2018年中考数学模拟试题

合集下载

上海市松江区2018届九年级中考一模试卷数学试题(解析版)

上海市松江区2018届九年级中考一模试卷数学试题(解析版)
2018年上海市松江区中考数学一模试卷
一、选择题:(本大题共6题,每题4分,满分24分)
1.已知 ,那么 的值为()
A. B. C. D.
【答案】C
【解析】
分析:根据比例设a=k,b=3k,然后代入比例式进行计算即可得解.
详解:∵ = ,∴设a=k,则b=3k(k≠0),∴ = = .
故选C.
点睛:本题考查了比例的性质,利用“设k法”求解更简便.
(1)设 , .试用 、 表示 ;
(2)如果△ABC的面积是9,求四边形ADEF的面积.
【答案】(1) ;(2)4.
【解析】
【分析】
(1)由EF∥AB知 = ,据此可得 = =2,即 = = ,从而证△BDE∽△BAC得∠BDE=∠A,即可知DE∥AC、四边形ADEF是平行四边形,再利用 = = = = 及平行四边形法则可得答案;
∴A′C=A′B=2,AA′= =2 ,AB=4 ,
∴AM= AA′= ,A′N=BN= ,
∴AN=AB﹣BN=3 .
∵∠EAM=∠A′AC,∠AME=∠C,
∴△AEM∽△AA′C,
∴ = ,
∴AE= .
同理:△ADM∽△AA′N,
∴ห้องสมุดไป่ตู้= ,
∴AD= = .
故答案为: .
【点睛】本题考查了折叠的性质、勾股定理以及相似三角形的判定及性质,利用相似三角形的性质求出AD、AE的长度是解题的关键.
【答案】a<﹣2
【解析】
【分析】
根据抛物线y=(a+2)x2+x﹣1的开口向下,可得a+2<0,从而可以得到a的取值范围.
【详解】∵抛物线y=(a+2)x2+x﹣1的开口向下,

2018年河南省郑州市中考数学二模试卷

2018年河南省郑州市中考数学二模试卷

第1页(共19页)2018年河南省郑州市中考数学二模试卷一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。

)1、下列各数中最小的数是……………………()A .2p- B B..2- C C..0 D 0 D..12、2015年河南省参加高考的考生数量为772325人,比2014年增加了4.8万人。

将数据772325精确到千位用科学记数法表示为……………()A .41023.77´B B..51072.7´C C..5107.7´D D..4102.77´3、将一个螺栓按如右下图放置,则螺栓的左视图可能是………………()4、某小组5名同学一周内参加家务劳动的时间如下表所示,关于劳动时间这组数据,下列说法正确的是……………………………………()劳动时间(小时) 1 2 3 4人数 1 1 2 1 A .众数是2,平均数是,平均数是 2.6 2.6 2.6;;B .中位数是3,平均数是2;C .众数和中位数都是3; D D.众数是.众数是2,中位数是3.5、不等式组的解集在数轴上表示正确的是……()6、如图,已知0361=Ð,0362=Ð,01403=Ð,则4Ð的度数等于……()A.040. B.036. C . C..044. D.0100.7、已知关于x 的一元二次方程0142=+-x ax 有两个不相等的实数根,则a 的非负整数值的个数是……………………………………()(A )5;(B )4;(C )3; (D) 2 (D) 2..8、如图,四边形ABCD 是⊙是⊙O O 的内接四边形,AC 是⊙O 直径直径,,点P 在AC 的延长线上,延长线上,PD PD 是⊙是⊙O O 的切线,延长BC 交PD 于点E .则下列说法不正确的是……………………………………………………()A .PDO ADC Ð=Ð;B B..DAB DCE Ð=Ð;2-2x ≥6,2x -1≤5DCB A NMPQ43211EO PDCBAC .B Ð=Ð1;D D.. PDA PCD Ð=Ð.二、填空题(每小题3分,共21分)9. =______.10.如图,已知直线AB ∥CD ,直线EG 垂直于AB ,垂足为G ,直线EF 交CD 于点F ,∠1=50°,则∠2=______.11.微信根据移动ID 所带来的数据,发布了“微信用户春节迁徙数据报告”.该报告显示,2016年1月24日春运首日至2月4日期间,人口流入最多的省份是河南,作为劳务输出大省,河南约有313万微信用户在春节期间返乡,313万用科学记数法可表示为______. 12.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为______.13.反比例函数y=经过点A (﹣3,1),设B (x 1,y 1),C (x 2,y 2)是该函数图象上的两点,且x 1<x 2<0,那么y 1与y 2的大小关系是______(填“y 1>y 2”,“y 1=y 2”或“y 1<y 2”). 14.如图,在△ABC 中,∠C=90°,AC=BC ,斜边AB=4,O 是AB 的中点,以O 为圆心,线段OC 的长为半径画圆心角为90°的扇形OEF ,弧EF 经过点C ,则图中阴影部分的面积为______平方单位.15.已知一个矩形纸片OACB ,OB=6,OA=11,点P 为BC 边上的动点(点P 不与点B ,C 重合),经过点O 折叠该纸片,得折痕OP 和点B ʹ,经过点P 再次折叠纸片,使点C 落在直线PB ʹ上,得折痕PQ 和点C ʹ,当点C ʹ恰好落在边OA 上时BP 的长为 ______.三、解答题(共75分)16.先化简(+),再求值.a为整数且﹣2≤a≤2,请你从中选取一个合适的数代入求值.17.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有______ 人;)请将该条形统计图补充完整;(2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树______棵.(保留整数)18.如图,已知⊙A的半径为4,EC是圆的直径,点B是⊙A的切线CB上的一个动点,连接AB交⊙A于点D,弦EF平行于AB,连接DF,AF.(1)求证:△ABC≌△ABF;(2)当∠CAB=______时,四边形ADFE为菱形;为正方形.(3)当AB=______时,四边形ACBF为正方形.19.已知:关于x的一元二次方程x2+2x+k=0有两个不相等的实数根.有两个不相等的实数根.(1)求k的取值范围;取最大整数值时,用合适的方法求该方程的解.(2)当k取最大整数值时,用合适的方法求该方程的解.20.图1是小明在健身器材上进行仰卧起坐锻炼时情景.图2是小明锻炼时上半身由EM位置运动到与地面垂直的EN位置时的示意图.已知BC=0.64米,AD=0.24米,α=18°.(sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)(1)求AB的长(精确到0.01米);(2)若测得EN=0.8米,试计算小明头顶由M点运动到N点的路径弧MN的长度(结果保留π)21.某公司推销一种产品,公司付给推销员的月报酬有两种方案如图所示:其中方案一所示图形是顶点在原点的抛物线的一部分,方案二所示的图形是射线.设推销员销售产品的数量为x(件),付给推销员的月报酬为y(元).的函数关系式;(1)分别求两种方案中y关于x的函数关系式;(2)当销售量达到多少件时,两种方案的月报酬差额将达到3 800元?(3)若公司决定改进“方案二”:基本工资1 200元,每销售一件产品再增加报酬m元,当推销员销售量达到40件时,方案二的月报酬不低于方案一的月报酬.求m至少增加多少元?22.如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB的中点,∠EDF=90°,DE 交AC于点G,DF经过点C.(1)求∠ADE的度数;(2)如图2,将图1中的∠EDF绕点D顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E1DF1,∠E2DF2,DE1交直线AC于点P,DF1交直线BC于点Q,DE2交直线AC于点M,DF2交直线BC于点N,求的值;(3)若图1中∠B=β(60°<β<90°),(2)中的其余条件不变,判断的值是否为定值?;如果不是,请说明理由.如果是,请直接写出这个值(用含β的式子表示);如果不是,请说明理由.23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、三点.点C三点.(1)试求抛物线的解析式;)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△BʹOʹCʹ.在平移过程中,△BʹOʹCʹ与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?之间的函数关系式?2018年河南省郑州市中考数学二模试卷参考答案与试题解析一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。

湖北省武汉市四校联考2018年中考数学模拟试卷(3月份,带答案)

湖北省武汉市四校联考2018年中考数学模拟试卷(3月份,带答案)

2018年湖北省武汉市四校联考中考数学模拟试卷(3月份)一.选择题(每小题3分,共30分)1.(3分)化简的结果为()A .±5B .25C .﹣5D .52.(3分)若代数式在实数范围内有意义,则实数x 的取值范围是()A .x <3B .x >3C .x ≠3D .x=33.(3分)下列计算结果是x 5的为()A .x 10÷x 2B .x 6﹣xC .x 2•x 3D .(x 3)24.(3分)在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.504.604.654.704.754.80人数232341则这些运动员成绩的中位数、众数分别是()A .4.65、4.70B .4.65、4.75C .4.70、4.75D .4.70、4.705.(3分)计算(x +2)(x +3)的结果为()A .x 2+6B .x 2+5x +6C .x 2+5x +5D .x 2+6x +66.(3分)点P (2,﹣3)关于x 轴对称点的坐标为()A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(﹣3,2)7.(3分)如图所示的正方体的展开图是()A .B .C .D .8.(3分)按照一定规律排列的n 个数:1,﹣2,4,﹣8,16,﹣32,64…若最后两个数的差为﹣1536,则n为()A.9B.10C.11D.129.(3分)已知一个三角形的三边长分别是6、7、8,则其内切圆直径为()A.B.C.D.210.(3分)已知抛物线y1=(x﹣x1)(x﹣x2)交x轴于A(x1,0)B(x2,0)两点,且点A在点B的左边,直线y2=2x+t经过点A.若函数y=y1+y2的图象与x轴只有一个公共点时,则线段AB的长为()A.4B.8C.16D.无法确定二.填空题(每小题3分,共18分)11.(3分)计算﹣2+3×4的结果为12.(3分)计算:=.13.(3分)将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,则摸出两个颜色不同小球的概率是.15.(3分)如图,等边△ABC的边长为8,D、E两点分别从顶点B、C出发,沿边BC、CA以1个单位/s、2个单位/s的速度向顶点C、A运动,DE的垂直平分线交BC边于F点,若某时刻tan∠CDE=时,则线段CF的长度为.16.(3分)在平面直角坐标系中,A(4,0),直线l:y=6与y轴交于点B,点P是直线l上点B右侧的动点,以AP为边在AP右侧作等腰Rt△APQ,∠APQ=90°,当点P的横坐标满足0≤x≤8,则点Q的运动路径长为.三、解答题(共8小题,满分72分)17.(8分)解方程:7x﹣5=3x﹣1.18.(8分)如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司为了掌握职工的工作成绩,随机抽取了部分职工的平时成绩(得分为整数,满分为160分)分为5组,第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)写出本次调查共抽取的职工数为(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,求该公司1500名工作人员中,成绩评为“B”的人员大约有多少名?20.(8分)某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.21.(8分)如图,⊙O为正方形ABCD的外接圆,E为弧BC上一点,AF⊥DE于F,连OF、OD.(1)求证:AF=EF;(2)若=,求sin∠DOF的值.22.(10分)如图,在△ABC中,AC=BC,AB⊥x轴于A,反比例函数y=(x >0)的图象经过点C,交AB于点D,已知AB=4,BC=.(1)若OA=4,求k的值.(2)连接OC,若AD=AC,求CO的长.23.(10分)如图,在四边形ABCD中,AB∥CD,∠ADC=90°,DE⊥BC于E,连AE,FE⊥AE交CD于点F.(1)求证:△AED∽△FEC;(2)若AB=2,求DF的值;(3)若AD=CD,=2,则=.24.(12分)如图,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y 轴交于点C,OB=OC,点D在函数图象上,CD∥x轴且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图1,连BE,线段OC上的点F关于直线l的对称点F’恰好在线段BE 上,求点F的坐标;(3)如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M、与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?若存在,求出点Q的坐标;若不存在,说明理由.2018年湖北省武汉市四校联考中考数学模拟试卷(3月份)参考答案与试题解析一.选择题(每小题3分,共30分)1.【解答】解:∵表示25的算术平方根,∴=5.故选:D.2.【解答】解:依题意得:x﹣3≠0,解得x≠3,故选:C.3.【解答】解:A、x10÷x2=x8,不符合题意;B、x6﹣x不能进一步计算,不符合题意;C、x2•x3=x5,符合题意;D、(x3)2=x6,不符合题意;故选:C.4.【解答】解:这些运动员成绩的中位数、众数分别是4.70,4.75.故选:C.5.【解答】解:(x+2)(x+3)=x2+3x+2x+6=x2+5x+6,故选:B.6.【解答】解:点P(2,﹣3)关于x轴对称点的坐标为(2,3),故选A.7.【解答】解:根据带有各种符号的面的特点及位置,可得如图所示的正方体的展开图是.故选:A.8.【解答】解:观察数列,可知:第n个数为(﹣2)n﹣1.设倒数第二个数为x,则最后一个数为﹣2x,根据题意得:x﹣(﹣2x)=﹣1536,解得:x=﹣512,∴﹣2x=1024,∴(﹣2)n﹣1=1024,∴n=11.故选:C.9.【解答】解:AB=7,BC=6,AC=8,内切圆的半径为r,切点为G、E、F,作AD⊥BC于D,设BD=x,则CD=6﹣x,在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(6﹣x)2,解得,x=,则AD==,×AD×BC=×AB×r+×AC×r+×CB×r,解得,r=,∴其内切圆直径为2,故选:D.10.【解答】解:∵线y2=2x+t经过点A(x1,0),∴2x1+t=0∴x1=﹣,A(﹣,0)∵若函数y=y1+y2的图象与x轴只有一个公共点,∴这个公共点就是点A,∴可以假设y=(x+)2=x2+tx+,∴y1=y﹣y2=x2+(t﹣2)x+﹣t.∴AB=====8.故选:B.二.填空题(每小题3分,共18分)11.【解答】解:﹣2+3×4=﹣2+12=10,故答案为:10.12.【解答】解:==x+2.故答案为x+2.13.【解答】解:∵对边平行,∴∠2=∠α,由折叠可得,∠2=∠3,∴∠α=∠3,又∵∠1=∠4=52°,∴∠α=(180°﹣52°)=64°,故答案为:62°.14.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色不同的有12种结果,∴两次取出的小球颜色不同的概率为=,故答案为:.15.【解答】解:作EH⊥BC于H,设线段DE的垂直平分线交DE于G.∵△ABC是等边三角形,∴∠C=60°,在Rt△EHC中,EC=2t,∴CH=t,EH=2t,在Rt△DEH中,∵tan∠CDE==,∴DH=4t,∵BD=t,BC=8,∴t+4t+t=8,∴t=,∴DH=,EH=,CH=,∵GF垂直平分线段DE,∴DF=EF,设DF=EF=x,在Rt△EFH中,∵EF2=EH2+FH2,∴x2=()2+(﹣x)2,解得x=,∴CF=﹣+=2.故答案为2.16.【解答】解:如图,过点P作PE⊥OA,垂足为E,过点Q作QF⊥BP,垂足为F,∵BP∥OA,PE⊥OA,∴∠EPF=∠PEO=90°.∵∠APQ=90°,∴∠EPA=∠FPQ=90°﹣∠APF.在△PEA和△PFQ中,∵,∴△PEA≌△PFQ(AAS),∴PE=PF,EA=QF,若点P的坐标为(a,6),则PF=PE=6,QF=AE=|4﹣a|.∴点Q的坐标为(a+6,10﹣a).∵无论a为何值,点Q的坐标(a+6,10﹣a)都满足一次函数解析式y=﹣x+16,∴点Q始终在直线y=﹣x+16上运动.当点P的横坐标满足0≤x≤8时,点Q的横坐标满足6≤x≤14,纵坐标满足2≤y≤10,则Q的运动路径长为=8,故答案为:8.三、解答题(共8小题,满分72分)17.【解答】解:(1)移项得7x﹣3x=5﹣1,合并同类项得4x=4,系数化为1得x=1.18.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.【解答】解:(1)本次调查共抽取的职工数为20÷40%=50(人),故答案为:50;(2)1500×=420(人),答:成绩评为“B”的人员大约有420名.20.【解答】解:(1)设甲种笔记本的单价是x元,乙种笔记本的单价是y元.(1分)根据题意可得(3分)解这个方程组得(4分)答:甲种笔记本的单价是3元,乙种笔记本的单价是5元.(5分)(2)设本次购买乙种笔记本m个,则甲种笔记本(2m﹣10)个.(6分)根据题意可得m+(2m﹣10)≥80,解这个不等式得m≥30,3(2m﹣10)+5m≤320(8分)解这个不等式得m≤31.(9分)因为m为正整数,所以m的值为:30或31故本次购进甲笔记本50个、乙笔记本30个;或购进甲笔记本52个、乙笔记本31个.(10分)21.【解答】证明:(1)如图,过B作BG⊥AF于G,连接BE、OB,∵AF⊥DE,∴∠AGB=∠AFD=90°,∴∠BAF+∠ABG=90°,∵四边形ABCD是正方形,∴BD为⊙O的直径,AD=AB,∠BAD=90°,∴∠DAF+∠BAF=90°,∠BED=90°,∴∠ABG=∠DAF,∴△ABG≌△DAF,∴BG=AF,∵∠BED=∠BGF=∠AFE=90°,∴四边形GBEF是矩形,∴EF=BG,∴AF=EF;(2)作OH⊥BE于H,连接AO,GO.∵OH⊥BE,∴BH=HE,∴OH垂直平分线段BE,∵四边形GBEF是矩形,∴BE=GF,BE∥GF,∴OH垂直平分线段FG,∴OG=OF,∵∠AOD=∠AFD=90°,∴A、D、F、O四点共圆,∴∠DOF=∠DAF,∠OFG=∠ADO=45°,∴△FOG是等腰直角三角形,∴FG=OF,∵EF=BG=AF=2OF,∴AF=2FG,AG=FG=DF,设DF=a,则AF=2a,AD=a,∴sin∠DOF=sin∠DAF==.22.【解答】解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE=,∵OA=4,∴C点的坐标为:(,2),∵点C在y=(x>0)的图象上,∴k=11;(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m+,2).∵点C,D都在y=(x>0)的图象上,∴m=2(m+),∴m=6,∴C点的坐标为:(,2),作CF⊥x轴,垂足为F,∴OF=,CF=2,在Rt△OFC中,OC2=OF2+CF2,∴OC==.23.【解答】解:(1)∵DE⊥BC,EF⊥AE,∴∠BED=∠CED=90°,∵∠2+∠3=90°,∠2+∠CEF=90°,∴∠CEF=∠3,∵∠AEF=∠ADF=90°∴∠6+∠4=180°,∵∠5+∠6=180°,∴∠5=∠4,∴△ADE∽△FEC.(2)∵∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2,∵AB∥CD,∠ADC=90°,∴∠BAD+∠ADC=180°,∴∠BAD=90°,∵∠BED+∠BAD=180°,∴四边形ABCD四点共圆,∵∠AEF+∠ADF=180°,∴四边形AEFD四点共圆,∴A、B、E、F、D五点共圆,∵∠1=∠2,∴DF=AB=2.(3)作CN⊥AB交AB的延长线于N,过点E作EG⊥AN垂足为G交CD于H,延长DE交CN于M.∵==2,AB=FD,∴EG=2EH,∵GB∥CH,∴△EGB∽△EHC,∴==2,设EC=a,AB=x,CD=y,则EB=2a,∵∠NCD=∠ADC=∠DAN=90°,∴四边形ADCN是矩形,∵AD=DC∴四边形ADCN是正方形,∴AN=CN=CD=y,NB=y﹣x,∵∠NCB+∠CMD=90°,∠CMD+∠MDC=90°∴∠NCB=∠MDC,∵CN=CD,∴△CNB≌△DCM,∴CM=BN=y﹣x,DM=BC=3a,∵∠MCD=∠MEC,∠CME=∠CMD,∴△MCE∽△MDC,∴=,∴=,∴y2﹣xy=3a2①∵CM2+CD2=MD2,∴(y﹣x)2+y2=9a2②由①②消去a得x2+xy﹣y2=0∴x=y,(或x=y舍弃)∴=,∴=.故答案为:.24.【解答】解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴﹣=1,b=2.∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=﹣c2+2c+c,解得c=3或c=0(舍去),∴c=3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴E(1,4),∵直线BE经过点B(3,0),E(1,4),∴利用待定系数法可得直线BE的表达式为y=﹣2x+6.∵点F在BE上,∴m=﹣2×2+6=2,即点F的坐标为(0,2);(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,=S△APM,∵S△PQN∴(n+1)(3﹣n)=(﹣n2+2n+3)•QR,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,﹣n2+4n),R点的坐标为(n,﹣n2+4n),N点的坐标为(n,﹣n2+2n+3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴n=时,NQ取最小值1.此时Q点的坐标为(,);②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴n=时,NQ取最小值1.此时Q点的坐标为(,).综上可知存在满足题意的点Q,其坐标为(,)或(,).。

福建省厦门市2018年中考数学模拟卷

福建省厦门市2018年中考数学模拟卷

2018年福建省厦门市中考数学模拟试卷一.选择题(共10小题,满分40分)1.(4分)“共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态.某市预计投入31600辆共享单车服务于人们,31600用科学记数法表示为()A.3.16×104B.3.16×105C.3.16×106D.31.6×1052.(4分)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.(4分)下列计算正确的是()A.(x+y)2=x2+y2B.(﹣xy2)3=﹣x3y6C.(﹣a)3÷a=﹣a2D.x6÷x3=x24.(4分)如图所示,四边形ABCD是平行四边形,已知AB=4,BC=3,则AC2+BD2的值是()A.45 B.50 C.55 D.605.(4分)有一个数值转换器,流程如下,当输入的x为256时,输出的y是()A.B.C.2 D.46.(4分)图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣47.(4分)某青年排球队12名队员的年龄情况如表:则这个队队员年龄的众数和中位数是()A.19,20 B.19,19 C.19,20.5 D.20,198.(4分)图象的顶点为(﹣2,﹣2),且经过原点的二次函数的关系式是()A.y=(x+2)2﹣2 B.y=(x﹣2)2﹣2 C.y=2(x+2)2﹣2 D. y=2(x﹣2)2﹣2 9.(4分)身份证号码告诉我们很多信息,某人的身份证号码是××××××199704010012,其中前六位数字是此人所属的省(市、自治区)、市、县(市、区)的编码,1997、04、01是此人出生的年、月、日,001是顺序码,2为校验码.那么身份证号码是××××××200306224522的人的生日是()A.5月22日B.6月22日C.8月22日D.2月24日10.(4分)下列说法:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程=1.2中的分母化为整数,得=12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分24分,每小题4分)11.(4分)计算:|﹣2|+(2018﹣π)0﹣cos60°=.12.(4分)如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠C OE=34°,则∠BOD= 度.13.(4分)若对图1中星形截去一个角,如图2,再对图2中的角进一步截去,如图3,则图中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N= 度.14.(4分)一组数据1、2、3、4、5的方差为S12,另一组数据6、7、8、9、10的方差为S22,那么S12S22(填“>”、“=”或“<”).15.(4分)如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=(x﹣1)2﹣4,AB 为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.16.(4分)如图,点D,E分别为△ABC的边AB,AC上,若△ADE≌△CFE.则下列结论①AD=CF;②AB∥CF;③AC⊥DF;④点E是AC的中点;不一定正确的是(填写序号).三.解答题(共9小题,满分86分)17.(8分)若(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,求(2a+b+1)(2a﹣b ﹣1)﹣(a+2b)(﹣2b+a)+2b的值.18.(8分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,(1)尺规作图:作△ABC的角平分线AE,交CD于点F(不写作法,保留作图痕迹);(2)求证:△CEF为等腰三角形.19.(8分)“校园安全”受到全社会的广泛关注,我县某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)已知对校园安全知识达到“了解”程度的学生中有3个女生,其余为男生,若从中随机抽取2人参加校园安全知识竞赛,请用画树状图或列表法求出恰好抽到1个男生和1个女生的概率.20.(8分)如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点C和点D的坐标;(3)在x轴上找一点M,使△MDB的周长最小,请求出M点的坐标,并直接写出△MDB的周长最小值.21.(8分)已知:如图,在▱ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD 于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求四边形DEBF的周长和面积.22.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本.(1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n折售完剩余的书,结果第二次共盈利100m元(n、m为正整数),求相应n、m值.23.如图,平面直角坐标系中,点A是直线y=x(a≠0)上一点,过点A作AB⊥x轴于点B(2,0),(1)若=,求∠AOB的度数;(2)若点C(4﹣a,b),且AC⊥OC,∠AOC=45°,OC与AB交于点D,求AB的长.24.如图,Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于D,E为BC中点,连ED.(1)求证:ED是⊙O的切线;(2)若⊙O半径为3,ED=4,求AB长.25.如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的点,连接OP交直线AB于点Q.设点P的横坐标为m,PQ 与OQ的比值为y,求y与m的函数关系式,并求出PQ与OQ的比值的最大值;(3)点D是抛物线对称轴上的一动点,连接OD、CD,设△ODC外接圆的圆心为M,当sin ∠ODC的值最大时,求点M的坐标.参考答案1.A.2.B.3.C.4.B.5.A.6.D.7.A.8.A.9.B10.A.11..12.56.13.1080°.14.= 15.3+.16.③.17.解:(x﹣2)(x2+ax+b)=x3+ax2+bx﹣2x2﹣2ax﹣2b=x3+(a﹣2)x2+(b﹣2a)x﹣2b,∵(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,∴a﹣2=0且b﹣2a=0,解得:a=2、b=4,(2a+b+1)(2a﹣b﹣1)﹣(a+2b)(﹣2b+a)+2b=(2a)2﹣(b+1)2﹣(a2﹣4b2)+2b=4a2﹣b2﹣2b﹣1﹣a2+4b2+2b=3a2+3b2﹣1,当a=2、b=4时,原式=3×22+3×42﹣1=12+48﹣1=59.18.(1)解:如图线段AE即为所求;(2)证明:∵CD⊥AB,∴∠BDC=∠ACB=90°,∴∠ACD+∠DCB=90°,∠DCB+∠B=90°,∴∠ACD=∠B,∵∠CFE=∠ACF+∠CAF,∠CEF=∠B+∠EAB,∠CAF=∠EAB,∴∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.19.解:(1)接受问卷调查的学生共有30÷50%=60(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×=90°,故答案为:60、90°;(2)“了解”的人数为:60﹣15﹣30﹣10=5;补全条形统计图得:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为=.20.解:(1)对于直线y=x+2,令x=0,得到y=2;令y=0,得到x=﹣4,∴A(﹣4,0),B(0,2),即OA=4,OB=2,则AB==2;(2)过D作DE⊥x轴,过C作CF⊥y轴,∵四边形ABCD为正方形,∴AB=BC=AD,∠ABC=∠BAD=∠BFC=∠DEA=∠AOB=90°,∵∠FBC+∠ABO=90°,∠ABO+∠BAO=90°,∠DAE+∠BAO=90°,∴∠FBC=∠OAB=∠EDA,∴△DEA≌△AOB≌△BFC(AAS),∴AE=OB=CF=2,DE=OA=FB=4,即OE=OA+AE=4+2=6,OF=OB+BF=2+4=6,则D(﹣6,4),C(﹣2,6);(3)如图所示,连接BD,找出B关于y轴的对称点B′,连接DB′,交x轴于点M,此时BM+MD=DM+MB′=DB′最小,即△BDM周长最小,∵B(0,2),∴B′(0,﹣2),设直线DB′解析式为y=kx+b,把D(﹣6,4),B′(0,﹣2)代入得:,解得:k=﹣1,b=﹣2,∴直线DB′解析式为y=﹣x﹣2,令y=0,得到x=﹣2,则M坐标为(﹣2,0),此时△MDB的周长为2+6.21.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF 即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=2,∴四边形DEBF的周长=2(BE+DE)=2(4+2)=12,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴DG=ADcos∠A=4×=2,∴四边形DEBF的面积=BE×DG=2×2=4.22.解:(1)设第一次购书的进价为x元/本,根据题意得: +100=,解得:x=5,经检验x=5是分式方程的解,且符合题意,∴15000÷(5×1.2)=2500(本),则第一次购书的进价为5元/本,且第二次买了2500本;(2)第二次购书的进价为5×1.2=6(元),根据题意得:2000×(7﹣6)+(2500﹣2000)×(﹣6)=100m,整理得:7n=2m+20,即2m=7n﹣20,∴m=,∵m,n为正整数,且1≤n≤9,∴当n=4时,m=4;当n=6时,m=11;当n=8时,m=18.23.解:(1)∵点A是直线y=x(a≠0)上一点,AB⊥x轴于点B(2,0),若=,∴tan∠AOB=,即∠AOB=60°,(2)过点C作CE⊥x轴于点E,CF⊥AB于F.则四边形ECFB是矩形.∵∠ACO=∠FCE,∴∠ACF=∠OCE,∵AC=CO,∠AFC=∠CEO,∴△ACF≌△OCE,∴AF=OE=4﹣a,CF=CE=b,∴四边形ECFB是正方形,∴CF=CE=BE=2﹣a,∴b=2﹣a,∴AB=4﹣a+2﹣a=6﹣2a,令x=2代入y=,∴y=,∴A(2,)∴AB=,24.解:(1)方法一:连接OD,OE,CD,∵∠ADC=90°,∴∠CDB=90°,∵E是BC的中点,∴DE=CE,∴∠EDC=∠ECD,∵OC=OD,∴∠ODC=∠OCD,∴∠ODC+∠EDC=∠OCD+∠ECD=90°,即OD⊥ED,∴ED与⊙O相切.方法二:连接OE,OD,∵E是BC的中点,∠BDC=90°,∴DE=CE,又∵OD=OC,OE=OE,∴△ODE≌△OCE,∴∠ODE=∠OCE=90°,即OD⊥ED,∵D在⊙O上,∴ED与⊙O相切.(2)∵⊙O半径为3,即OC=3,ED=4,∴CE=ED=4,∴OE==5,∵E为BC中点,OC=OA,∴OE为△ACB的中位线,∴OE=AB,∴AB=10.答:AB长为10.25.解:(1)在y=﹣x+3种,令y=0得x=4,令x=0得y=3,∴点A(4,0)、B(0,3),把A(4,0)、B(0,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线解析式为y=﹣x2+x+3;(2)如图1,过点P作y轴的平行线交AB于点E,则△PEQ∽△OBQ,∴=,∵=y、OB=3,∴y=PE,∵P(m,﹣m2+m+3)、E(m,﹣m+3),则PE=(﹣m2+m+3)﹣(﹣m+3)=﹣m2+m,∴y=(﹣m2+m)=﹣m2+m=﹣(m﹣2)2+,∵0<m<3,∴当m=2时,y最大值=,∴PQ与OQ的比值的最大值为;(3)由抛物线y=﹣x2+x+3易求C(﹣2,0),对称轴为直线x=1,∵△ODC的外心为点M,∴点M在CO的垂直平分线上,设CO的垂直平分线与CO交于点N,连接OM、CM、DM,则∠ODC=∠CMO=∠OMN、MC=MO=MD,∴sin∠ODC=sin∠OMN==,又MO=MD,∴当MD取最小值时,sin∠ODC最大,此时⊙M与直线x=1相切,MD=2,MN==,∴点M(﹣1,﹣),根据对称性,另一点(﹣1,)也符合题意;综上所述,点M的坐标为(﹣1,)或(﹣1,﹣).。

吉林省长春市朝阳区2018届中考第一次模拟考试数学试题含答案

吉林省长春市朝阳区2018届中考第一次模拟考试数学试题含答案

2018年朝阳区一模-数学本试卷包括三道大题,共24小题,共6页,全卷满分120分.考试时间为120分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题前,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效. 一、选择题(每小题3分,共24分)1.在0,-2,2-1这四个数中,最小的数是 (A )0.(B )-2(C )2-(D )1.2.据国家统计局统计,我国2017年全年的棉花总产量约为5490000吨.将5490000这个数用科学计数法表示为 (A )65.4910⨯.(B )654.910⨯.(C )75.4910⨯.(D )70.54910⨯.3.用6个完全相同的小正方体组成如图所示的立体图形,它的俯视图是(第3题) (A ) (B ) (C ) (D )4.6a 可以表示为 (A )6a.(B )23a a ⋅.(C )32()a .(D )122a a ÷.5.小明拿40元钱购买雪糕和矿泉水,已知每瓶矿泉水2元,每支雪糕1.5元,他买了5瓶矿泉水,x 支雪糕,则所列关于x 的不等式正确的是 (A )2 1.5540x +⨯<. (B )2 1.5540x +⨯≤. (C )25 1.540x ⨯+≥.(D )25 1.540x ⨯+≤.6.等腰直角三角尺与直尺按如图位置摆放,且三角尺在直角顶点在直尺的一边上. 若 ∠1=35°,则∠2的度数是 (A )95°(B )100°(C )105°(D )110°(第6题) (第7题)7.如图,直线l 是O 的切线,点A 为切点,B 为直线l 上一点,连接OB 交O 于点C ,D 是优弧AC 上一点,连接AD 、CD.若∠ABO=40°.则∠D 的大小是 (A )50°(B )40°(C )35°(D )25°8.如图,在平面直角坐标系中,正方形OABC 的边OA 在x 轴的正半轴上,OC 在y 轴的正半轴上,一次函数(0)y kx b k =+≠的图象经过点A ,且与边BC 有交点.若正方形的边长为2,则k 的值不可能是(A )-2. (B )32-. (C )-1.(D )12-. 二、填空题(每小题3分,共18分) 9.函数20181y x =-的自变量x 的取值范围是_________. 10.一元二次方程2310x x -+=根的判别式的值为_________.11.如图,AD//BE//CF ,直线1l 、2l 与这三条平行线分别交于点A 、B 、C 和点D 、E 、F.若AB=4.5,BC=3,EF=2,则DE 的长度是_________.(第11题)(第12题)12.如图,在△ABC 中,∠B=70°.将△ABC 绕着点A 顺时针旋转一定角度得到''AB C ∆,使点B 的对应点'B 恰好落在边BC 上.若''AC B C ⊥,则'C ∠的大小是_______度.13.如图,正方形ABCD 内接于O ,Rt △OEF 的直角顶点与圆心O 重合.若2AB =,则图中阴影部分图形的面积和为______(结果保留π).(第8题)(第13题) (第14题)14.如图,在平面直角坐标系中,等腰三角形ABC 的顶点A 在y 轴上,底边AB//x 轴,顶点B 、C 在函数(0)ky x x=>的图象上.若AC A 的纵坐标为1,则k 的值为________. 三、解答题(本大题10小题,共78分)15.(6分)先化简,再求值2(1)2(1)(21)(21)a a a a a ---++-,其中5a =16.(6分)在一个不透明的盒子中装有三张卡片,分别标有数字为1,2,7,这些卡片除数字不同外其余均相同.洗匀后,小强从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为偶数的概率.17.(6分)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同,求这种笔的单价.18.(7分)为了打通抚松到万良的最近公路,在一座小山的底部打通隧道.甲、乙两施工队按如图所示进行施工,甲施工队沿AC 方向开山修路,乙施工队在这座小山的另一边E 处沿射线CA 方向同时施工.从AC 上的一点B ,取∠ABD=155°,经测得BD=1200m ,∠D=65°,求开挖点E 与点B 之间的距离(结果精确到1m ). 【参考数据:sin 650.906︒=,cos 650.423︒=,tan 65 2.145︒=.】(第18题)19.(7分)为了传承中华优秀传统文化,某校组织八年级学生参加了“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩x 取整数,总分100分)作为样本进行整理,绘制如下不完整的条形统计图. 汉字听写大赛成绩分数段统计表汉字听写大赛成绩分数段条形统计图(1)补全条形统计图.(2)这次抽取的学生成绩的中位数在________的分数段中;这次抽取的学生成绩在6070x ≤<的分数段的人数占抽取人数的百分比是_______.(3)若该校八年级一共有学生350名,成绩在90分以上(含90分)为“优”,则八年级参加这次比赛的学生中成绩“优”等的约有多少人?20.(7分)如图,在ABCD 中,以点A 为圆心,以任意长为半径画圆弧,分别交边AD 、AB 于点M 、N ,再分别以点M 、N 为圆心,以大于12MN 长为半径画圆弧,两弧交于点P ,作射线AP 交边CD 于点E ,过点E 作EF//BC 交AB 于点F.求证:四边形ADEF 是菱形.(第20题)21.(8分)某社区准备进行“为了地球,远离白色污染”的宣传活动,需要制定宣传单,选择社区附近的甲、分数段频数 5060x ≤< 2 6070x ≤< 6 7080x ≤< 9 8090x ≤<18 90100x ≤≤15乙两家印刷社印刷,他们各自制作这种宣传单的费用y(元)与宣传单数量x(张)之间的函数图象如图所示,结合图象解答下列问题:(1)求甲印刷社制作这种宣传单每张的钱数.(2)当x>500时,求乙印刷社所需的费用y与x之间的函数关系式.(3)如果该社区在制作这种宣传单时,第一次印刷了800张宣传单,第二次印刷了1200张宣传单,直接写出该社区两次印刷这种宣传单共花费的最少钱数.(第21题)22.(9分)【感知】如图①,△ABC是等边三角形,CM是外角∠ACD的平分线,E是边BC中点,在CM上截取CF=BE,连接AE、EF、AF.易证:△AEF是等边三角形(不需要证明).【探究】如图②,△ABC是等边三角形,CM是外角∠ACD的平分线,E是边BC上一点(不与点B、C重合),在CM上截取CF=BE,连接AE、EF、AF.求证:△AEF是等边三角形.【应用】将图②中的“E是边BC上一点”改为“E是边BC延长线上一点”,其他条件不变.当四边形ACEF是轴对称图形,且AB=2时,请借助备用图,直接写出四边形ACEF的周长.图①图②备用图(第22题)23.(10分)如图,BD 是□ABCD 的对角线,AB ⊥BD ,BD=8cm ,AD=10cm ,动点P 从点D 出发,以5cm/s 的速度沿DA 运动到终点A ,同时动点Q 从点B 出发,沿折线BD —DC 运动到终点C ,在BD 、DC 上分别以8cm/s 、6cm/s 的速度运动.过点Q 作QM ⊥AB ,交射线AB 于点M ,连接PQ ,以PQ 与QM 为边作□PQMN.设点P 的运动时间为t(s)(t>0),□PQMN 与□ABCD 重叠部分图形的面积为2()S cm . (1)AP=_______cm (同含t 的代数式表示). (2)当点N 落在边AB 上时,求t 的值. (3)求S 与t 之间的函数关系式.(4)连结NQ ,当NQ 与△ABD 的一边平行时,直接写出t 的值.24.(12分)定义:在平面直角坐标系中,过抛物线2(0)y ax bx c a =++≠与y 轴的交点作y 轴的垂线,则称这条垂线是该抛物线的伴随直线.例如:抛物线21y x =+的伴随直线为直线1y =.抛物线212y x m x n =-++的伴随直线l 与该抛物线交于点A 、D (点A 在y 轴上),该抛物线与x 轴的交点为B(-1,0)和C (点C 在点B 的右侧).(1)若直线l 是y=2,求该抛物线对应的函数关系式. (2)求点D 的坐标(用含m 的代数式表示). (3)设抛物线212y x mx n =-++的顶点为M ,作OA 的垂直平分线EF ,交OA 于点E ,交该抛物线的对称轴于点F.①当△ADF 是等腰直角三角形时,求点M 的坐标.②将直线EF 沿直线l 翻折得到直线GH ,当点M 到直线GH 的距离等于点C 到直线EF 的距离时,直接写出m 的值.(第23题)2018年九年级第一次模拟考试测试题·数学答案一、选择题(每小题3分,共24分)1.B 2.A 3.D 4.C 5.D 6.B 7.D 8.D 二、填空题(每小题3分,共18分)9.1x ≠ 10.5 11.3 12.50 13.1142π- 14.4 评分说明:第12题带单位可给分;第13题写成4π-2可得分.三、解答题(本大题10小题,共78分) 15.原式222212241a a a a a =-+-++-(3分) 23a =.(4分) 当5a =23(5)15=⨯=.(6分)16.画出如下树状图:(4分) 第一次 1 2 7第二次 1 2 7 1 2 7 1 2 7 和 2 3 8 3 4 9 8 9 14所以P (两次抽取的卡片上数字之和为偶数)59=.(6分)根据题意,列表如下:(4分)所以P (两次抽取的卡片上数字之和为偶数)59=.(6分) 评分说明:列树状图不写出结果不扣分.17.设这种笔单价为x 元.(1分)由题意,得30504x x =-.(4分) 解得10x =.(5分)经检验10x =是原方程的解,且符合题意.(6分)答:这种笔的单价是10元. 18.∵∠ABD =155°,∠D =65°,∴∠AED =155°-65°=90°.(2分)在Rt △BDE 中,∠BED =90°,sin65BEBD︒=.(5分)∴BE =BD ·sin65°=1 200×0.906=1087.2≈1 087m .(7分)答:开挖点E 离点B 的距离约为1 087m .评分说明:(1)计算过程和结果中写成“=”或“≈”均不扣分.(2)计算过程加单位不扣分,结果不写单位不扣分.19.(1)如图.(2分)人数/人(2)8090x <≤(4分) 12%(5分) (3)1535010550⨯=.(7分)答:该年级参加这次比赛的学生中成绩“优”等的约有105人. 20.∵四边形ABCD 是平行四边形,∴AD BC ,AB CD . (1分) ∴DE AF ,∠AED =∠BAE .(2分)∵EF BC ,∴ADEF .(3分) ∴四边形ADEF 是平行四边形.(4分)∵AE 平分∠BAD ,∴∠DAE =∠BAE . ∴∠AED =∠DAE . ∴AD AE =.(6分) ∴□ADEF 是菱形.(7分)21.(1)755000.15÷=(元). (2分) 答:甲印刷社制作此种宣传单每张0.15元.(2)当500x >时,设乙印刷社所需的费用y 与x 之间的函数关系式为y kx b =+.∵1500.151000÷=,∴直线y kx b =+经过点(1000,150).(3分)由题意,得500100,1000150.k b k b +=⎧⎨+=⎩解得0.1,50.k b =⎧⎨=⎩∴0.150y x =+.(6分) (3)该社区印制两次这种宣传单共花费最少为290元.(8分)22.【探究】∵△ABC 是等边三角形,∴AB =AC ,∠B =∠ACB =60°.(1分)∴∠ACD =120°.∵CM 是外角∠ACD 的平分线, ∴1602ACF ACD ∠=∠=︒.∴∠B =∠ACF =60°.(2分)∵C F =BE ,∴△ABE ≌△ACF .(4分) ∴AE =AF ,∠BAE =∠CAF .(5分)∵∠BAC =60°,∴∠BAE +∠EAC =∠CAF +∠EAC . ∴∠EAF =60°.(6分) ∴△AEF 是等边三角形. (7分) 【应用】434(9分) 23.(1)(10-5t ) (1分)(2)如图①,4(105)85t t -=,∴23t =. (3分)(3)如图②,过点P 作PE ⊥BD 于点E ,则PE =3t .当203t <≤时,23824S t t t =⋅=.如图③,过点P 作PE ⊥BD 于点E ,则PE =3t ,设PN 交AB 于点F ,则4(105)845PF t t =-=-. 当112t <≤时,213(848)6122S t t t t t =⨯-+=+.如图④,当12t <≤时,24213272S t t =-+-. (7分)EN QPD CB (M )AF A B (M )CD PQNE图② 图③ 图④NQP DCBAMFG N QPD CB (M )A 图①(4)25t =, 12t =,2t =.(10分) 24.(1)由题意,得A 的坐标为(0,2).∵抛物线经过点(10)B -,, ∴22,1(1)(1)0.2n m n =⎧⎪⎨-⨯-+⨯-+=⎪⎩(2分) 解得3,22.m n ⎧=⎪⎨⎪=⎩ ∴该抛物线的对应的函数关系式为213222y x x =-++.(3分) (2)∵抛物线经过点(1,0)B -, ∴21(1)(1)02m n -⨯-+⨯-+=. ∴12n m =+. 将该抛物线配方,得22111()222y x m m m =--+++∴对称轴是直线x m =.∴点D 的坐标为1(2,)2m m +.(5分) (3)当0m >,且∠AFD =90°时,则△ADF 是等腰直角三角形.∴AD =2AE . ∴122m m =+. ∴12m =.(6分) ∴当12m =时,211119()22228y =⨯++=.∴点M 的坐标为19(,)28.(7分) 当102m -<<,∠AFD =90°时,则△ADF 是等腰直角三角形.∴AD =2AE . ∴122m m -=+. ∴16m =-.(8分) ∴当16m =-时,2111125()()266272y =⨯-+-+=.∴点M 的坐标为125(,)672-. (9分) 当112m -<-≤时,EF>AE .此时△ADF 不是等腰直角三角形. 综上所述,点M 的坐标为19(,)28或125(,)672-. (4)0m =,12m =+12m =(12分)。

上海市宝山区2018年中考数学一模试卷(含答案解析)

上海市宝山区2018年中考数学一模试卷(含答案解析)

2018年上海市宝山区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)1.(4分)符号tanA 表示( )A .∠A 的正弦B .∠A 的余弦C .∠A 的正切D .∠A 的余切2.(4分)如图△ABC 中∠C=90°,如果CD ⊥AB 于D ,那么( )A .CD=AB B .BD=ADC .CD 2=AD•BD D .AD 2=BD•AB3.(4分)已知、为非零向量,下列判断错误的是( )A .如果=2,那么∥B .如果||=||,那么=或=﹣C .的方向不确定,大小为0D .如果为单位向量且=2,那么||=24.(4分)二次函数y=x 2+2x +3的图象的开口方向为( )A .向上B .向下C .向左D .向右5.(4分)如果从某一高处甲看低处乙的俯角为30°,那么从乙处看甲处,甲在乙的( )A .俯角30°方向B .俯角60°方向C .仰角30°方向D .仰角60°方向6.(4分)如图,如果把抛物线y=x 2沿直线y=x 向上方平移2个单位后,其顶点在直线y=x 上的A 处,那么平移后的抛物线解析式是( )A.y=(x+2)2+2B.y=(x+2)2+2 C.y=(x﹣2)2+2 D.y=(x﹣2)2+2二、填空题(每小题4分,共48分)7.(4分)如果2a=3b,那么a:b=.8.(4分)如果两个相似三角形的周长之比1:4,那么它们的某一对对应角的角平分线之比为.9.(4分)如图,D、E为△ABC的边AC、AB上的点,当时,△ADE∽△ABC.其中D、E分别对应B、C.(填一个条件).10.(4分)计算:(4)=.11.(4分)如图,在锐角△ABC中,BC=10,BC上的高AQ=6,正方形EFGH的顶点E、F在BC边上,G、H分别在AC、AB边上,则此正方形的边长为.12.(4分)如果一个滚筒沿斜坡向正下直线滚动13米后,其水平高度下降了5米,那么该斜坡的坡度i=.13.(4分)如图,四边形ABCD、CDEF、EFGH都是正方形,则tan∠CAF=.14.(4分)抛物线y=5(x﹣4)2+3的顶点坐标是.15.(4分)二次函数y=﹣(x﹣1)2+的图象与y轴的交点坐标是.16.(4分)如果点A(0,2)和点B(4,2)都在二次函数y=x2+bx+c的图象上,那么此抛物线在直线的部分是上升的.(填具体某直线的某侧)17.(4分)如图,点D、E、F分别为△ABC三边的中点,如果△ABC的面积为S,那么以AD、BE、CF为边的三角形的面积是.18.(4分)如图,点M是正方形ABCD的边BC的中点,联结AM,将BM沿某一过M的直线翻折,使B落在AM上的E处,将线段AE绕A顺时针旋转一定角度,使E落在F处,如果E在旋转过程中曾经交AB于G,当EF=BG时,旋转角∠EAF的度数是.三、(本大题共7题,第19-22题每题10分;第23、24题每题12分;第25题14分;满分73分)19.(10分)计算: +(tan60°+π0)﹣1.20.(5分)如图,AB∥CD∥EF,而且线段AB、CD、EF的长度分别为5、3、2.(1)求AC:CE的值;(2)如果记作,记作,求(用、表示).21.(10分)已知在港口A的南偏东75°方向有一礁石B,轮船从港口出发,沿正东北方向(北偏东45°方向)前行10里到达C后测得礁石B在其南偏西15°处,求轮船行驶过程中离礁石B的最近距离.22.(10分)如图,在直角坐标系中,已知直线y=x+4与y轴交于A点,与x 轴交于B点,C点坐标为(﹣2,0).(1)求经过A,B,C三点的抛物线的解析式;(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.23.(12分)如图,△ABC中,AB=AC,过点C作CF∥AB交△ABC的中位线DE 的延长线于F,联结BF,交AC于点G.(1)求证:;(2)若AH平分∠BAC,交BF于H,求证:BH是HG和HF的比例中项.24.(12分)设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;(3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当△ABC为直角三角形时,写出点B的坐标.25.(14分)如图,等腰梯形ABCD中,AD∥BC,AD=7,AB=CD=15,BC=25,E 为腰AB上一点且AE:BE=1:2,F为BC一动点,∠FEG=∠B,EG交射线BC于G,直线EG交射线CA于H.(1)求sin∠ABC;(2)求∠BAC的度数;(3)设BF=x,CH=y,求y与x的函数关系式及其定义域.2018年上海市宝山区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.(4分)符号tanA表示()A.∠A的正弦B.∠A的余弦C.∠A的正切D.∠A的余切【解答】解:符号tanA表示∠A的正切.故选:C.2.(4分)如图△ABC中∠C=90°,如果CD⊥AB于D,那么()A.CD=AB B.BD=AD C.CD2=AD•BD D.AD2=BD•AB【解答】解:∵△ABC中∠C=90°,CD⊥AB于D,∴∠CDB=∠ADC,∠B=∠ACD,∴△CDB∽△ACD,∴,即CD2=AD•BD,故选:C.3.(4分)已知、为非零向量,下列判断错误的是()A.如果=2,那么∥B.如果||=||,那么=或=﹣C.的方向不确定,大小为0D.如果为单位向量且=2,那么||=2【解答】解:A、如果=2,那么∥,正确;B、如果||=||,没法判断与的关系;故错误.C、的方向不确定,大小为0,正确;D、如果为单位向量且=2,那么||=2,正确;故选:B.4.(4分)二次函数y=x2+2x+3的图象的开口方向为()A.向上B.向下C.向左D.向右【解答】解:∵二次函数y=x2+2x+3中a=1>0,∴二次函数y=x2+2x+3的图象的开口向上,故选:A.5.(4分)如果从某一高处甲看低处乙的俯角为30°,那么从乙处看甲处,甲在乙的()A.俯角30°方向B.俯角60°方向C.仰角30°方向D.仰角60°方向【解答】解:如图所示:∵甲处看乙处为俯角30°,∴乙处看甲处为:仰角为30°.故选:C.6.(4分)如图,如果把抛物线y=x2沿直线y=x向上方平移2个单位后,其顶点在直线y=x上的A处,那么平移后的抛物线解析式是()A.y=(x+2)2+2B.y=(x+2)2+2 C.y=(x﹣2)2+2 D.y=(x﹣2)2+2【解答】解:如图,过点A作AB⊥x轴于B,∵直线y=x与x轴夹角为45°,OA=2,∴OB=AB=2×=2,∴点A的坐标为(2,2),∴平移后的抛物线解析式是y=(x﹣2)2+2.故选:D.二、填空题(每小题4分,共48分)7.(4分)如果2a=3b,那么a:b=3:2.【解答】解:两边都除以2b,得a:b=3:2,故答案为:3:2.8.(4分)如果两个相似三角形的周长之比1:4,那么它们的某一对对应角的角平分线之比为1:4.【解答】解:∵两个相似三角形的周长之比1:4,∴它们的相似比是1:4,∴它们的某一对对应角的角平分线之比为1:4.故答案为:1:4.9.(4分)如图,D、E为△ABC的边AC、AB上的点,当∠ADE=∠B时,△ADE∽△ABC.其中D、E分别对应B、C.(填一个条件).【解答】解:当∠ADE=∠B,∵∠EAD=∠CAB,∴△ADE∽△ABC.故答案为∠ADE=∠B.10.(4分)计算:(4)=2.【解答】解:(4)=2﹣+=2﹣故答案为211.(4分)如图,在锐角△ABC中,BC=10,BC上的高AQ=6,正方形EFGH的顶点E、F在BC边上,G、H分别在AC、AB边上,则此正方形的边长为.【解答】解:设正方形EFGH的边长为x,则HG=HE=QK=x,∵HG∥BC,∴,且AK=AQ﹣x,又∵AQ=6,BC=10,∴,解得x=,故答案为:12.(4分)如果一个滚筒沿斜坡向正下直线滚动13米后,其水平高度下降了5米,那么该斜坡的坡度i=1:2.4.【解答】解:如图,根据题意知AB=13米、AC=5米,则BC===12(米),∴斜坡的坡度i=tanB===1:2.4,故答案为:1:2.4.13.(4分)如图,四边形ABCD、CDEF、EFGH都是正方形,则tan∠CAF=.【解答】解:连接AG,设正方形的边长为a,AC=,∵,,∴,∵∠ACF=∠ACF,∴△ACF∽△GCA,∴∠AGB=∠CAF,∴tan∠CAF=tan∠AGB=,故答案为:14.(4分)抛物线y=5(x﹣4)2+3的顶点坐标是(4,3).【解答】解:∵y=5(x﹣4)2+3是抛物线解析式的顶点式,∴顶点坐标为(4,3).故答案为(4,3).15.(4分)二次函数y=﹣(x﹣1)2+的图象与y轴的交点坐标是(0,﹣).【解答】解:当x=0时,y=﹣(x﹣1)2+=﹣×(0﹣1)2+=﹣.∴二次函数y=﹣(x﹣1)2+的图象与y轴的交点坐标是(0,﹣).故答案为:(0,﹣).16.(4分)如果点A(0,2)和点B(4,2)都在二次函数y=x2+bx+c的图象上,那么此抛物线在直线x=2右侧的部分是上升的.(填具体某直线的某侧)【解答】解:∵点A(0,2)和点B(4,2)都在二次函数y=x2+bx+c的图象上,∴,解得:,∴该二次函数的表达式为y=x2﹣4x+2;∵y=x2﹣4x+2=(x﹣2)2﹣2,∴对称轴为直线x=2,∵a=1>0,∴抛物线在直线x=2的右侧的部分是上升;故答案为:x=2右侧.17.(4分)如图,点D、E、F分别为△ABC三边的中点,如果△ABC的面积为S,那么以AD、BE、CF为边的三角形的面积是S.【解答】解:如图所示,延长AD至G,使得DG=AD,连接BG,CG,则△ACD ≌△GBD,△ABD≌△GCD,四边形ABGC为平行四边形,∴四边形ABGC的面积=2S,取BG的中点H,连接CH,FH,则BH∥CE,BH=CE,故四边形BHCE是平行四边形,∴BE=CH,由题可得,FH是△ABG的中位线,∴FH=AG=AD,∴△CFH即为以AD、BE、CF为边的三角形,∵△CHG的面积=△BCG的面积的一半=平行四边形ABGC的面积的=S,△BFH的面积=△ABG的面积的=S,△ACF的面积=S,∴△CFH的面积=2S﹣S﹣S﹣S=S,故答案为:S.18.(4分)如图,点M是正方形ABCD的边BC的中点,联结AM,将BM沿某一过M的直线翻折,使B落在AM上的E处,将线段AE绕A顺时针旋转一定角度,使E落在F处,如果E在旋转过程中曾经交AB于G,当EF=BG时,旋转角∠EAF的度数是36°.【解答】解:设BM=a,则AB=2a,∴Rt△ABM中,AM=a,由题可得,EM=BM=a,∴AE=(﹣1)a=AG=AF,∴BG=AB﹣AG=(3﹣)a,又∵EF=BG,∴,∴△AEF为黄金三角形,即∠EAF=36°,故答案为:36°三、(本大题共7题,第19-22题每题10分;第23、24题每题12分;第25题14分;满分73分)19.(10分)计算: +(tan60°+π0)﹣1.【解答】解:原式=+=+﹣.20.(5分)如图,AB∥CD∥EF,而且线段AB、CD、EF的长度分别为5、3、2.(1)求AC:CE的值;(2)如果记作,记作,求(用、表示).【解答】解:(1)过点E作EH∥BF交CD,AB于G,H,∴CG=1,AH=3,∴=,∴=2;(2)===,且AH∥CD,AH=CD,∴=.21.(10分)已知在港口A的南偏东75°方向有一礁石B,轮船从港口出发,沿正东北方向(北偏东45°方向)前行10里到达C后测得礁石B在其南偏西15°处,求轮船行驶过程中离礁石B的最近距离.【解答】解:如图,在Rt△ABC中,∠BAC=60°,∠ACB=30°,AC=10,∴AB=AC=5,过B作BD⊥AC于D,则Rt△ABD中,BD=sin60°×AB=×5=(里),∴轮船行驶过程中离礁石B的最近距离为里.22.(10分)如图,在直角坐标系中,已知直线y=x+4与y轴交于A点,与x 轴交于B点,C点坐标为(﹣2,0).(1)求经过A,B,C三点的抛物线的解析式;(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.【解答】解:(1)当x=0时,y=x +4=4,则A (0,4),当y=0时, x +4=0,解得x=8,则B (8,0),设抛物线解析式为y=a (x +2)(x ﹣8),把A (0,4)代入得a•2•(﹣8)=4,解得x=﹣,∴抛物线解析式为y=﹣(x +2)(x ﹣8),即y=﹣x 2+x +4;(2)∵y=﹣(x ﹣3)2+,∴M (3,), 作MD ⊥x 轴于D ,如图,四边形AOBM 的面积=S 梯形AODM +S △BDM=×(4+)×3+×5×=31.23.(12分)如图,△ABC 中,AB=AC ,过点C 作CF ∥AB 交△ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G .(1)求证:;(2)若AH 平分∠BAC ,交BF 于H ,求证:BH 是HG 和HF 的比例中项.【解答】证明:(1)∵CF∥AB,DE是中位线,∴四边形BCFD是平行四边形,∴DE=EF,∴,即;(2)连接CH,∵AH平分∠BAC,∴∠BAH=∠CAH,在△ABH与△ACH中,∴△ABH≌△ACH,∴∠HCG=∠DBH=∠HFC,∵∠GHC=∠CHF,∴△GHC∽△CHF,∴,∴HC2=HG•HF,∵BH=HC,∴BH2=HG•HF,即BH是HG和HF的比例中项.24.(12分)设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;(3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当△ABC为直角三角形时,写出点B的坐标.【解答】解:(1)∵k=2018,∴当1≤x≤2018时,y随x的增大而减小.∴当x=1时,y=2018,x=2018时,y=1.∴1≤y≤2108.∴反比例函数y=是闭区间[1,2018]上的“闭函数”.(2)∵x=﹣=2,a=1>0,∴二次函数y=x2﹣4x+k在闭区间[2,t]上y随x的增大而增大.∵二次函数y=x2﹣2x﹣k是闭区间[2,t]上的“闭函数”,∴当x=2时,y=k﹣4,x=t时,y=t2﹣4t+k.,解得k=6,t=3,t=﹣2,因为t>2,∴t=2舍去,∴t=3.(3)由二次函数的图象交y轴于C点,A为此二次函数图象的顶点,得A(2,2),C(0,6)设B(1,t),由勾股定理,得AC2=22+(2﹣6)2,AB2=(2﹣1)2+(2﹣t)2,BC2=12+(t﹣6)2,①当∠ABC=90°时,AB2+BC2=AC2,即(2﹣1)2+(2﹣t)2+(t﹣6)2+1=22+(2﹣6)2,化简,得t2﹣8t+11=0,解得t=4+或t=4﹣,B(1,4+),(1,4﹣);②当∠BAC=90°是,AB2+AC2=BC2,即(2﹣1)2+(2﹣t)2+22+(2﹣6)2=12+(t﹣6)2,化简,得8t=12,解得t=,B(1,),③当∠ACB=90°时,AC2+CB2=AB2,即22+(2﹣6)2+12+(t﹣6)2=(2﹣1)2+(2﹣t)2,化简,得2t=13,解得t=,B(1,),综上所述:当△ABC为直角三角形时,点B的坐标(1,4+),(1,4﹣),(1,),(1,).25.(14分)如图,等腰梯形ABCD中,AD∥BC,AD=7,AB=CD=15,BC=25,E 为腰AB上一点且AE:BE=1:2,F为BC一动点,∠FEG=∠B,EG交射线BC于G,直线EG交射线CA于H.(1)求sin∠ABC;(2)求∠BAC的度数;(3)设BF=x,CH=y,求y与x的函数关系式及其定义域.【解答】解:(1)如图1,过点A作AP⊥BC于P,∵四边形ABCD是等腰梯形,∴BP=(BC﹣AD)=9,在Rt△ABP中,根据勾股定理得,AP=12,∴sin∠ABC===;(2)如图1,在Rt△ACP中,CP=BC﹣BP=16,根据勾股定理得,AC2=AP2+CP2=144+256=400,∵AB=15,BC=25,∴AB2+AC2=225+400=625=252=BC2,∴△ABC是直角三角形,∴∠BAC=90°;(3)过点E作EM⊥BC于M,∵AB=15,AE:BE=1:2,∴AE=5,BE=10,在Rt△BEM中,sin∠ABC=,∴EM=8,BM=6,CM=BC﹣BM=25﹣6=19,当点G和点C重合时,如图4,在Rt△EMC中,CE==∵∠B=∠EFC,∠BCE=∠ECF,∴△BCE∽△ECF,∴=,∴,∴x=8,当EG∥AC时,如图5,∴∠ACB=∠EGB,∵∠B+∠ACB=90°,∴∠FEG+∠EGB=90°,∴EF⊥BC,即:点F和点M重合,∴BF=BM=6,∴当6≤x≤8时,EG和AC的延长线相交,不符合题意,Ⅰ、当点G在BC的延长线上时,如图2,∴FM=BF﹣BM=x﹣6,由(1)知,AC=20,∴AH=AC﹣CH=20﹣y∵∠FEG=∠B∴∠EFG=180°﹣∠G﹣∠FEG=180°﹣∠G﹣∠B,∵∠BEG=180°﹣∠G﹣∠B,∴∠EFG=∠BEG,∴∠EFM=∠AEH,∵∠EMF=∠HAE=90°,∴△EFM∽△HEA,∴,∴,∴y=20﹣(8<x<25),Ⅱ、当点G在边BC上时,如图3,∴FM=BM﹣BF=6﹣x,AH=CH﹣AC=y﹣20,∵同①的方法得,∠EFG=∠BEG,∵∠AEH=∠BEG,∴∠AEH=∠EFG,∵∠EAH=∠FME,∴△AEH∽△MFE,∴,∴,∴y=20+=20﹣(0<x<6).∴y=20﹣(8<x<25).。

山东省青岛市2018年中考数学模拟试题1(含解析)

山东省青岛市2018年中考数学模拟试题1(含解析)

2018年山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分,)1.(3分)﹣的绝对值是()A.﹣B.﹣C.D.52.(3分)某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s 用科学记数法可表示为()A.0.1×10﹣8s B.0.1×10﹣9s C.1×10﹣8s D.1×10﹣9s3.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a65.(3分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P( a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3) B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)6.(3分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=17.(3分)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm28.(3分)如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2二、填空题(本题满分18分,共有6道小题,每小题3分,)9.(3分)计算: = .10.(3分)“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有名.11.(3分)如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD= °.12.(3分)把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为.13.(3分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.14.(3分)如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm 长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为cm3.三、解答题(共1小题,满分4分)15.(4分)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.四、解答题(本题满分74分,共有9道小题,)16.(8分)(1)化简:(+n)÷;(2)关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,求m的取值范围.17.(6分)小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1﹣4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.18.(6分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈,cos35°≈,tan35°≈)19.(6分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?20.(8分)某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少米材料?(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?21.(8分)已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF 分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.22.(10分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?23.(10分)问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?问题探究:不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.探究一:(1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1(2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形,所以,当n=4时,m=0(3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形,所以,当n=5时,m=1 (4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形,所以,当n=6时,m=1 综上所述,可得表①探究二:(1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(仿照上述探究方法,写出解答过程,并把结果填在表②中)(2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…解决问题:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1、4k、4k+1、4k+2,其中k是整数,把结果填在表③中)问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了根木棒.(只填结果)24.(12分)已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分,)1.(3分)﹣的绝对值是()A.﹣B.﹣C.D.5【解答】解:|﹣|=.故选:C.2.(3分)某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s 用科学记数法可表示为()A.0.1×10﹣8s B.0.1×10﹣9s C.1×10﹣8s D.1×10﹣9s【解答】解:0.000 000 001=1×10﹣9,故选:D.3.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.(3分)计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a6【解答】解:a•a5﹣(2a3)2=a6﹣4a6=﹣3a6.故选:D.5.(3分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P( a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3) B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)【解答】解:由题意可得线段AB向左平移2个单位,向上平移了3个单位,则P(a﹣2,b+3)故选:A.6.(3分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【解答】解:设原来的平均车速为xkm/h,则根据题意可列方程为:﹣=1.故选:A.7.(3分)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm2【解答】解:∵AB=25,BD=15,∴AD=10,∴S贴纸=2×(﹣)=2×175π=350πcm2,故选:B.8.(3分)如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2【解答】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵点A的横坐标为2,∴点B的横坐标为﹣2,∵由函数图象可知,当﹣2<x<0或x>2时函数y1=k1x的图象在y2=的上方,∴当y1>y2时,x的取值范围是﹣2<x<0或x>2.故选:D.二、填空题(本题满分18分,共有6道小题,每小题3分,)9.(3分)计算: = 2 .【解答】解:原式===2.故答案为:2.10.(3分)“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有2400 名.【解答】解:若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有12000×20%=2400(名),故答案为:2400.11.(3分)如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD= 62 °.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BCD=28°,∴∠ACD=62°,由圆周角定理得,∠ABD=∠ACD=62°,故答案为:62.12.(3分)把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为s=.【解答】解:由题意可得:sh=3×2×1,则s=.故答案为:s=.13.(3分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.【解答】解:∵CE=5,△CEF的周长为18,∴CF+EF=18﹣5=13.∵F为DE的中点,∴DF=EF.∵∠BCD=90°,∴CF=DE,∴EF=CF=DE=6.5,∴DE=2EF=13,∴CD===12.∵四边形ABCD是正方形,∴BC=CD=12,O为BD的中点,∴OF是△BDE的中位线,∴OF=(BC﹣CE)=(12﹣5)=.故答案为:.14.(3分)如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm 长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为144 cm3.【解答】解:如图由题意得:△ABC为等边三角形,△OPQ为等边三角形,AD=AK=BE=BF=CG=CH=4cm,∴∠A=∠B=∠C=60°,AB=BC=AC,∠POQ=60°,∴∠ADO=∠AKO=90°.连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,∴OD=AD=cm,∵PQ=OP=DE=20﹣2×4=12(cm),∴QM=OP•sin60°=12×=6(cm),∴无盖柱形盒子的容积=×12×6×=144(cm3);故答案为:144.三、解答题(共1小题,满分4分)15.(4分)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.【解答】解::①作∠ACB的平分线CD,②在CD上截取CO=a,③作OE⊥CA于E,以O为圆心,OE长为半径作圆;如图所示:⊙O即为所求.四、解答题(本题满分74分,共有9道小题,)16.(8分)(1)化简:(+n)÷;(2)关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,求m的取值范围.【解答】解:(1)原式=•=•=;(2)∵方程2x2+3x﹣m=0有两个不相等的实数根,∴△=9+8m>0,解得:m>﹣.17.(6分)小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1﹣4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.【解答】解:这个游戏对双方不公平.理由:列表如下:所有等可能的情况有16种,其中数字之和大于5的情况有(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6种,故小颖获胜的概率为: =,则小丽获胜的概率为:,∵<,∴这个游戏对双方不公平.18.(6分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈,cos35°≈,tan35°≈)【解答】解:作AD⊥BC交CB的延长线于D,设AD为x,由题意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt △ADC 中,∠ACD=35°, ∴tan ∠ACD=, ∴=,解得,x ≈233m .19.(6分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a ,b ,c 的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员? 【解答】解:(1)甲的平均成绩a==7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10, ∴乙射击成绩的中位数b==7.5(环),其方差c=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.20.(8分)某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少米材料?(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?【解答】解:(1)设制作每个乙盒用x米材料,则制作甲盒用(1+20%)x米材料,,解得:x=0.5,经检验x=0.5是原方程的解,∴(1+20%)x=0.6(米),答:制作每个甲盒用0.6米材料;制作每个乙盒用0.5米材料.(2)根据题意得:l=0.6n+0.5(3000﹣n)=0.1n+1500,∵甲盒的数量不少于乙盒数量的2倍,∴n≥2(3000﹣n)解得:n≥2000,∴2000≤n<3000,∵k=0.1>0,∴l随n增大而增大,∴当n=2000时,l最小1700米.21.(8分)已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF 分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:四边形BEDF是菱形;理由如下:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OB=OD,∵DG=BG,∴EF⊥BD,∴四边形BEDF是菱形.22.(10分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【解答】解:(1)根据题意得B(0,4),C(3,),把B(0,4),C(3,)代入y=﹣x2+bx+c得,解得.所以抛物线解析式为y=﹣x2+2x+4,则y=﹣(x﹣6)2+10,所以D(6,10),所以拱顶D到地面OA的距离为10m;(2)由题意得货运汽车最外侧与地面OA的交点为(2,0)或(10,0),当x=2或x=10时,y=>6,所以这辆货车能安全通过;(3)令y=8,则﹣(x﹣6)2+10=8,解得x1=6+2,x2=6﹣2,则x1﹣x2=4,所以两排灯的水平距离最小是4m.23.(10分)问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?问题探究:不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.探究一:(1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1(2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形,所以,当n=4时,m=0(3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形,所以,当n=5时,m=1 (4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形,所以,当n=6时,m=1 综上所述,可得表①探究二:(1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(仿照上述探究方法,写出解答过程,并把结果填在表②中)(2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…解决问题:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1、4k、4k+1、4k+2,其中k是整数,把结果填在表③中)问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了672 根木棒.(只填结果)【解答】解:探究二:(1)7=1+1+5(舍去);7=2+2+3(符合要求);7=3+3+1(符合要求);(2)8=1+1+6(舍去);8=2+2+4(舍去);8=3+3+2(符合要求);9=1+1+7(舍去);9=2+2+5(舍去);9=3+3+3(符合要求);9=4+4+1(符合要求);10=1+1+8(舍去);10=2+2+6(舍去);10=3+3+4(符合要求);10=4+4+2(符合要求);填表如下:解决问题:令n=a+a+b=2a+b,则:b=n﹣2a,根据三角形三边关系定理可知:2a>b且b>0,∴,解得:,若n=4k﹣1,则,a的整数解有k个;若n=4k,则k<a<2k,a的整数解有k﹣1个;若n=4k+1,则,a的整数解有k个;若n=4k+2,则,a的整数解有k个;填表如下:问题应用:(1)∵2016=4×504,∴k=504,则可以搭成k﹣1=503个不同的等腰三角形;(2)当等腰三角形是等边三角形时,面积最大,∴2016÷3=672.24.(12分)已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.【解答】解:(1)∵在矩形ABCD中,AB=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,∴AM=AO=,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ACD,∴,∴AP=t=,②当AP=AO=t=5,∴当t为或5时,△AOP是等腰三角形;(2)过点O作OH⊥BC交BC于点H,则OH=CD=AB=3cm.由矩形的性质可知∠PDO=∠EBO,DO=BO,又得∠DOP=∠BOE,∴△DOP≌BOE,∴BE=PD=8﹣t,则S△BOE=BE•OH=×3(8﹣t)=12﹣t.∵FQ∥AC,∴△DFQ∽△DOC,相似比为=,∴=∵S△DOC=S矩形ABCD=×6×8=12cm2,∴S△DFQ=12×=∴S五边形OECQF=S△DBC﹣S△BOE﹣S△DFQ=×6×8﹣(12﹣t)﹣=﹣t2+t+12;∴S与t的函数关系式为S=﹣t2+t+12;(3)存在,∵S△ACD=×6×8=24,∴S五边形OECQF:S△ACD=(﹣t2+t+12):24=9:16,解得t=3,或t=,∴t=3或时,S五边形S五边形OECQF:S△ACD=9:16;(4)如图3,过D作DM⊥PE于M,DN⊥AC于N,∵∠POD=∠COD,∴DM=D N=,∴ON=OM==,∵OP•DM=3PD,∴O P=5﹣t,∴PM=﹣t,∵PD2=PM2+DM2,∴(8﹣t )2=(﹣t )2+()2,解得:t=16(不合题意,舍去),t=,∴当t=时,OD 平分∠COP .。

2018年浙江省宁波市慈溪市中考数学模拟考试试卷(3月份)(解析版)

2018年浙江省宁波市慈溪市中考数学模拟考试试卷(3月份)(解析版)

2018年浙江省宁波市慈溪市中考数学模拟试卷(3月份)一、选择题(本题有12小题,每小题4分,共48分)1.计算-1X2的结果是()A.1B.2C.-3D.-22.下列计算正确的是()A.x+x=x2B.x*x=2xC.(x2)3=x5D.x34-x=x23.2015年我国大学生毕业人数将达到7490000A,这个数据用科学记数法表示为()A.7.49X107B.7.49X106C.74.9X105D.0.749X1074.若正多边形的一个内角是150°,则该正多边形的边数是()A.6B.12C.16D.185.实数a在数轴上的位置如图所示,则下列说法不正确的是()~~a0~2>A.a的相反数大于2B.a的相反数是2C.\a\>2D.2aV06.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为()A.172B.171C.170D.1687.如图,平行四边形ABCD的顶点A、B、。

在上,顶点C在。

的直径BE上,连接AE,ZE=36°,则ZADC的度数是()8.不等式3x2x-5的最小整数解是(9.在平面直角坐标系中,点P(m,2m-2),则点F不可能在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在矩形ABCQ中,AD=1,AB>1,AG平分Z8AQ,分别过点8、C作BELAG于点E,CF±AG于点F,贝ij(A£-GF)的值为()11.将抛物线(x+2) 2+5绕着点(0,3)旋转180。

以后,所得图象的解析式是()A.y=- —(x+2)2+5B.y=-—(x-2)2-522C.y———(x- 2)?+2D.y=——(x- 2)?+12212.如图,在矩形曲CD中,AB=5,AD=3,动点F满足S^PAB=^S^ABCD>则点F到A、B两点距离之和PA+PB的最小值为()A.V29B.V34C.5扼D.V41二、填空题(本题有6小题,每小题4分,共24分)13.分解因式:x3 -9x=.14.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是.15.某市居民用电价格如表所示:用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.50.6小芳家二月份用电200千瓦时,交电费105元,则a=.16.在uABCD中,AB=3,BC=4,当口ABCD的面积最大时,下列结论:①AC=5;(2)ZA+ZC=180°;@AC±BD;@AC=BD.其中正确的有.(填序号)17.一个圆锥的三视图如图,则此圆锥的表面积为正视图左视图俯视图18,如图,RtZXABC中,AC=3,BC=4,ZACB=90°,P为AB上一点,S.AP=2BP,若点A绕点C顺时针旋转60°,则点F随之运动的路径长是.三、解答题(本题有8小题,共78分,各小题都必须写出解答过程)19.(6分)计算:(T)2016-(号)2+-(/16- cos60°20.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A2两名男生,Bp彪两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.21.(9分)如图是8X8的正方形网格,A、B两点均在格点(即小正方形的顶点)上,试在下面三个图中,分别画出一个以A,B,C,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年中考数学模拟试题
一、选择题
1. -2的绝对值是 ( )
A .±2
B .2
C .一2
D .12 2.如图所示的立体图形的主视图是( ) A . B . C . D .
3.下列运算正确的是 ( )
A .222()x y x y +=+
B .235
()x x = C .2x x = D .623x x x ÷= 4.如今网络购物已成为一种常见的购物方式,2016年11月11日当天某电商平台的交易额就达到了1107亿元,用科学记数法表示为(单位:元) ( )
A ,101.10710⨯
B .111.10710⨯
C .120.110710⨯
D .12
1.10710⨯
5.如图,BE 平分∠DBC ,点A 是BD 上一点,过点A 作AE ∥BC 交BE 于点E ,∠DAE=56°,则∠E 的度数为( )
A .56°
B .36°
C .26°
D .28°
6.一组数据5,2,6,9,5,3的众数、中位数、平均数分别是( )
A .5,5,6
B .9,5,5
C .5,5,5
D .2,6,5
7.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,将Rt △ABC 绕点A 逆时针旋转30°后得到△ADE ,则图中阴影部分的面积为 ( ) A .
1312π B .34π C .43π D .2512
π 8.若一次函数y=mx+n (m ≠0)中的m ,n 是使等式12m n =+成立的整数,则一次函数y=mx+n (m ≠0)的图象一定经过的象限是 ( )
A .一、三
B .三、四
C .一、二
D .二、四
9.如图,在矩形ABCD 中,AB=2,AD=22,点E 是CD 的中点,连接AE ,
将△ADE 沿直线AE 折叠,使点D 落在点F 处,则线段CF 的长度是 ( )
A .1
B .22
C .23
D .23
10.如图,抛物线2y ax bx c =++(a ≠0)的顶点和该抛物线与y 轴的交点
在一次函数y=kx+1(k ≠0)的图象上,它的对称轴是x =1,有下列四个结
论:①abc <0,②13a <-,③a=-k ,④当0<x <1时,ax+b >k ,其中正确
结论的个数是( )
A .4
B .3
C .2
D .1
第Ⅱ卷(非选择题 共90分)
二、填空题(本大题共6小题,每小题3分,共18分,请把答案填在题中的横线上)
11.使分式21
x -有意义的x 取值范围是________. 12.一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是________.
13.边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABC=________度.
14.关于x 的一元二次方程2(1)(21)0a x a x a -+++=有两个不相等的实数根,则a 的取值范围是_______.
15.如图,点A 是函数16y x =-图象上一点,连接AO 交反比例函数2k y x
=(k ≠0)的图象于点B ,若BO=2AB ,则k________.
16.按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形
地砖的块数是________.
三、解答题(本大题共8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)
17.先化简,再求值:2211(1)28x x x x
+--÷,其中x=2.
18.当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A 1,A 2,A 3,A 4,现对A 1,A 2,A 3,A 4统计后,制成如图所示的统计图.
(1)求七年级已“建档立卡”的贫困家庭的学生总人数;
(2)将条形统计图补充完整,并求出A 1所在扇形的圆心角的度数;
(3)现从A 1,A 2中各选出一人进行座谈,若A 1中有一名女生,A 2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.
19.如图,AB 是半圆的直径,AC 为弦,过点C 作直线DE 交AB 的延长线于
点E .若∠ACD=60°,∠E=30°.
(1)求证:直线DE 与半圆相切;
(2)若BE=3,求CE 的长.
20.如图,一次函数1y kx b =+(k ≠0)的图象与反比例函数2m y x
= (m ≠0,x <0)的图象交于点A (-3,1)和点C ,与y 轴交于点B ,△AOB 的面积
是6.
(1)求一次函数与反比例函数的解析式;
(2)当x <0时,比较1y 与2y 的大小.
21.四川省安岳县盛产柠檬和柚子两种水果,今年,某公司计划用两种型号
的汽车运输柠檬和柚子到外地销售,运输中要求每辆汽车都要满载满运,且只能装运一种水果.若用3辆汽车装载柠檬、2辆汽车装载袖子可共装载33吨,若用2辆汽车装载柠檬、3辆汽车装载柚子可共装载32吨.
(1)求每辆汽车可装载柠檬或柚子各多少吨?
(2)据调查,全部销售完后,每吨柠檬可获利700元、每吨柚子可获利500元,计划用20辆汽车运输,且柚子不少于30吨,如何安排运输才能使公司获利最大,最大利润是多少元?
22.如图,光明中学一教学楼顶上竖有一块高为AB 的宣传牌,点E 和点D 分别是教学楼底部和外墙上的一点(A ,B ,D ,E 在同一直线上),小红同学在距E 点9米的C 处测得宣传牌底部点B 的仰角为67°,同时测得教学楼外墙外点D 的仰角为30°,从点C 沿坡度为1:3的斜坡向上走到点F 时,DF 正好与水平线CE 平行.
(1)求点F 到直线CE 的距离(结果保留根号);
(2)若在点F 处测得宣传牌顶部A 的仰角为45°,求出宣传牌AB 的高
度(结果精确到0.0l ).
(注:sin67°≈0.92,tan67°≈2.36,2≈1.41,3≈1.73)
23.在△ABC 中,AB=AC >BC ,D 是BC 上一点,连接AD ,作△ADE ,使AD=AE ,且∠DAE=∠BAC ,过点E 作EF ∥BC 交AB 于F ,连接FC .
(1)如图1.
①连接BE ,求证:△AEB ≌△ADC :
②若D 是线段BC 的中点,且AC=6,BC=4,求CF 的长;
(2)如图2,'若点D 在线段BC 的延长线上,且四边
形CDEF 是矩形,当AC=m ,BC=n 时,求CD 的长(用
含m ,n 的代数式表示).
24.如图,抛物线2(1)4y a x =++(a ≠0)与x 轴交于A ,C 两点,与直线y=x-1交于A ,B 两点,直线AB 与抛物线的对称轴交于点E .
(1)求抛物线的解析式;
(2)若点P 在直线AB 上方的抛物线上运动.
①点P 在什么位置时,△ABP 的面积最大,求出此时点P 的坐标;
②当点P 与点C 重合时,连接PE ,将△PEB 补成矩形,使△PEB 上的两个顶点成为矩
形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐
标.。

相关文档
最新文档