信息论与编码原理_第7章_信道编码的基本概念
(完整版)信息论与编码概念总结

第一章1.通信系统的基本模型:2.信息论研究内容:信源熵,信道容量,信息率失真函数,信源编码,信道编码,密码体制的安全性测度等等第二章1.自信息量:一个随机事件发生某一结果所带的信息量。
2.平均互信息量:两个离散随机事件集合X 和Y ,若其任意两件的互信息量为 I (Xi;Yj ),则其联合概率加权的统计平均值,称为两集合的平均互信息量,用I (X;Y )表示3.熵功率:与一个连续信源具有相同熵的高斯信源的平均功率定义为熵功率。
如果熵功率等于信源平均功率,表示信源没有剩余;熵功率和信源的平均功率相差越大,说明信源的剩余越大。
所以信源平均功率和熵功率之差称为连续信源的剩余度。
信源熵的相对率(信源效率):实际熵与最大熵的比值信源冗余度:0H H ∞=ηηζ-=1意义:针对最大熵而言,无用信息在其中所占的比例。
3.极限熵:平均符号熵的N 取极限值,即原始信源不断发符号,符号间的统计关系延伸到无穷。
4.5.离散信源和连续信源的最大熵定理。
离散无记忆信源,等概率分布时熵最大。
连续信源,峰值功率受限时,均匀分布的熵最大。
平均功率受限时,高斯分布的熵最大。
均值受限时,指数分布的熵最大6.限平均功率的连续信源的最大熵功率:称为平均符号熵。
定义:即无记忆有记忆N X H H X H N X H X NH X H X H X H N N N N N N )()()()()()()(=≤∴≤≤若一个连续信源输出信号的平均功率被限定为p ,则其输出信号幅度的概率密度分布是高斯分布时,信源有最大的熵,其值为1log 22ep π.对于N 维连续平稳信源来说,若其输出的N 维随机序列的协方差矩阵C 被限定,则N 维随机矢量为正态分布时信源的熵最大,也就是N 维高斯信源的熵最大,其值为1log ||log 222N C e π+ 7.离散信源的无失真定长编码定理:离散信源无失真编码的基本原理原理图说明: (1) 信源发出的消息:是多符号离散信源消息,长度为L,可以用L 次扩展信源表示为: X L =(X 1X 2……X L )其中,每一位X i 都取自同一个原始信源符号集合(n 种符号): X={x 1,x 2,…x n } 则最多可以对应n L 条消息。
信息论与编码技术》实验教案

信息论与编码技术实验教案第一章:信息论基础1.1 信息的概念与度量介绍信息的基本概念,信息源的随机性,信息的不确定性。
讲解信息的度量方法,如香农熵、相对熵等。
1.2 信道模型与容量介绍信道的概念,信道的传输特性,信道的噪声模型。
讲解信道的容量及其计算方法,如单符号信道、多符号信道等。
第二章:信源编码与压缩2.1 信源编码的基本概念介绍信源编码的定义、目的和方法。
讲解信源编码的基本原理,如冗余度、平均冗余度等。
2.2 压缩算法与性能评价介绍无损压缩算法,如霍夫曼编码、算术编码等。
讲解有损压缩算法,如JPEG、MP3等。
分析各种压缩算法的性能评价指标,如压缩比、重建误差等。
第三章:信道编码与错误控制3.1 信道编码的基本概念介绍信道编码的定义、目的和方法。
讲解信道编码的基本原理,如纠错码、检错码等。
3.2 常见信道编码技术介绍常用的信道编码技术,如卷积码、汉明码、奇偶校验等。
分析各种信道编码技术的性能,如误码率、编码效率等。
第四章:数字基带传输4.1 数字基带信号与基带传输介绍数字基带信号的概念,数字基带信号的传输特性。
讲解数字基带信号的传输方法,如无编码调制、编码调制等。
4.2 基带传输系统的性能分析分析基带传输系统的性能指标,如误码率、传输速率等。
讲解基带传输系统的优化方法,如滤波器设计、信号调制等。
第五章:信号检测与接收5.1 信号检测的基本概念介绍信号检测的定义、目的和方法。
讲解信号检测的基本原理,如最大后验概率准则、贝叶斯准则等。
5.2 信号接收与性能分析分析信号接收的方法,如同步接收、异步接收等。
讲解信号接收性能的评价指标,如信噪比、误码率等。
第六章:卷积编码与Viterbi算法6.1 卷积编码的基本原理介绍卷积编码的定义、结构及其多项式。
讲解卷积编码的编码过程,包括初始状态、状态转移和输出计算。
6.2 Viterbi算法及其应用介绍Viterbi算法的原理,算法的基本步骤和性能。
讲解Viterbi算法在卷积编码解码中的应用,包括路径度量和状态估计。
信息论与编码研学笔记

信息论与编码研学笔记一、信息论与编码研学的详细过程1.阅读了教材或参考资料上的哪些内容?第一章绪论:§1.1 信息的一般概念信息存在于自然界,也存在于人类社会,其本质是运动和变化。
可以说哪里有事物的运动和变化,哪里就会产生信息。
信息必须依附于一定的物质形式存在,这种运载信息的物质,称为信息载体。
人类交换信息的形式丰富多彩,使用的信息载体非常广泛。
概括起来,有语言、文字和电磁波。
§1.2 信息的分类在众多的分类原则和方法中,最重要的就是按照信息性质的分类。
按照性质的不同可以把信息划分成语法信息、语义信息和语用信息三个基本类型。
其中最基本也是最抽象的类型是语法信息。
也是迄今为止在理论上研究得最多的类型。
§1.3 信息论的起源、发展及研究内容在人类历史的长河中,信息传输和传播手段经历了五次重大变革:语言的产生;文字的产生;印刷术的发明;电报、电话的发明;计算机与通信技术相结合,促进了网络通信的发展。
第2章:信源熵§2.1 单符号离散信源单符号离散信源的数学模型、自信息和信源熵、信源熵的基本性质和定理、加权熵的概念和基本性质、平均互信息、各种熵之间的关系§2.2 多符号离散信源序列信息的熵、离散平稳信源的数学模型、平稳信源的熵和极限熵、马尔可夫信源、信源冗余度§2.3 连续信源连续信源的熵、几种特殊连续信源的熵、连续信源熵的性质及最大连续熵定理、熵功率§2.4 离散信源无失真编码定理定长编码定理、变长编码定理第3章:信道容量§3.1 信道容量的数学模型和分类§3.2 单符号离散信源信道容量的定义、几种特殊离散信道的容量、离散信道容量的一般计算方法§3.3 多符号离散信源多符号离散信道的数学模型、离散无记忆信道的N次扩展信道和独立并联信道的信道容量§3.4 多用户信道多址接入信道、广播信道、相关信源的多用户信道§3.5 信道编码定理第4章:信息率失真函数§4.1 信息率失真函数失真函数和平均失真度、率失真函数定义、率失真函数性质§4.2 离散信源的信息率失真函数离散信源信息率失真函数的参量表达式、二元信源的率失真函数连续信息的率失真函数、连续信源失真函数的参量表达式、高斯信源的率失真函数、信息价值§4.4 保真度准则下的信源编码定理第5章:信源编码§5.1 离散信源编码香农编码、费诺编码、赫夫曼编码、游程编码、冗余位编码§5.2 连续信源编码最佳标量量化、矢量量化§5.3 相关信源编码预测编码、差值编码§5.4 变差值编码子带编码、小波变换第6章:信道编码§6.1 信道编码的概念信道编码的作用和分类、编码信道、检错和纠错原理、检错和纠错方式和能力§6.2 线形分组码线性分组码的描述、线性分组码的译码、码例与码的重构§6.3 循环码循环码的多项式描述、循环码的生成矩阵、系统循环码、多项式运算电路、循环码的编码电路、循环码的伴随多项式与检测、BCH 码与RS 码 §6.4 卷积码卷积码的矩阵描述、卷积码的多项式描述、卷积码的状态转移图与格描述、维特比(Viterbi )译码算法第7章:密码体制的安全性测度§7.1 密码基本知识§7.2 古典密码体制§7.3 现代密码体制§7.4 密码体制的安全性测度2.证明了教材或参考资料上哪些没有证明的定理?1)最大离散熵定理:离散无记忆信源输出M 个不同的信息符号,当且仅当各个符号出现概率相等时(即pi=1/M ),熵最大。
信息论与编码 共析

信息论与编码一、介绍信息论与编码是一门研究信息传递、存储和处理的学科,它于1948年由克劳德·香农提出。
信息论与编码主要关注如何在信息传递过程中通过编码技术来提高信息传输的效率和可靠性。
本文将深入探讨信息论与编码的基本概念、原理以及应用。
二、信息论的基本概念1. 信息的定义信息是指能够改变接收者行为或知识状态的事物或信号。
在信息论中,信息的单位通常用比特(bit)来表示,表示一个二进制的选择。
2. 信息的熵信息的熵是衡量信息量的一个指标,表示信息的不确定性。
熵越高,信息量越大,不确定性越高;熵越低,信息量越小,不确定性越低。
在信息论中,熵的单位通常用比特/秒(bit/s)来表示。
3. 信源和信道信源是指信息的来源,可以是任何能够产生信息的物体或系统。
信道是指信息传递的媒介,可以是实际的通信线路或无线电波等。
三、编码的基本原理1. 数据压缩编码数据压缩编码是一种通过减少信息的冗余性来减小数据的体积的技术。
其中,无损数据压缩编码通过消除冗余和统计特性来实现数据的无损压缩,而有损数据压缩编码通过舍弃部分信息来实现更高的压缩比。
2. 信道编码信道编码是一种在信道传输过程中,为了增强数据的可靠性而对数据进行编码和解码的技术。
常见的信道编码方式包括前向纠错码和卷积码等。
3. 源编码源编码是一种将信息源的符号序列转换为另一符号序列的技术,以便提高数据传输效率。
在源编码中,常用的方式包括霍夫曼编码和算术编码等。
四、信息论与编码的应用1. 通信系统中的应用信息论与编码在通信系统中有广泛的应用。
通过对信源进行编码和压缩,可以提高信息传输的效率和可靠性。
同时,信道编码可以提高数据在信道传输中的可靠性,减少传输错误。
2. 数据存储与压缩信息论与编码在数据存储与压缩领域也有广泛的应用。
通过对数据进行编码和压缩,可以减小存储空间的需求,降低存储成本,并提高数据的读写效率。
3. 图像和音频处理信息论与编码在图像和音频处理中也起到重要的作用。
信道编码的基本概念和定理

j 1, 2,..., N
译码规则对译码性能的影响
示例 设发送码字集 C : 0,1, p c1 p c2 0.5 接收码字集 R : 0,1
两不同的二元对称信道分别为
(1)
p
rj / ci
0.8 0.2
0.2 0.8
(2)
p
rj / ci
2
0.2 0.8
0.8 0.2
分析在两种信道下不同译码规则对译码性能的影响。
RS
有信息论的基本知识,有
I X;Y H X log M
定义归一化信道容量为
CN
max R p xi ,i1,2,...,M I RS log M
max
p xi ,i1,2,...,M
I X;Y log M
1
若记发送序列为 接收序列为
对于离散无记忆信道:
xr x1, x2,..., xN yr y1, y2,..., yN
率矩阵
p c1 / r1 p c1 / r2 ... p c1 / rN
P
C
/
R
p
c2 /
...
r1
p c2 / r2
...
p
c2
/
rN
...
...
...
p
cM
/
r1
p cM / r2
...
p cM / rN
及 R 的分布特性
p rj
Mp
i1
ci
p rj / ci
rj / ck
在先验等概的条件下,最大后验概率译码规则可变为
cˆ D rj c arg max p rj / c1 , p rj / c2 ,..., p rj / cM
信息论与编码概念总结

信息论与编码概念总结信息论最初由克劳德·香农在1948年提出,被称为“信息论的父亲”。
它主要研究的是如何最大化信息传输的效率,并对信息传输的性能进行量化。
信息论的核心概念是信息熵,它描述了在一个信息源中包含的信息量的平均值。
信息熵越高,信息量越大,反之亦然。
具体来说,如果一个信源生成的信息是等可能的,那么它的信息熵达到最大值,可以通过二进制对数函数计算。
此外,信息论还提出了联合熵、条件熵、相对熵等概念,用于分析复杂的信息源与信道。
除了信息熵,信息论对信道容量的定义也是非常重要的。
信道容量指的是信道可以传输的最大信息速率,单位是bit/s。
在信息论中,最为典型的信道是噪声信道,它在传输数据过程中会引入随机噪声,从而降低传输的可靠性。
通过信道编码,可以在一定程度上提高信号的可靠性。
信息论提出了香农编码定理,它给出了当信道容量足够大时,存在一种信道编码方式,可以使误码率趋近于零,实现可靠的数据传输。
信息论不仅可以应用于通信领域,还可以应用于数据压缩。
数据压缩主要有无损压缩和有损压缩两种方式。
无损压缩的目标是保持数据的原始信息完整性,最常见的压缩方式是霍夫曼编码。
它通过统计原始数据中的频率分布,将高频率的符号用较短的编码表示,从而减小数据的存储空间。
有损压缩则是在保证一定的视觉质量、音频质量或其他质量指标的前提下,对数据进行压缩。
有损压缩的目标是尽可能减小数据的存储空间和传输带宽。
常见的有损压缩方法包括JPEG、MP3等。
编码是信息论的应用之一,它是实现信息传输与处理的关键技术。
编码主要分为源编码和信道编码两个方面。
源编码是将源信号进行编码,以减小信号的冗余,并且保持重构信号与原信号的接近程度。
常见的源编码方法有霍夫曼编码、香农-费诺编码等。
信道编码则是在信道传输中引入冗余信息,以便在传输过程中检测和修复错误。
常见的信道编码方法有海明码、卷积码、LDPC码等。
这些编码方法可以通过增加冗余信息的方式来提高传输的可靠性和纠错能力。
信息论与编码原理

信息论与编码原理
信息论和编码原理是信息科学中重要的两个概念,它们对当今信息技术的发展有重要的影响。
信息论是探讨数据的数学理论,它主要研究在信息传输过程中,如何在有限的带宽和空间内有效地传输数据,从而获取最大的信息量。
它将信息压缩、加密、传输、解密等等放到一个数学模型中描述,以此提高信息的传输效率。
编码原理则是指在信息传输过程中,编码决定了有效传输的信息量。
编码是按照其中一种特定的规则将原信息转换成另一种形式的过程。
编码不仅能够减少上行数据量,还能增强安全性,防止数据在传输过程中的泄露,从而使信息可以被安全和精确地传输。
信息论和编码原理有着千丝万缕的关系,它们是相互依存的。
信息论提供了一个理论框架,以及不同的编码方法,来确定最适合特定情况下的信息传输效果。
然而,编码原理则可以提供不同编码方法,以根据信息论的模型,合理有效地进行信息传输。
因此,信息论和编码原理是相辅相成的。
当今,信息论和编码原理已成为当今信息技术发展的基础。
[物理]信息论与编码原理_第7章_信道编码的基本概念
![[物理]信息论与编码原理_第7章_信道编码的基本概念](https://img.taocdn.com/s3/m/c669c67d6137ee06eef91824.png)
无记忆二进制信道:对任意的 n 都有:
则称为无记忆二进制信道。
n1
p(R/C) p(ri /ci)
i0
14.11.2020
h
第17页
7.3 信道编码的基本思想和分类
(1) 编码信道
无记忆二进制对称信道 /BSC /硬判决信道:无记忆二进制信道的转
移概率又满足 p(0/1)=p(1/0)=pb,称为无记忆二进制对称信道。
14.11.2020
返回目录
h
第10页
7.1 信道编码在数字通信系统中的地位和作用
(3) 采用信道编码的数字通信系统
在某些情况下,信道的改善可能较困难或者不经济,可采用信道 编码,以便满足系统差错率的技术指标要求。
信道编码为系统设计者提供了一个降低系统差错率的措施。采用 信道编码后的数字通信系统可用图7.1.2 所示。
14.11.2020
h
第15页
7.3 信道编码的基本思想和分类
(1) 编码信道
是研究纠错编码和译码的一种模型。图7.3.1 所示。 编码信道:
无线通信中的发射机、天线、自由空间、接收机等的全体; 有线通信中的如调制解调器、电缆等的全体; Internet 网的多个路由器、节点、电缆、底层协议等的全体; 计算机的存储器(如磁盘等)的全体。
信 源
信 源 编
m
信 道
编
C调 制
码
码
器
传 输 信 道
解 调
R
信 道
译
m'
信 源
译
器
码
码
信 宿
图7.1.2 有信道编码的数字通信系统框图
14.11.2020
返回目录
h