统计模式识别方法

合集下载

统计模式识别 统计分类方法

统计模式识别 统计分类方法

统计模式识别统计分类方法
统计模式识别是一种常见的机器学习算法,用于对未知模式和统
计模式进行学习。

它可以使用模式的历史记录和观察结果来预测未来
模式的行为。

该技术也被称为统计分类,用于解决分类和分组问题,
其目的是根据现有的统计数据来评估一个特定的类别的可能性。

统计模式识别基于概率统计理论,可对数据进行分析并扩展到传
统模式识别范围之外,以解决复杂问题。

它可以用于分类多维数据,
识别新类别或模式,并帮助训练机器学习模型,使用有效的特征提取
和结构学习算法。

它提供一种新的方法,通过有效的表示和分类模型,来表示实体和相关的对象。

与其他分类算法相比,统计模式识别的有点是它'数据挖掘'的概念,在这种类型的模式识别中,模式数据是根据观察数据一直进行改
变的,没有预先定义模式及其功能,它根据具有可利用自学能力的方
法逐渐改善。

统计模式识别非常重要,因为它可以帮助我们找到自动化解决方
案来实现更多基于数据的智能分析和决策,从而增强分析模型的能力,例如,可以使用该技术识别股票市场及其他金融市场的模式变化,以
便于能够更高效地进行投资决定。

它也可以应用于诊断和分析少量样
本事件,进而对学习和决策进行调节和优化。

什么是模式识别模式识别的方法与应用

什么是模式识别模式识别的方法与应用

什么是模式识别模式识别的方法与应用模式识别是通过计算机用数学技术方法来研究模式的自动处理和判读。

那么你对模式识别了解多少呢?以下是由店铺整理关于什么是模式识别的内容,希望大家喜欢!模式识别的简介模式识别(英语:Pattern Recognition),就是通过计算机用数学技术方法来研究模式的自动处理和判读。

我们把环境与客体统称为“模式”。

随着计算机技术的发展,人类有可能研究复杂的信息处理过程。

信息处理过程的一个重要形式是生命体对环境及客体的识别。

对人类来说,特别重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。

这是模式识别的两个重要方面。

市场上可见到的代表性产品有光学字符识别、语音识别系统。

人们在观察事物或现象的时候,常常要寻找它与其他事物或现象的不同之处,并根据一定的目的把各个相似的但又不完全相同的事物或现象组成一类。

字符识别就是一个典型的例子。

例如数字“4”可以有各种写法,但都属于同一类别。

更为重要的是,即使对于某种写法的“4”,以前虽未见过,也能把它分到“4”所属的这一类别。

人脑的这种思维能力就构成了“模式”的概念。

在上述例子中,模式和集合的概念是分未弄的,只要认识这个集合中的有限数量的事物或现象,就可以识别属于这个集合的任意多的事物或现象。

为了强调从一些个别的事物或现象推断出事物或现象的总体,我们把这样一些个别的事物或现象叫作各个模式。

也有的学者认为应该把整个的类别叫作模去,这样的“模式”是一种抽象化的概念,如“房屋”等都是“模式”,而把具体的对象,如人民大会堂,叫作“房屋”这类模式中的一个样本。

这种名词上的不同含义是容易从上下文中弄淸楚的。

模式识别是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。

随着20世纪40年代计算机的出现以及50年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。

(计算机)模式识别在20世纪60年代初迅速发展并成为一门新学科。

模式识别的基本理论与方法

模式识别的基本理论与方法

模式识别的基本理论与方法模式识别是人工智能和计算机科学领域中的一个重要分支,也是现代科学技术中广泛应用的一种技术手段。

它涉及到从大量的数据中自动识别出某种模式的过程,其应用领域非常广泛,如人脸识别、指纹识别、语音识别等领域。

一、模式识别的基本理论模式是事物或现象中简单重复的部分或整体,模式识别是通过对数据进行分类、聚类等方式分析、发现事物或现象中的规律性,并将其应用于实际生产和科学研究中。

模式识别的基本理论主要包括数据分析、统计学、人工神经网络及算法模型等。

1. 数据分析数据分析是模式识别的一个重要组成部分,它是指通过对数据进行收集、分析、处理和应用,从中发现有用的信息以及可用于决策或预测的模型。

数据分析可以采用统计学、机器学习、人工神经网络等方法,无论采用何种方法,数据分析的目的都是找到数据表达的规律和模式。

2. 统计学统计学是模式识别所使用的数学工具之一,主要通过收集和分析数据来提供决策支持和预测结果。

统计学的主要应用领域包括控制过程、质量控制、风险评估和数据挖掘等。

3. 人工神经网络人工神经网络是一种基于人类大脑神经结构的人工智能技术,它通过对输入的数据进行处理、学习,将数据转换为信号输出,以此模拟人脑的神经网络功能。

人工神经网络可以应用于图像识别、音频识别等领域。

4. 算法模型算法模型是模式识别的基本理论之一,它是指在进行数据分析和处理的时候所采用的算法模型。

常用的算法模型包括决策树、支持向量机、神经网络等。

二、模式识别的方法模式识别的方法主要包括监督学习、无监督学习和半监督学习。

1. 监督学习监督学习是指在训练模型时,数据集中已知了对应的标签或类别信息。

监督学习的主要步骤是将已知数据输入到模型中进行训练,训练好的模型之后可以将未知的数据进行分类或预测处理。

监督学习包括分类和回归两种类型。

2. 无监督学习无监督学习是指在训练模型时,数据集中没有对应的标签或类别信息。

无监督学习的主要步骤是将数据输入到模型中进行训练,训练好的模型之后可以从数据中提取出特定的模式、结构或规律。

统计模式识别方法

统计模式识别方法

统计模式识别方法模式识别方法是一种通过对数据进行分析和建模的技术,用于识别和分类不同模式和特征。

它广泛应用于图像识别、语音识别、文本分类、信号处理等各个领域。

本文将对几种常见的模式识别方法进行介绍,并提供相关参考资料。

1. 统计特征提取方法统计特征提取方法通过对数据进行统计分析,提取数据的关键特征。

常用的统计特征包括均值、方差、协方差、偏度、峰度等。

统计特征提取方法适用于数据维度较低的情况,并且不需要太多的领域知识。

相关参考资料包括《模式识别与机器学习》(Christopher Bishop, 2006)和《统计学习方法》(李航, 2012)。

2. 主成分分析(PCA)主成分分析是一种常用的降维方法,通过线性变换将原始数据映射到新的坐标系中。

它可以将高维数据压缩到低维,并保留大部分原始数据的信息。

相关参考资料包括《Pattern Recognition and Machine Learning》(Christopher Bishop, 2006)和《Principal Component Analysis》(I. T. Jolliffe, 2002)。

3. 独立成分分析(ICA)独立成分分析是一种用于从混合数据中提取独立信源的方法。

它假设原始数据由多个独立的信源组成,并通过估计混合矩阵,将混合数据分解为独立的信源。

ICA广泛用于信号处理、图像处理等领域。

相关参考资料包括《Independent Component Analysis》(Aapo Hyvärinen, 2000)和《Pattern Analysis andMachine Intelligence》(Simon Haykin, 1999)。

4. 支持向量机(SVM)支持向量机是一种二分类和多分类的模式识别方法。

它通过找到一个最优的超平面,将样本分成不同的类别。

SVM可以灵活地处理线性可分和线性不可分的问题,并具有很好的泛化能力。

图像识别与模式识别算法比较分析

图像识别与模式识别算法比较分析

图像识别与模式识别算法比较分析图像识别和模式识别是计算机视觉领域中重要的研究方向,主要目标是自动化识别和理解图像中的信息。

虽然两种算法在目标上有所相似,但它们在方法和应用方面存在一些差异。

本文将对图像识别和模式识别算法进行比较分析,探讨它们的特点、应用领域以及优缺点。

一、图像识别算法图像识别算法旨在通过计算机对输入的图像数据进行处理和分析,以自动识别图像中的对象或特征。

以下是一些常见的图像识别算法:1.1 特征提取算法特征提取算法是图像识别的基础,其目标是从图像中提取出与所需识别对象相关的特征。

常见的特征包括颜色、纹理、形状等。

特征提取算法有边缘检测、尺度不变特征变换(SIFT)、方向梯度直方图(HOG)等。

1.2 分类算法分类算法是图像识别的核心部分,其目的是将提取的特征与预定义的类别进行匹配,判断图像属于哪个类别。

常见的分类算法有支持向量机(SVM)、卷积神经网络(CNN)等。

二、模式识别算法模式识别算法是对复杂数据模式进行分类与分析的一种方法。

下面是一些常见的模式识别算法:2.1 统计模式识别算法统计模式识别算法主要基于统计分析方法,通过对已知类别的样本进行建模,并对新样本进行概率估计以实现分类。

常见的统计模式识别算法有贝叶斯决策理论、最大似然估计等。

2.2 人工神经网络算法人工神经网络算法模拟人脑神经元网络的工作原理,通过构建多层神经网络,并利用反向传播算法进行训练和学习,实现对复杂模式的识别。

常见的人工神经网络算法有多层感知器(MLP)、自组织映射(SOM)等。

三、比较分析图像识别算法和模式识别算法在方法和应用方面存在一些差异。

3.1 方法上的差异图像识别算法主要关注图像的低层次特征提取和高层次特征分类,通过提取图像的外观和结构特征来识别图像中的对象或场景。

而模式识别算法更加注重数据的高层次特征表示和模式之间的关联分析,通过对数据的统计特性进行建模和分类来识别模式。

3.2 应用领域上的差异图像识别算法主要应用于计算机视觉、人机交互、智能监控等领域。

人工智能的模式识别和模式匹配方法

人工智能的模式识别和模式匹配方法

人工智能的模式识别和模式匹配方法人工智能(Artificial Intelligence,AI)是一门研究如何使计算机可以像人类一样进行智能行为的学科。

其中,模式识别和模式匹配是人工智能的重要组成部分。

模式识别和模式匹配方法以其广泛的应用领域和强大的技术支持,受到了学术界和工业界的广泛关注。

模式识别是指通过对数据进行分析和处理,识别和提取出其中的模式或特征。

而模式匹配则是将一个待匹配的模式与一组已知模式进行比较,并找出最佳匹配的过程。

模式识别和模式匹配方法可以应用于图像识别、语音识别、生物医学、金融数据分析等领域,在提高效率和准确性方面发挥着重要作用。

在模式识别和模式匹配领域,最常见的方法之一是统计模式识别。

统计模式识别基于统计学原理,通过对大量样本进行统计分析,建立模型来描述和区分不同的模式。

常见的统计模式识别方法包括最近邻法、贝叶斯分类器、支持向量机等。

最近邻法是最简单和直观的方法之一,它通过计算待匹配模式与已知模式之间的距离来确定最佳匹配。

贝叶斯分类器则是一种基于贝叶斯概率理论的分类方法,通过计算待匹配模式与已知模式之间的条件概率,确定最佳分类结果。

支持向量机是一种基于最大间隔原理的分类方法,通过在特征空间中找到一个最佳超平面,将不同类别的模式分开。

除了统计模式识别方法,神经网络也是模式识别和模式匹配的常用工具。

神经网络通过模拟人脑的神经元网络,学习和提取模式中的特征。

常见的神经网络包括前馈神经网络、反馈神经网络和深度学习网络。

前馈神经网络是最简单的神经网络之一,它由一个输入层、若干个隐藏层和一个输出层组成,通过调整网络中的权重和偏置,实现对待匹配模式的识别和分类。

反馈神经网络是一种具有反馈连接的神经网络,它可以处理序列数据和动态模式。

深度学习网络则是一种多层次的神经网络结构,通过多层次的特征学习和抽象,实现对复杂模式的识别和匹配。

除了统计模式识别和神经网络,还有一些其他的模式识别和模式匹配方法。

印刷文字的识别方法分类介绍

印刷文字的识别方法分类介绍

识别方法是整个系统的核心。

用于汉字识别的模式识别方法可以大致分为结构模式识别、统计模式识别及两者的结合。

下面分别进行介绍。

结构模式识别汉字是一种特殊的模式,印刷其结构虽然比较复杂,但具有相当严格的规律性。

换言之,汉字图形含有丰富的结构信息,可以设法提取含有这种信息的结构特征及其组字规律,作为识别汉字的依据,这就是结构模式识别。

结构模式识别是早期汉字识别研究的主要方法。

其主要出发点是汉字的组成结构。

从汉字的构成上讲,汉字是由笔划(点横竖撇捺等)、偏旁部首构成的;还可以认为汉字是由更小的结构基元构成的。

由这些结构基元及其相互关系完全可以精确地对汉字加以描述,就像一篇文章由单字、词、短语和句子按语法规律所组成一样。

所以这种方法也叫句法模式识别。

识别时,利用上述结构信息及句法分析的方法进行识别,类似一个逻辑推理器。

用这种方法来描述汉字字形结构在理论上是比较恰当的,其主要优点在于对字体变化的适应性强,区分相似字能力强;但是,在实际应用中,面临的主要问题是抗干扰能力差,因为在实际得到的文本图象中存在着各种干扰,如倾斜,扭曲,断裂,粘连,纸张上的污点,对比度差等等。

这些因素直接影响到结构基元的提取,假如结构基元不能准确地得到,后面的推理过程就成了无源之水。

此外结构模式识别的描述比较复杂,匹配过程的复杂度因而也较高。

所以在印刷体汉字识别领域中,纯结构模式识别方法已经逐渐衰落,句法识别的方法正日益受到挑战。

统计模式识别统计决策论发展较早,理论也较成熟。

其要点是提取待识别模式的的一组统计特征,然后按照一定准则所确定的决策函数进行分类判决。

汉字的统计模式识别是将字符点阵看作一个整体,其所用的特征是从这个整体上经过大量的统计而得到的。

统计特征的特点是抗干扰性强,匹配与分类的算法简单,易于实现。

不足之处在于细分能力较弱,区分相似字的能力差一些。

常见的统计模式识别方法有:(1) 模板匹配。

模板匹配并不需要特征提取过程。

字符的图象直接作为特征,与字典中的模板相比,相似度最高的模板类即为识别结果。

模式识别(国家级精品课程讲义)

模式识别(国家级精品课程讲义)

1.1 概述-模式识别的基本方法
一、统计模式识别
理论基础:概率论,数理统计 主要方法:线性、非线性分类、Bayes决策、聚类分析 主要优点:
1)比较成熟 2)能考虑干扰噪声等影响 3)识别模式基元能力强 主要缺点: 1)对结构复杂的模式抽取特征困难 2)不能反映模式的结构特征,难以描述模式的性质 3)难以从整体角度考虑识别问题
模式类(Class):具有某些共同特性的模式 的集合。
模式识别的例子
计算机自动诊断疾病:
1. 获取情况(信息采集) 测量体温、血压、心率、 血液化验、X光透射、B超、心电图、CT等尽可 能多的信息,并将这些信息数字化后输入电脑。 当然在实际应用中要考虑采集的成本,这就是 说特征要进行选择的。
2. 运行在电脑中的专家系统或专用程序可以分析 这些数据并进行分类,得出正常或不正常的判 断,不正常情况还要指出是什么问题。
5元
反 射 光 波 形
10元
20元 50元 100元
1 2 3 4 5 6 7 8
1.1 概述-系统实例
数据采集、特征提取:
长度、宽度、磁性、磁性的位置,光反射亮度、光 透射亮度等等
特征选择:
长度、磁性及位置、反射亮度
分类识别:
确定纸币的面额及真伪
1.1 概述-系统实例
训练集:是一个已知样本集,在监督学习方法 中,用它来开发出模式分类器。
模式识别
★ 相关学科
●统计学 ●概率论 ●线性代数(矩阵计算)
●形式语言 ●人工智能 ●图像处理 ●计算机视觉
等等
讲授课程内容及安排
第一章 第二章 第三章 第四章 第五章 第六章 第七章
引论 聚类分析 判别域代数界面方程法 统计判决 学习、训练与错误率估计 最近邻方法 特征提取和选择 上机实习
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计模式识别方法
在嗅觉模拟技术领域中,模式识别问题就是由气敏传感器阵列的测量空间向被测对象的的分类或分级空间转化的问题。

由于这种模式空间的变化对识别或鉴别结果有着较大的影响,因此模式识别算法的研究和讨论始终较为活跃,各种模式识别方法层出不穷,有力推动了嗅觉模拟技术的应用进程。

下面介绍几种常用的统计模式识别方法。

1统计模式识别概述
统计方法,是发展较早也比较成熟的一种方法。

被识别对象首先数字化,变换为适于计算机处理的数字信息。

一个模式常常要用很大的信息量来表示。

许多模式识别系统在数字化环节之后还进行预处理,用于除去混入的干扰信息并减少某些变形和失真。

随后是进行特征抽取,即从数字化后或预处理后的输入模式中抽取一组特征。

所谓特征是选定的一种度量,它对于一般的变形和失真保持不变或几乎不变,并且只含尽可能少的冗余信息。

特征抽取过程将输入模式从对象空间映射到特征空间。

这时,模式可用特征空间中的一个点或一个特征矢量表示。

这种映射不仅压缩了信息量,而且易于分类。

在决策理论方法中,特征抽取占有重要的地位,但尚无通用的理论指导,只能通过分析具体识别对象决定选取何种特征。

特征抽取后可进行分类,即从特征空间再映射到决策空间。

为此而引入鉴别函数,由特征矢量计算出相应于各类别的鉴别函数值,通过鉴别函数值的比较实行分类。

统计模式识别的技术理论较完善,方法也很多,通常较为有效,现已形成了一个完整的体系。

尽管方法很多,但从根本上讲,都是利用各类的分布特征,即直接利用各类的概率密度函数、后验概率等,或隐含地利用上述概念进行识别。

其中基本的技术为聚类分析法、判别类域代数界面法、统计决策法、最邻近法等。

在聚类分析中,利用待分类模式之间的“相似性”进行分类,较相似的作为一类,较不相似的作为另外一类。

在分类过程中不断地计算所划分的各类的中心,一个待分类模式与各类中心的距离作为对其分类的依据。

这实际上在某些设定下隐含地利用了概率分布概念,因常见的概率密度函数中,距期望值较近的点概密值较大。

该类方法的另一种技术是根据待分类模式和已指判出类别的模式的距离来确定其判别,这实际上也是在一定程度上利用了有关的概念。

判别类域界面法中,用已知类别的训练样本产生判别函数,这相当于学习或训练。

根据待分类模式
代入判别函数后所得值的正负来确定其类别。

判别函数提供了相邻两类判别域的界面,其也相应于在一些设定下两类概密函数之差。

在统计判决中,在一些分类识别准则下严格地按照概率统计理论导出各种判决规则,这些判决规则可以产生某种意义上的最优分类识别结果。

这些判决规则要用到各类的概率密度函数、先验概率或后验概率。

这可以通过训练样本对未知概率密度函数中的参数进行估计,或对未知的概密函数等进行逼近而估计他们。

在最邻近法中,是根据待分类模式的一个或k 个近邻样本的类别而确定其类别。

2 主成分分析方法
主成分分析是一种掌握事物主要矛盾的统计分析方法,也是一种古老的多元统计分析技术。

它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题。

计算主成分的目的是将高维数据投影到较低维空间。

给定 n 个变量的m 个观察值,形成一个 n x m 的数据矩阵,n 通常比较大。

对于一个由多个变量描述的复杂事物,人们难以认识,那么是否可以抓住事物主要方面进行重点分析呢?如果事物的主要方面刚好体现在几个主要变量上,我们只需要将这几个变量分离出来,进行详细分析。

但是,在一般情况下,并不能直接找出这样的关键变量。

这时我们可以用原有变量的线性组合来表示事物的主要方面,PCA 就是这样一种分析方法。

PCA 的目标是寻找 r (r<n )个新变量,使它们反映事物的主要特征,压缩原有数据矩阵的规模。

每个新变量是原有变量的线性组合,体现原有变量的综合效果,具有一定的实际含义。

这r 个新变量称为“主成分”,它们可以在很大程度上反映原来n 个变量的影响,并且这些新变量是互不相关的,也是正交的。

通过主成分分析,压缩数据空间,将多元数据的特征在低维空间里直观地表示出来。

例如,将多个时间点、多个实验条件下的基因表达谱数据(N 维)表示为3维空间中的一个点,即将数据的维数从 N R 降到 3R 。

PCA 的算法步骤
设相关矩阵为Rp×p ,求特征方程0=-i R λ,其解为特征根λi 将解由小到大进行排序为:
1. 求样本数据矩阵X 的协方差矩阵。

2. 求协方差矩阵
的特征值,并按降序排列, 如 3. 求对应于各特征值的单位特征向量 , ,…, 并作相应的主
轴。

120
p λλλ≥≥≥>∑∑120p λλλ≥≥≥>2u 1u
4. 按下式计算某个特征值的贡献率 :
5. 根据各特征值贡献率的大小,依次选取所需要的第一主轴,第二主轴,
直至第m 主轴。

6. 利用下式计算样本数据矩阵X 的第i 主成分Yi :
在应用时,一般取累计贡献率为80%以上比较好。

3 近邻法
KNN 法也称K 最近邻法,是模式识别的标准算法之一,属于有监督(或称有导师)的模式识别方法。

其基本思想是,先将已知类别或等级的样本点在多维空间中描述出来,然后将待分类的未知样本点也用同样的多维空间加以描述。

考察未知样本点的K 个近邻(K 为奇正数,如1,3,5,7等)。

若近邻中某一类或某一等级的样本点最多,则可将未知样本点判为此类获此等级中的点。

在多维空间中,各样本点的距离通常用欧氏距离来描述: 21
12
)(),(∑=-=n i i i y x
y x d 式中,),(y x d 是未知类别(或等级)样本点x 到已知类别(或等级)样本点y 的欧氏距离;n 是多维空间的维数;i x 是x 的第i 维分量;i y 是y 的第i 维分量。

有时为了计算方便,也采用绝对距离来描述:
∑=-=n i i i y x
y x d 1),(
当然,也可用其他距离或度量来描述多维空间中两样本点的距离(如马氏距离等)。

KNN 法的好处是,它对数据结构没有特定的要求,如不要求线性可分性,只需用每个每个未知样本点的近邻类别或等级属性来判别即可。

这种方法的缺点是没有对样本点进行信息压缩。

因此,每当判别一个新样本点时都要对已知样本点的距离全部计算一遍,计算量较大。

一种简化的算法称为类重心法:将已知类别或等级的样本点重心求出,然后判别未知样本点与各重心点的距离。

未知样本点与哪一个重心距离最近,即可将未知样本点归属于哪一类或哪一等级。

i ν1100%i p
j
j λλ=⨯∑m i X u i T i ,...,2,1,Y ==。

相关文档
最新文档