)单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则() A.P(B|A)=0 B.P(A|B)>0 C.P(A|B)=P(A) D.P(AB)=P(A)P(B) 『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。 解析:A:,因为A与B互不相容,,P(AB)=0,正确; 显然,B,C不正确;D:A与B相互独立。 故选择A。 提示:① 注意区别两个概念:事件互不相容与事件相互独立; ② 条件概率的计算公式:P(A)>0时,。 2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=() A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3) 『正确答案』分析:本题考察正态分布的标准化。 解析:, 故选择C。 提示:正态分布的标准化是非常重要的方法,必须熟练掌握。 3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=() 『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。第33页 解析:, 故选择A。 提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=() A.-3 B.-1 C.- D.1 『正确答案』分析:本题考察概率密度的性质。 解析:1=,所以c=-1, 故选择B。 提示:概率密度的性质: 1.f(x)≥0; 4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。课本第38页 5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是() A.f(x)=-e-x B. f(x)=e-x C. f(x)= D.f(x)= 『正确答案』分析:本题考察概率密度的判定方法。 解析:① 非负性:A不正确;② 验证:B:发散; C:,正确;D:显然不正确。 故选择C。 提示:判定方法:若f(x)≥0,且满足,则f(x)是某个随机变量的概率密度。 6.设二维随机变量(X,Y)~N(μ1,μ2,),则Y ~() 『正确答案』分析:本题考察二维正态分布的表示方法。 解析:显然,选择D。

整式的加减知识点总结与题型汇总

整式的加减 整式知识点 1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一 类代数式叫单项式. 2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数 不为零时,单项式中所有字母指数的和,叫单项式的次数. 3.多项式:几个单项式的和叫多项式. 4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多 项式里,次数最高项的次数叫多项式的次数; 注意:(若a、b、c、p、q 是常数)ax2+bx+c 和x2+px+q 是常见的两个二次三项式. 5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式. 整式分类为: 单项式 整式. 多项式 6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7.合并同类项法则:系数相加,字母与字母的指数不变. 8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边 是“- ”号,括号里的各项都要变号. 9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并. 10. 多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列). 注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列. 11. 列代数式 列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平 方、倒数以及几分之几、几成、倍等等. 抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太 难了. 12. 代数式的值 根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数 式的值. 13. 列代数式要注意 ①数字与字母、字母与字母相乘,要把乘号省略; ②数字与字母、字母与字母相除,要把它写成分数的形式; ③如果字母前面的数字是带分数,要把它写成假分数。 1

整式的加减经典练习题集合

'
一.填空题
1、单项式 5x2 y 的系数是
6
,次数是
15.一船从甲港口出发顺水航行 4 小时到达乙港口,从乙港口返回到甲港口则用时 6 小时.若此船在静
水中的速度为 40km/h,则水流速度是

2.已知 x+y=3,则 7-2x-2y 的值为

2. x 是两位数,y 是三位数,y 放在 x 左边组成的五位数是______________.
3.有一棵树苗,刚栽下去时,树高米,以后每年长米,则 n 年后的树高为_____________.
4.某音像社对外出租光盘的收费方法是:每张光盘在出租后的头两天每天收元,以后每天收元,那么一
张光盘在出租后第 n 天(n>2 的自然数)应收租金_________________________元.
5.某品牌的彩电降价 30%以后,每台售价为 a 元,则该品牌彩电每台原价为__________元.

6.一台电视机成本价为 a 元,销售价比成本价增加了 25 0 0 ,因库存积压,所以就按销售价的 70 0 0 出
售,那么每台实际售价为____________________元.
8、- a 2bc 的相反数是
, 3 =
7.如果某商品连续两次涨价 10%后的价格是a元,那么原价是_______________
2.单项式 1.2 105a2b 的系数是
,次数是

5. a 与 b 的平方差列式为_________________
m 3.若 3xm5 y2与x3 y n 的和是单项式,则 n

若x 1时,代数式ax3 bx 1 6,则x 1时,ax3 bx 1 .
5.已知 x 2 3x 5 的值为 3,则代数式 3x 2 9x 1的值为

8.已知一个三位数的个位数字是 a, 十位数字比个位数字大 3,百位数字是个位数字的 2
倍,这个三位数可表示为________________.
9. 已知实数 a、b 与 c 的大小关系如图所示:
求 2a b 3(c a) 2 b c =
10.某书每本定价 8 元,若购书不超过 10 本,按原价付款;若一次购书 10 本以上,超过 10 本部分打
八折.设一次购书数量为 x 本,付款金额为 y 元,请填写下表:
x(本)
2
y(元)
16
>
10
22
7
>
11.长方形的一条边长为 3a+2b,另一条边比它小 b-2a.则这个长方形的周长是
13.如图,每一幅图中均含有若干个正方形,第 1 幅图中有 1 个正方形;第 2 幅图中有 5 个正方形;…按这
样的规律下去,第 6 幅图中有(
)个正方形.
12.下面的一列单项式:x,-2x2,4x3,-8x4,…根据你发现的规律,第 7 个单项式为______;第 n 个单 项式为______.
4、已知: x 1 1 ,则代数式 (x 1)2010 x 1 5 的值是

x
x
x
5、张大伯从报社以每份元的价格购进了 a 份报纸,以每份元的价格售出了 b 份报纸,剩余的以每份元
的价格退回报社,则张大伯卖报收入
元。
、计算: (m 3m 5m 2009m) (2m 4m 6m 2008m) =

9.电影院第一排有 a 个座位,后面每排比前一排多 2 个座位,则第 x 排的座位有____________个.
32.当 a b =3 时,代数式 5(a b) - 3(a b) =__________.
ab
ab ab
>
29.代数式 9-(x-a)2 的最大值为_______,这时 x=_______.
24. 如果 Axy3 By3 x 0 ,则 A+B=( ) 2xy
A. 2
B. 1
C. 0
21.如果多项式 x4-(a-1)x3+5x2+(b+3)x-1 不含 x3 和 x 项,则 a=________,
b=_________.
D. –1
9、如图 15-3 所示,用代数式表示图中阴影部分的面积为______________
4.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴
在了上面.
x2
3xy
1 2
y2


1 2
x2
4xy
3 2
y2

1 2
x2
y 2 ,阴影部分即为被墨迹弄污的部
分.那么被墨汁遮住的一项应是 ( )A . 7xy
B. 7xy C. xy D . xy
2 a2b2m 3 a2nb4
3.如果 3
与2
是同类项,那么 m=
;n=

4.当 2y–x=5 时, 5x 2 y2 3 x 2 y 60 =


4、已知单项式 3amb2 与 1 a b4 n1 的和是单项式,那么= 2
,=


韦达定理全面练习题及答案 (1)

1、韦达定理(根与系数的关系) 韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么 说明:定理成立的条件0?≥ 练习题 一、填空: 1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = . 2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = . 5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = . 6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 . 7、以13+,13-为根的一元二次方程是 . 8、若两数和为3,两数积为-4,则这两数分别为 . 9、以23+和23-为根的一元二次方程是 . 10、若两数和为4,两数积为3,则这两数分别为 . 11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += . 12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 . 13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = . 14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 . 二、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值:

《整式的加减》知识点及典型试题(带解析)

解析《整式的加减》知识点 一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。 二、整式 多项式和单项式统称为整式。特别注意:分母中不能含字母 三、单项式与多项式 单项式 1、都是数字与字母的相乘的代数式叫做单项式。 2、单项式的数字因数叫做单项式的系数。 3、单项式中所有字母的指数和叫做单项式的次数。 4、单独一个数或一个字母也是单项式。 5、只含有字母因式的单项式的系数是1或―1。 6、单独的一个数字是单项式,它的系数是它本身。 7、单独的一个非零常数的次数是0。 8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。 9、单项式的系数包括它前面的符号。 10、单项式的系数是带分数时,应化成假分数。 11、单项式的系数是1或―1时,通常省略数字“1”。 12、单项式的次数仅与字母有关,与单项式的系数无关。 多项式 1、几个单项式的和叫做多项式。 2、多项式中的每一个单项式叫做多项式的项。 3、多项式中不含字母的项叫做常数项。 4、一个多项式有几项,就叫做几项式。 5、多项式的每一项都包括项前面的符号。 6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。 整式 1、单项式和多项式统称为整式。 2、单项式或多项式都是整式。 3、整式不一定是单项式。 4、整式不一定是多项式。 5、分母中含有字母的代数式不是整式。 四、整式的加减 1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。 去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。 2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。 合并同类项: 1).合并同类项的概念: 把多项式中的同类项合并成一项叫做合并同类项。 2).合并同类项的法则: 同类项的系数相加,所得结果作为系数,字母和字母的指数不变。 3).合并同类项步骤: a.准确的找出同类项。 b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。 c.写出合并后的结果。 4).在掌握合并同类项时注意: a.如果两个同类项的系数互为相反数,合并同类项后,结果为0. b.不要漏掉不能合并的项。 c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。 说明:合并同类项的关键是正确判断同类项。 3、几个整式相加减的一般步骤: 1)列出代数式:用括号把每个整式括起来,再用加减号连接。 2)按去括号法则去括号。 3)合并同类项。

韦达定理 经典习题

韦达定理经典习题 一.选择题(共16小题) 1.若方程x2﹣(m2﹣4)x+m=0的两个根互为相反数,则m等于() A.﹣2B.2C.±2D.4 2.若关于x的方程x2+3x+a=0有一个根为1,则另一个根为() A.﹣4B.2C.4D.﹣3 3.设a,b是方程x2+x﹣2017=0的两个实数根,则a2+2a+b的值为() A.2014B.2015C.2016D.2017 4.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是() A.有两个正根 B.有两个负根 C.有一正根一负根且正根绝对值大 D.有一正根一负根且负根绝对值大 5.已知m、n是方程x2+3x﹣2=0的两个实数根,则m2+4m+n+2mn的值为() A.1B.3C.﹣5D.﹣9 6.已知关于x的一元二次方程x2+mx﹣8=0的一个实数根为2,则另一实数根及m的值分别为()A.4,﹣2B.﹣4,﹣2C.4,2D.﹣4,2 7.一元二次方程x2+x﹣1=0的两根分别为x1,x2,则+=() A.B.1C.D. 8.关于x的方程x2+2(k+2)x+k2=0的两实根之和大于﹣4,则k的取值范围是() A.k>﹣1B.k<0C.﹣1<k<0D.﹣1≤k< 9.已知a、b是一元二次方程x2﹣3x﹣2=0的两根,那么+的值为() A.B.C.﹣D.﹣ 10.已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是() A.x2﹣7x+12=0B.x2+7x+12=0C.x2+7x﹣12=0D.x2﹣7x﹣12=0 11.设a、b是方程x2+x﹣2014=0的两个实数根,则a2+2a+b的值为() A.2014B.2015C.2012D.2013 二.填空题(共30小题) 12.已知:一元二次方程x2﹣6x+c=0有一个根为2,则另一根为. 13.一元二次方程x2+x﹣2=0的两根之积是. 14.若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=. 15.一元二次方程x2+mx+2m=0的两个实根分别为x1,x2,若x1+x2=1,则x1x2=. 16.已知m、n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为. 17.已知a,b是方程x2﹣x﹣3=0的两个根,则代数式a2+b+3的值为. 18.已知关于x的方程x2﹣2ax+a2﹣2a+2=0的两个实数根x1,x2,满足x12+x22=2,则a的值是.19.方程x2﹣3x+1=0中的两根分别为a、b,则代数式a2﹣4a﹣b的值为.

整式的加减单元测试题(含答案)

第二章 整式的加减单元测试 姓名; 分值 一、填空题(每题3分,共36分) 1、单项式23x -减去单项式y x x y x 2 222,5,4--的和,列算式为 , 化简后的结果是 。 2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。 3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。 4、已知:11=+x x ,则代数式51)1(2010-+++x x x x 的值是 。 5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。 6、计算:=-+-7533x x , )9()35(b a b a -+-= 。 7、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。 8、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。 9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。 10、若≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = 。 11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。 12、多项式17233 2+--x x x 是 次 项式,最高次项是 ,常数项是 。 二、选择题(每题3分,共30分) 13、下列等式中准确的是( ) A 、)25(52x x --=- B 、)3(737+=+a a C 、-)(b a b a --=- D 、)52(52--=-x x 14、下面的叙述错误的是( )

韦达定理(常见经典题型)

韦达定理(常见经典题型)

一元二次方程知识网络结构图 1.方程中只含有 个未知数,并且整理后未知数的最高次数是 ,这样的方程叫做一元二次方程。 通常可写成如下的一般形式 ( a 、b 、c 、为常数,a )。 2. 一元二次方程的解法: (1)直接开平方法:当一元二次方程的一边是一个含有未知数的 的平 方,而另一边是一个 时,可以根据 的意义,通过开平方法求出这个方程的解。 (2)配方法:用配方法解一元二次方程()02 ≠=++a o c bx ax 的一般步骤是: ①化二次项系数为 ,即方程两边同时除以二次项系数; ②移项,使方程左边为 项和 项,右边为 项; ③配方,即方程两边都加上 的平方; ④化原方程为2 ()x m n +=的形式, 如果n 是非负数,即0n ≥,就可以用 法求出方程的解。 如果n <0,则原方程 。 (3)公式法: 方程20(0)ax bx c a ++=≠,当24b ac -_______ 0时,x = ________ (4)因式分解法:用因式分解法解一元二次方程的一般步骤是: 一元二次 定义:等号两边都是整式,只 含有一个未知数(一 解法直接开平方法 因式分解法 配方法 公式 法 22 240404b ac b ac b ac ?-??-???-?? >方程有两个不相等的实数根=方程有两个相等的实数根<方程无实数根应用一元二次方程解决实际 问题?? ? 步骤 实际问题的答案

①将方程的右边化为 ; ②将方程的左边化成两个 的乘积; ③令每个因式都等于 ,得到两个 方程; ④解这两个方程,它们的解就是原方程的解。 3、韦达定理 一、 一元二次方程的基本概念及解法 1、已知关于x 的方程x 2+bx +a =0有一个根是-a(a≠0),则a -b 的 值为 A .-1 B .0 C .1 D .2 2、 程时。 、当方程为一元二次方程时;、当方程为一元一次方的取值范围。 满足下列条件时,当方程21m 05)3()3(1 =+-++-x m x m m 3、一元二次方程x (x -2)=2-x 的根是( ) A .-1 B .2 C .1和2 D .-1和2 二 一元二次方程根的判别式 4、关于x 的方程2210x kx k ++-=的根的情况描述正确的是( ). A .k 为任何实数.方程都没有实数根 B ,k 为任何实数.方程都有两个不相等的实数根 C .k 为任何实数.方程都有两个相等的实数根 D .根据k 的取值不同.方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种 5、已知关于x 的一元二次方程(a ﹣l )x 2﹣2x+l =0有两个不相等的实

概率论与数理统计 习题(5)答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

整理得0.95,10n ??Φ≥ ? ??? 查表 1.64,10n ≥ n ≥, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响, 开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,), ()140,()42,E X D X == 1400.95{0}().42m P X m P X m -?? =≤≤=≤=Φ ??? 查表知 140 1.64,42 m -= ,m =151. 所以供电能151×15=2265(单位). 4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量, 且都在区间(0,10)上服从均匀分布.记V = ∑=20 1 k k V ,求P {V >105}的近似值. 【解】易知:E (V k )=5,D (V k )= 100 12 ,k =1,2,…,20 由中心极限定理知,随机变量 20 1 205 ~(0,1).100100 20201212 k k V Z N =-?= =??∑近似的 于是105205{105}1010020201212P V P ????-?? >=>???? ????? 1000.3871(0.387)0.348,102012V P ????-?? =>≈-Φ=? ???????? 即有 P {V >105}≈ 5. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100 根,问其中至少有30根短于3m 的概率是多少

相关文档
最新文档