利用有限状态机进行时序逻辑的设计
时序逻辑实验报告

时序逻辑实验报告时序逻辑实验报告引言:时序逻辑是计算机科学中的重要概念,它描述了事件在时间上的顺序和发生关系。
在本次实验中,我们将探索时序逻辑的基本原理,并通过实际的电路设计和仿真来加深对其理解。
实验一:时钟信号的生成和分频时钟信号是时序逻辑中的基础,它提供了时间参考,使得电路中的各个元件能够按照特定的时间序列进行操作。
在本实验中,我们首先学习了如何通过计数器和分频器生成时钟信号。
通过调整分频器的参数,我们可以得到不同频率的时钟信号,并观察其对电路行为的影响。
实验二:时序逻辑电路的设计在本实验中,我们将学习如何设计时序逻辑电路。
时序逻辑电路通常由触发器、计数器、状态机等组成,它们能够根据输入信号的变化产生不同的输出。
我们将通过实际的案例来展示时序逻辑电路的设计过程,并使用仿真工具验证其正确性。
实验三:状态机的设计和实现状态机是时序逻辑中常用的模型,它描述了系统根据输入信号的变化而转换的状态。
在本实验中,我们将学习如何设计和实现状态机。
通过定义状态和状态转换条件,我们可以将复杂的系统行为转化为简单的状态转换图,并通过电路实现这些状态转换。
实验四:时序逻辑电路的故障排查时序逻辑电路的故障排查是电子工程师日常工作中的重要环节。
在本实验中,我们将学习如何通过逻辑分析仪和示波器等工具来排查时序逻辑电路的故障。
通过观察信号波形和逻辑分析结果,我们可以确定故障的原因,并采取相应的修复措施。
实验五:时序逻辑电路的应用时序逻辑电路在计算机科学和电子工程中有着广泛的应用。
在本实验中,我们将学习一些时序逻辑电路的典型应用,如计数器、时序多路复用器等。
通过实际的案例,我们可以更好地理解时序逻辑电路在实际系统中的作用和价值。
结论:通过本次实验,我们深入了解了时序逻辑的基本原理和应用。
我们学习了时钟信号的生成和分频,掌握了时序逻辑电路的设计和实现方法,学会了使用工具进行故障排查。
时序逻辑在现代电子系统中起着重要的作用,通过实验的学习,我们对其有了更深入的理解和应用能力。
Verilog设计练习十例及答案

设计练习进阶前言:在前面九章学习的基础上,通过本章的练习,一定能逐步掌握Verilog HDL设计的要点。
我们可以先理解样板模块中每一条语句的作用,然后对样板模块进行综合前和综合后仿真,再独立完成每一阶段规定的练习。
当十个阶段的练习做完后,便可以开始设计一些简单的逻辑电路和系统。
很快我们就能过渡到设计相当复杂的数字逻辑系统。
当然,复杂的数字逻辑系统的设计和验证,不但需要系统结构的知识和经验的积累,还需要了解更多的语法现象和掌握高级的Verilog HDL系统任务,以及与C语言模块接口的方法(即PLI),这些已超出的本书的范围。
有兴趣的同学可以阅读Verilog语法参考资料和有关文献,自己学习,我们将在下一本书中介绍Verilog较高级的用法。
练习一.简单的组合逻辑设计目的: 掌握基本组合逻辑电路的实现方法。
这是一个可综合的数据比较器,很容易看出它的功能是比较数据a与数据b,如果两个数据相同,则给出结果1,否则给出结果0。
在Verilog HDL中,描述组合逻辑时常使用assign 结构。
注意equal=(a==b)1:0,这是一种在组合逻辑实现分支判断时常使用的格式。
模块源代码:" qual(equal),.a(a),.b(b)); 简单时序逻辑电路的设计目的:掌握基本时序逻辑电路的实现。
在Verilog HDL中,相对于组合逻辑电路,时序逻辑电路也有规定的表述方式。
在可综合的Verilog HDL模型,我们通常使用always块和@(posedge clk)或@(negedge clk)的结构来表述时序逻辑。
下面是一个1/2分频器的可综合模型。
eset(reset),.clk_in(clk),.clk_out(clk_out));endmodule仿真波形:练习:依然作clk_in的二分频clk_out,要求输出与上例的输出正好反相。
编写测试模块,给出仿真波形。
练习三. 利用条件语句实现较复杂的时序逻辑电路目的:掌握条件语句在Verilog HDL中的使用。
北邮电子院专业实验报告

电子工程学院ASIC专业实验报告班级:姓名:学号:班内序号:第一部分语言级仿真LAB 1:简单的组合逻辑设计一、实验目的掌握基本组合逻辑电路的实现方法;二、实验原理本实验中描述的是一个可综合的二选一开关,它的功能是当sel = 0时,给出out = a,否则给出结果out = b;在Verilog HDL中,描述组合逻辑时常使用assign结构;equal=a==b1:0是一种在组合逻辑实现分支判断时常用的格式;parameter定义的size参数决定位宽;测试模块用于检测模块设计的是否正确,它给出模块的输入信号,观察模块的内部信号和输出信号;三、源代码module scale_muxout,sel,b,a;parameter size=1;outputsize-1:0 out;inputsize-1:0b,a;input sel;assign out = sela:selb:{size{1'bx}};endmodule`define width 8`timescale 1 ns/1 nsmodule mux_test;reg`width:1a,b;wire`width:1out;reg sel;scale_mux`widthm1.outout,.selsel,.bb,.aa;initialbegin$monitor$stime,,"sel=%b a=%b b=%b out=%b",sel,a,b,out;$dumpvars2,mux_test;sel=0;b={`width{1'b0}};a={`width{1'b1}};5sel=0;b={`width{1'b1}};a={`width{1'b0}};5sel=1;b={`width{1'b0}};a={`width{1'b1}};5sel=1;b={`width{1'b1}};a={`width{1'b0}};5 $finish;endendmodule四、仿真结果与波形LAB 2:简单时序逻辑电路的设计一、实验目的掌握基本时序逻辑电路的实现;二、实验原理在Verilog HDL中,相对于组合逻辑电路,时序逻辑电路也有规定的表述方式;在可综合的Verilog HDL模型中,我们常使用always块和posedge clk或negedge clk的结构来表述时序逻辑;在always块中,被赋值的信号都必须定义为reg型,这是由时序逻辑电路的特点所决定的对于reg 型数据,如果未对它进行赋值,仿真工具会认为它是不定态;为了正确地观察到仿真结果,在可综合的模块中我们通常定义一个复位信号rst-,当它为低电平时对电路中的寄存器进行复位;三、源代码`timescale 1 ns/100 psmodule countercnt,clk,data,rst_,load;output4:0cnt ;input 4:0data;input clk;input rst_;input load;reg 4:0cnt;alwaysposedge clk or negedge rst_ifrst_cnt<=0;elseifloadcnt<=3 data;elsecnt<=4 cnt + 1;endmodule`timescale 1 ns/1 nsmodule counter_test;wire4:0cnt;reg 4:0data;reg rst_;reg load;reg clk;counter c1t cnt,.clk clk,.datadata,.rst_rst_,.loadload;initial beginclk=0;forever begin10 clk=1'b1;10 clk=1'b0;endendinitialbegin$timeformat-9,1,"ns",9;$monitor"time=%t,data=%h,clk=%b,rst_=%b,load=%b,cnt=%b", $stime,data,clk,rst_,load,cnt;$dumpvars2,counter_test;endtask expect;input 4:0expects;ifcnt ==expectsbegin$display"At time %t cnt is %b and should be %b", $time,cnt,expects;$display"TEST FAILED";$finish;endendtaskinitialbeginnegedge clk{rst_,load,data}=7'b0_X_XXXXX;negedge clkexpect5'h00;{rst_,load,data}=7'b1_1_11101;negedge clkexpect5'h1D;{rst_,load,data}=7'b1_0_11101;repeat5negedge clk;expect5'h02;{rst_,load,data}=7'b1_1_11111;negedge clkexpect5'h1F;{rst_,load,data}=7'b0_X_XXXXX;negedge clkexpect5'h00;$display"TEST PASSED";$finish;endendmodule四、仿真结果与波形五、思考题该电路中,rst-是同步还是异步清零端在的always块中reset没有等时钟,而是直接清零;所以是异步清零端;LAB 3:简单时序逻辑电路的设计一、实验目的使用预定义的库元件来设计八位寄存器;二、实验原理八位寄存器中,每一位寄存器由一个二选一MUX和一个触发器dffr组成,当load=1,装载数据;当load=0,寄存器保持;对于处理重复的电路,可用数组条用的方式,使电路描述清晰、简洁; 三、源代码`timescale 1 ns /1 nsmodule clockclk;reg clk;output clk;initial beginclk=0;forever begin10 clk=1'b1;10 clk=1'b0;endendendmodulemux及dffr模块调用代码mux mux7.outn17,.selload,;dffr dffr7 .qout7, .dn17, .clkclk, .rst_rst_ ;mux mux6 .outn16, .selload, .bdata6, .aout6;dffr dffr6 .qout6, .dn16, .clkclk, .rst_rst_ ;mux mux5 .outn15, .selload, .bdata5, .aout5;dffr dffr5 .qout5, .dn15, .clkclk, .rst_rst_ ;mux mux4 .outn14, .selload, .bdata4, .aout4;dffr dffr4 .qout4, .dn14, .clkclk, .rst_rst_ ;.selload, .bdata3, .aout3;dffr dffr3 .qout3, .dn13, .clkclk, .rst_rst_ ;mux mux2 .outn12, .selload, .bdata2, .aout2;dffr dffr2 .qout2, .dn12, .clkclk, .rst_rst_ ;mux mux1 .outn11, .selload, .bdata1, .aout1;dffr dffr1 .qout1, .dn11, .clkclk, .rst_rst_ ;mux mux0 .outn10, .selload, .bdata0, .aout0;dffr dffr0 .qout0, .dn10,;例化寄存器register r1.datadata,.outout,.loadload,.clkclk,.rst_rst_;例化时钟clock c1.clkclk;添加检测信号initialbegin$timeformat-9,1,"ns",9;$monitor"time=%t,clk=%b,data=%h,load=%b,out=%h",$stime,clk,data,load,out;$dumpvars2,register_test;end四、仿真结果与波形LAB 4:用always块实现较复杂的组合逻辑电路一、实验目的掌握用always实现组合逻辑电路的方法;了解assign与always两种组合逻辑电路实现方法之间的区别;二、实验原理仅使用assign结构来实现组合逻辑电路,在设计中会发现很多地方显得冗长且效率低下;适当地使用always来设计组合逻辑,会更具实效;本实验描述的是一个简单的ALU指令译码电路的设计示例;它通过对指令的判断,对输入数据执行相应的操作,包括加、减、或和传数据,并且无论是指令作用的数据还是指令本身发生变化,结果都要做出及时的反应;示例中使用了电平敏感的always块,电平敏感的触发条件是指在后括号内电平列表的任何一个电平发生变化就能触发always块的动作,并且运用了case结构来进行分支判断;在always中适当运用default在case结构中和else子if…else结构中,通常可以综合为纯组合逻辑,尽管被赋值的变量一定要定义为reg型;如果不使用default或else对缺省项进行说明,易产生意想不到的锁存器;三、源代码电路描述alwaysopcode or data or accumbeginifaccum==8'b00000000zero=1;elsezero=0;caseopcodePASS0: out =accum;PASS1: out =accum;ADD: out = data + accum;AND: out =data&accum;XOR: out =data^accum;PASSD: out=data;PASS6: out=accum;PASS7: out=accum;default: out=8'bx;endcaseend四、仿真结果与波形LAB 5:存储器电路的设计一、实验目的设计和测试存储器电路;二、实验原理本实验中,设计一个模块名为mem的存储器仿真模型,该存储器具有双线数据总线及异步处理功能;由于数据是双向的,所以要注意,对memory的读写在时序上要错开;三、源代码自行添加的代码assign data= readmemoryaddr:8'hZ;always posedge writebeginmemoryaddr<=data7:0;end四、仿真结果与波形LAB 6:设计时序逻辑时采用阻塞赋值与非阻塞赋值的区别一、实验目的明确掌握阻塞赋值与非阻塞赋值的概念和区别;了解阻塞赋值的使用情况;二、实验原理在always块中,阻塞赋值可以理解为赋值语句是顺序执行的,而非阻塞赋值可以理解为并发执行的;实际时序逻辑设计中,一般情况下非阻塞赋值语句被更多的使用,有时为了在同一周期实现相互关联的操作,也使用阻塞赋值语句;三、源代码`timescale 1 ns/ 100 psmodule blockingclk,a,b,c;output3:0b,c;input 3:0a;input clk;reg 3:0b,c;alwaysposedge clkbeginb =a;c =b;$display"Blocking: a=%d,b=%d,c=%d.",a,b,c;endendmodule`timescale 1 ns/ 100 psmodule non_blockingclk,a,b,c;output3:0 b,c;input3:0 a;input clk;reg 3:0b,c;always posedge clkbeginb<=a;c<=b;$display"Non_blocking:a=%d,b=%d,c=%d",a,b,c;endendmodule`timescale 1 ns/ 100 psmodule compareTop;wire 3:0 b1,c1,b2,c2;reg3:0a;reg clk;initialbeginclk=0;forever 50 clk=~clk;endinitial$dumpvars 2,compareTop;initialbegina=4'h3;$display"_______________________________";100 a =4'h7;$display"_______________________________";100 a =4'hf;$display"_______________________________";100 a =4'ha;$display"_______________________________";100 a =4'h2;$display"_______________________________";100 $display"_______________________________";$finish;endnon_blocking nonblockingclk,a,b2,c2;blocking blockingclk,a,b1,c1;endmodule四、仿真结果与波形LAB 7:利用有限状态机进行复杂时序逻辑的设计一、实验目的掌握利用有限状态机FSM实现复杂时序逻辑的方法;二、实验原理控制器是CPU的控制核心,用于产生一系列的控制信号,启动或停止某些部件;CPU何时进行读指令,何时进行RAM和I/O端口的读写操作等,都由控制器来控制;三、源代码补充代码nexstate<=state+1'h01;casestate1:begin sel=1;rd=0;ld_ir=0;inc_pc=0;halt=0;ld_pc=0;data_e=0;ld_ac=0;wr=0;end2:begin sel=1;rd=1;ld_ir=0;inc_pc=0;halt=0;ld_pc=0;data_e=0;ld_ac=0;wr=0;end3:begin sel=1;rd=1;ld_ir=1;inc_pc=0;halt=0;ld_pc=0;data_e=0;ld_ac=0;wr=0;end4:begin sel=1;rd=1;ld_ir=1;inc_pc=0;halt=0;ld_pc=0;data_e=0;ld_ac=0;wr=0;end 5:begin sel=0;rd=0;ld_ir=0;inc_pc=1;ld_pc=0;data_e=0;ld_ac=0;wr=0;ifopcode==`HLThalt=1;end6:beginsel=0;rd=alu_op;ld_ir=0;inc_pc=0;halt=0;ld_pc=0;data_e=0;ld_ac=0;wr=0;end7:beginsel=0;rd=alu_op;ld_ir=0;halt=0;data_e=alu_op;ld_ac=0;wr=0;ifopcode==`SKZinc_pc<=zero;ifopcode==`JMPld_pc=1;end0:beginsel=0;rd=alu_op;ld_ir=0;halt=0;data_e=alu_op;ld_ac=alu_op;inc_pc=opcode==`SKZ&zero||opcode==`JMP;ifopcode==`JMPld_pc=1;ifopcode==`STOwr=1;endNo.00000000 No.00000000 No.00000101 No.00000001 // 1C TEMP: //1 temporary variable00000001 // 1D time: // 1 constant 144 - max value 00000110 // 1E LIMIT: // 6 constant 1一、仿真结果与波形第二部分电路综合一、实验目的掌握逻辑综合的概念和流程,熟悉采用Design Compiler进行逻辑综合的基本方法;二、实验内容采用SYNOPSYS公司的综合工具Design Compiler对实验7的做综合;三、源代码与实验指导书中相同;四、门级电路仿真结果与波形五、思考题1.文件是verilog语言及的描述还是结构化的描述是结构化的描述;2.文件中,对触发器的延迟包括哪些信息包括对逻辑单元和管脚的上升/下降时延的最大值、最小值和典型值;第三部分版图设计一、实验目的掌握版图设计的基本概念和流程,熟悉采用Sysnopsys ICC工具进行版图设计的方法;二、实验内容对电路综合输出的门级网表进行布局布线;三、源代码与实验指导书中相同;四、仿真结果与波形布局规划后结果未产生core ring和mesh前产生core ring和mesh后电源线和电影PAD连接后filler PAD填充后布局后结果时钟树综合后结果布线后结果寄生参数的导出和后仿五、思考题1.简述ICC在design setup阶段的主要工作;创建设计库,读取网表文件并创建设计单元,提供并检查时间约束,检查时钟;在对之前的数据与信息进行读取与检查后保存设计单元;2.为什么要填充filler padfiller pad把分散的pad单元连接起来,把pad I/O区域供电连成一个整体;使它们得到持续供电并提高ESD保护能力;3.derive_pg_connection的作用是什么描述有关电源连接的信息;4.简述floorplan的主要任务;对芯片大小、输入输出单元、宏模块进行规划,对电源网络进行设计;5.简述place阶段的主要任务;对电路中的延时进行估计与分析,模拟时钟树的影响,按照时序要求,对标准化单元进行布局;6.简述CTS的主要步骤;设置时钟树公共选项;综合时钟树;重新连接扫描链;使能传播时钟;Post-CTS布局优化;优化时钟偏移;优化时序;实验总结经过数周的ASIC专业实验,我对芯片设计流程、Verilog HDL语言、Linux基本指令和Vi文本编辑器有了基本的了解;虽然之前对芯片设计、VHDL一无所知,但通过实验初步熟悉了ASIC的体系结构和VHDL的基本语法,对电路中时钟、寄生参数、元件布局带来的影响也有了了解;我在实验中也遇到了许多问题,但我在老师、助教、同学的帮助下解决了这些问题,也有了更多收获;通过这次ASIC专业实验,我加深了对本专业的认识;我会继续努力成为合格的电子人;。
状态机程序设计

典型状态机设计由状态信号定义、准备下一状态进程、状态切换进程、输出进程等四部分构成。 【例6-1】用FPGA/CPLD控制AD574进行12位A/D转换,并将转换结果保存在Q0~Q11中
CE
CS
RC
X12/8
A0
工作状态
0
X
X
X
X
禁止
X
1
X
X
X
禁止
1
0
0
X
0
启动12位转换
状态信号定义:采用枚举数据类型定义系统中有哪些状态,并定义当前状态信号、下一状态信号。一般放在结构体的ARCHITECTURE和BEGIN之间。
在数字系统中,每一状态对应一个二进制数,称状态编码。如AD574控制有5个状态,可用3位二进制表示:(000、001、010、011、100)。
但设计者在状态机的设计中,为了更利于阅读、编译和VHDL综合器的优化,往往将表征每一状态的二进制数组用文字符号来代表,即所谓状态符号化。如(s0,sl,s2,s3,s4,s5),或者(READY,START,WAIT_H, WAIT_L ,READ, LOCK)等更直观的符号表示。
PROCESS(c_st,STATUS) --准备下一状态 BEGIN CASE c_st IS WHEN s0=>n_st<=s1; CE<=‘0’;RC<='0‘;LOCK<='0'; WHEN S1=>n_st<=s2; CE<=‘1’;RC<=‘0’;LOCK<='0‘; WHEN s2=>IF(STATUS='1') THEN n_st<=s3; ELSE n_st<=s2; END 1F; CE<=‘0’;RC<=‘0’;LOCK<=‘0’; WHEN s3=> IF(STATUS='1') THEN n_st<=s3; ELSE n_st<=s4; END 1F; CE<=‘0’;RC<=‘0’;LOCK<=‘0’; WHEN S4=>n_st<=s5;CE<=‘1’;RC<=‘1’;LOCK<=‘0’; WHEN S5=>n_st<=s0;CE<=‘1’;RC<=‘1’;LOCK<=‘1’; WHEN OTHERS=>n_st<=s0; CE<=‘0’;RC<=‘0’;LOCK<=‘0’; END CASE; END PROCESS;
有限状态机设计

实验七有限状态机设计一、实验目的1、掌握利用有限状态机实现一般时序逻辑分析的方法;2、掌握用VHDL或Verilog编写可综合的有限状态机的标准模板;3、掌握用VHDL或Verilog编写序列检测器以及其他复杂逻辑电路的设计;二、实验内容1、用MOORE型状态机设计一个具有双向步进电动机控制实验:该控制电路有三个输入信号:clk时钟信号,clr复位信号,dir方向控制信号。
输出信号为phase[3..0]用来控制步进电机的动作。
当dir=1时要求phase[3..0]按照“0001”,“0010”,“0100”,“1000”的顺序变化;当dir=0时要求phase[3..0]按照“0001”,“1000”,“0100”,“0010”的顺序变化。
2、设计一个简单的状态机,功能是检测一个5位的二进制序列“10010”。
3、设计一个串行数据检测器,要求是:连续4个或4个以上为1时输出为1,其他输入情况为0。
(选做)4、根据状态图,写出对应于结构图b,分别由主控组合进程和主控时序进程组成的VERILOG 有限状态机描述。
(选做)三、实验步骤实验一:1、建立工程2、创建Verilog HDL文件3、输入程序代码并保存module moore1(clk,clr,dir,phase);input clk,clr,dir;output[3:0] phase;reg[3:0] phase;reg[1:0] state;parameter s0='b00,s1='b01,s2='b10,s3='b11;always@(posedge clk)beginif(clr)beginphase<='b0000;state<=s0;endelsebegincase(state)s0:if(dir) beginphase<='b0010;state<=s1;endelsebeginphase<='b1000;state<=s3;ends1:if(dir) beginphase<='b0100;state<=s2;endelse beginphase<='b0001;state<=s0;ends2:if(dir) beginphase<='b1000;state<=s3;endelse beginphase<='b0010;state<=s1;ends3:if(dir) beginphase<='b0001;state<=s0;endelse beginphase<='b0100;state<=s2;endendcaseendendendmodule4、进行综合编译5、新建波形文件6、导入引脚,设置信号源并保存7、功能仿真,结果分析由仿真波形图可以看出当dir=1时,phase[3..0]按照0001,0010,0100,1000的顺序变化,当dir=0时phase[3..0]按照0001,1000,0100,0010的顺序变化。
状态机设计

集成电路实验状态机设计实验报告专业:电子信息工程姓名:江燕婷学号:2011301200025状态机设计(实验五)实验报告一.实验目的1. 掌握状态机设计的基本方法2.学习利用状态机的方法实现控制电路二.实验原理有限状态机(Finite State Machine FSM)是时序电路设计中经常采用的一种方式,尤其适合设计数字系统的控制模块,在一些需要控制高速器件的场合,用状态机进行设计是一种很好的解决问题的方案,具有速度快、结构简单、可靠性高等优点。
有限状态机非常适合用FPGA器件实现,用Verilog HDL的case语句能很好地描述基于状态机的设计,再通过EDA工具软件的综合,一般可以生成性能极优的状态机电路,从而使其在执行时间、运行速度和占用资源等方面优于用CPU实现的方案。
有限状态机一般包括组合逻辑和寄存器逻辑两部分,寄存器逻辑用于存储状态,组合逻辑用于状态译码和产生输出信号。
根据输出信号产生方法的不同,状态机可分为两类:米里型(Mealy)和摩尔型(Moore)。
摩尔型状态机的输出只是当前状态的函数,如图1-1所示;米里型状态机的输出则是当前状态和当前输入的函数,如图1-2所示。
米里型状态机的输出是在输入变化后立即变化的,不依赖时钟信号的同步,摩尔型状态机的输入发生变化时还需要等待时钟的到来,必须在状态发生变化时才会导致输出的变化,因此比米里型状态机要多等待一个时钟周期。
图1-1 摩尔型状态机图1-2 米里型状态机状态机在硬件描述语言实现上,可使用单过程、双过程或三过程等不同的结构实现。
状态机的状态实现上,可采用符号编码或显式数字编码。
编码方式有顺序编码(自然二进制编码),一位热码(one-hot encoding),格雷(gray code)码等。
顺序编码,简单状态寄存器占用少;一位热码输出译码电路简单;在状态顺序变化时,格雷码每次只有一位变化,避免产生输出信号毛刺。
三. 实验设备与软件平台微型计算机,GW48-CK,QuartusII v5.0。
有限状态机设计

ENTITY AD574 IS
PORT (
d:
IN STD_LOGIC_VECTOR(11 DOWNTO 0);
clk,status :
IN STD_LOGIC; --时钟CLK,状态信号STATUS
lock0 :
OUT STD_LOGIC; --内部锁存信号LOCK旳测试信号
cs,a0,rc,k12x8 : OUT STD_LOGIC; --AD574控制信号
决定进入下一种状态。
(if - then - else)
二、一般有限状态机旳设计
6.2.1 一般有限状态机构成
4. 辅助进程:
clk reset State_inputs
状态机 Current_state
Next_state
一般状态机工作示意图
Comb_output
二、一般有限状态机旳设计
【例 6-1 】一般两进程有限状态机描述
下一状态 输出
001
0
000
0
…
…
状态机旳表达措施2
措施二:算法流程图 措施与软件程序旳流程图类似
状态机旳表达措施3
措施三:状态转换图 条件控制
定序
状态1
入
入
/出
状态4
/出
入
入
状态3
/出
状态2
/出
Moore
直接控制 定序
状态机旳表达措施3
措施三:状态转换图 条件控制
定序
状态1
入 /出
入 /出
状态4
工作状态
禁止
禁止
开启12位转换 开启8位转换 12位并行输出有效 高8位并行输出有效 低4位加上尾随4个0有效
有限状态机和时序逻辑电路

有限状态机和时序逻辑电路有限状态机和时序逻辑电路都是数字电路的重要部分,它们在数字系统中起着非常重要的作用。
这两者之间的关系是非常密切的,因为它们都是用于处理时序信号的。
虽然它们之间有很多相似之处,但是它们的实现目的、设计方法和应用场景却有很大的不同。
先来了解一下有限状态机。
有限状态机(Finite State Machine,简称FSM)是一种表示有限状态集的数学模型,它由一组状态、一组输入和一组输出构成。
有限状态机可以用来描述对象的行为,当输入变化时,状态机可以根据当前状态和输入的变化,自动地转移到一个新状态,并输出相应的结果。
FSM 的实现通常基于逻辑门电路或者触发器电路,设计中需要描述状态转移的规则和输出的逻辑关系。
因此,FSM 是一种用于控制系统的常见技术,例如自动机、解码器、数据整理器等等。
FSM 的设计和实现需要考虑状态转移的稳定性、时序性、输出控制和误差容忍度等因素。
时序逻辑电路则是一种数字电路,主要用于处理时序信号,它的输出状态是由输入信号和内部状态决定的,通常它包含了时钟信号以及各种逻辑门、触发器等方便组合的逻辑元件。
时序逻辑电路的设计和实现需要考虑时序稳定性、时钟速度、电源电压等因素。
时序逻辑电路具有小功耗、高速度、高性能等特点,因此它被广泛应用于高速通信领域、计算机内部控制电路和现代数字电子设备等领域。
在实际应用中,常常需要将有限状态机和时序逻辑电路结合起来使用,以满足控制和逻辑处理的需要。
例如,在计算机的中央处理器中,就采用了多级的逻辑电路和有限状态机实现了非常复杂的指令解释和控制功能。
总之,有限状态机和时序逻辑电路都是非常重要的数字电路部件,它们在我们的现代化社会中扮演着至关重要的角色。
无论是在通信、计算机还是其他应用领域中,它们都是支撑数字电路设计的重要基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用有限状态机进行时序逻辑的设计
1. 实验目的:
(1)掌握利用有限状态机实现一般时序逻辑分析的方法;
(2)掌握用Verilog编写可综合的有限状态机的标准模板;
(3)掌握用Verilog编写状态机模块的测试文件的一般方法。
(4)在数字电路中已经学习过通过建立有限状态机来进行数字逻辑的设计,而在VerilogHDL硬件描述语言中,这种设计方法得到进一步的发展。
通过Verilog HDL提供的语句,可以直观的设计出更为复杂的时序逻辑的电路。
关于有限状态机的设计方法在教材中已经作了较为详细的阐述。
2.实验环境
PC机一台,安装有quartusII13.0软件以及modulsim软件
3.实验内容
设计一个简单的状态机,功能是检测一个5位二进制序列“10010”。
考虑到序列重叠的可能。
有限状态机共提供8个状态(包括初始状态IDLE).
4.实验步骤
1) 源程序:
module seqdet(x,z,clk,rst,state);
input x,clk ,rst ;
output z;
output [2:0] state ;
reg[2:0] state ;
wire z;
parameter IDLE='d0, A='d1, B='d2, C='d3, D='d4,
E='d5, F='d6,
G='d7;
assign z=(state == E && x==0)?1:0; always @(posedge clk)
if(!rst)
begin
state <= IDLE;
end
else
casex(state)
IDLE:if(x==1)。