图像模式识别的方法介绍
图像模式识别的方法介绍

图像模式识别的方法介绍2.1图像模式识别的方法图像模式识别的方法专门多,从图像模式识别提取的特点对象来看,图像识别方法可分为以下几种:基于形状特点的识别技术、基于色彩特点的识别技术以及基于纹理特点的识别技术。
其中,基于形状特点的识别方法,其关键是找到图像中对象形状及对此进行描述,形成可视特点矢量,以完成不同图像的分类,常用来表示形状的变量有形状的周长、面积、圆形度、离心率等。
基于色彩特点的识别技术要紧针对彩色图像,通过色彩直方图具有的简单且随图像的大小、旋转变换不敏锐等特点进行分类识别。
基于纹理特点的识别方法是通过对图像中专门具有结构规律的特点加以分析或者那么是对图像中的色彩强度的分布信息进行统计来完成。
从模式特点选择及判别决策方法的不同可将图像模式识别方法大致归纳为两类:统计模式(决策理论)识别方法和句法(结构)模式识别方法。
此外,近些年随着对模式识别技术研究的进一步深入,模糊模式识别方法和神经网络模式识别方法也开始得到广泛的应用。
在此将这四种方法进行一下说明。
2.1.1句法模式识别关于较复杂的模式,如采纳统计模式识别的方法,所面临的一个困难确实是特点提取的问题,它所要求的特点量十分庞大,要把某一个复杂模式准确分类专门困难,从而专门自然地就想到如此的一种设计,即努力地把一个复杂模式分化为假设干较简单子模式的组合,而子模式又分为假设干基元,通过对基元的识别,进而识别子模式,最终识别该复杂模式。
正如英文句子由一些短语,短语又由单词,单词又由字母构成一样。
用一组模式基元和它们的组成来描述模式的结构的语言,称为模式描述语言。
支配基元组成模式的规那么称为文法。
当每个基元被识别后,利用句法分析就能够作出整个的模式识别。
即以那个句子是否符合某特定文法,以判别它是否属于某一类别。
这确实是句法模式识别的差不多思想。
句法模式识别系统要紧由预处理、基元提取、句法分析和文法推断等几部分组成。
由预处理分割的模式,经基元提取形成描述模式的基元串〔即字符串〕。
图像识别与模式识别算法

图像识别与模式识别算法随着人工智能技术的发展,图像识别和模式识别技术的应用越来越广泛。
图像识别是指通过计算机视觉技术对输入的图像进行分析和处理,最终实现对图像的分类、识别和理解。
而模式识别则是指通过分析和处理输入的数据来识别数据中的规律和模式,从而提高数据处理的效率。
图像识别和模式识别算法的应用主要分为以下几个领域:一、人脸识别人脸识别技术是图像识别算法的一个重要应用。
人脸识别技术通过对输入的人脸图像进行特征提取和匹配,从而实现对不同人脸的识别和区分。
目前人脸识别技术已经广泛应用于安防领域,例如人脸门禁、人脸认证等方面。
二、物体识别物体识别技术是指通过对输入的物体图像进行分析和处理,最终实现对不同物体的识别和分类。
物体识别技术应用非常广泛,例如在自动驾驶、智能家居等领域都有应用。
三、自然语言处理自然语言处理是模式识别算法的一个主要应用方向。
自然语言处理技术通过对输入的自然语言文本进行分析和处理,最终实现对文本内容的理解和表达。
自然语言处理技术在机器翻译、语音识别、文本分类等方面都有应用。
四、金融风险管理金融风险管理是指对金融业务中存在的风险进行识别、评估和管理的过程。
模式识别算法可以分析金融数据中的规律和模式,从而实现对风险的预测和防范。
以上领域仅是图像识别和模式识别算法应用的一部分,随着技术的不断发展,其应用领域也在不断拓展。
目前图像识别和模式识别算法主要有以下几种:一、神经网络算法神经网络算法是图像识别和模式识别算法中应用最广泛的一种算法。
神经网络算法是参考人类神经系统的结构和工作原理而设计的一种算法。
它通过对输入数据进行处理和分析来构建模型,从而实现对数据的分类和识别。
二、支持向量机算法支持向量机算法是一种基于统计学习理论的分类算法。
支持向量机算法通过将样本映射到高维空间中,从而构造一个超平面来对数据进行分类。
支持向量机算法具有良好的泛化性能和数据处理能力,应用领域非常广泛。
三、决策树算法决策树算法是一种基于树形结构的分类算法。
计算机图像识别技术原理和方法详解

计算机图像识别技术原理和方法详解计算机图像识别技术是一种能够通过图像处理和模式识别的方法,将数字图像转化为可理解、可操作的数据,从而实现计算机对图像内容的理解和分析。
这一技术被广泛应用于许多领域中,包括人脸识别、车辆识别、医学图像分析等。
一、计算机图像识别技术的原理图像识别技术的原理主要涉及到图像处理、特征提取和模式分类三个方面。
首先,图像处理是指将原始图像进行降噪、滤波和增强等预处理操作,以消除图像中的噪声和不必要的信息,提取出有用的特征。
其次,特征提取是将处理后的图像转化为一组能够代表图像内容的数值特征,例如颜色、纹理、形状等。
最后,模式分类是指利用这些特征,通过训练分类器对图像进行分类和识别。
图像处理的方法有很多,包括边缘检测、平滑滤波、直方图均衡化等。
边缘检测是通过识别图像中的边界信息来实现目标和背景的分割,常用的算法有Sobel、Canny等。
平滑滤波可用于减少图像中的噪声,主要有均值滤波、中值滤波等方法。
而直方图均衡化则可以对图像的灰度级分布进行调整,增强图像的对比度和亮度。
特征提取是图像识别中的关键环节,常见的特征提取方法有颜色直方图、纹理特征和形状特征。
颜色直方图将图像中像素的颜色信息统计并用直方图表示,这可以用于识别具有特定颜色特征的目标。
纹理特征是通过分析图像的纹理信息,例如纹理的颗粒度、方向性等,来判断不同目标的差异。
形状特征主要研究目标的外形轮廓,通过计算目标的周长、面积等属性来区分不同的物体。
模式分类是将提取的特征输入到分类器中,进行分类和识别,常用的分类器有支持向量机(SVM)、人工神经网络(ANN)、决策树等。
这些分类器通过训练样本和标签,学习特征与类别之间的关系,并能够对新的图像进行分类。
分类器的性能主要取决于特征的质量和数量,以及训练样本的规模和代表性。
二、计算机图像识别技术的方法计算机图像识别技术的方法主要包括传统方法和深度学习方法。
传统方法是指利用一系列图像处理和模式分类的算法来实现图像识别。
模式识别在图像识别中的应用

模式识别在图像识别中的应用模式识别是一种通过对数据进行分析和处理,识别数据中的规律和特征的技术。
在图像识别领域,模式识别发挥着至关重要的作用,帮助计算机系统理解和识别图像中的内容。
本文将探讨模式识别在图像识别中的应用,介绍其原理、方法和实际应用场景。
一、模式识别原理模式识别是一种基于数据分析的技术,其原理主要包括特征提取、特征匹配和分类识别三个步骤。
1. 特征提取特征提取是模式识别的第一步,通过对图像数据进行处理,提取出具有代表性的特征信息。
在图像识别中,特征可以是图像的边缘、纹理、颜色等。
特征提取的质量直接影响到后续的分类和识别效果。
2. 特征匹配特征匹配是将提取出的特征与已知的模式进行比对,找出它们之间的相似性和差异性。
通过特征匹配,可以确定图像中是否存在某种特定的模式或对象。
3. 分类识别分类识别是模式识别的最终目的,即将图像分到不同的类别中。
通过建立分类模型,将提取出的特征与已知类别的特征进行比对,从而实现对图像的自动分类和识别。
二、模式识别方法在图像识别中,常用的模式识别方法包括传统的机器学习方法和深度学习方法。
1. 机器学习方法机器学习方法是一种基于数据和统计学习的技术,通过对大量数据的学习和训练,建立模型来实现对图像的识别和分类。
常用的机器学习算法包括支持向量机(SVM)、K近邻算法(KNN)和决策树等。
2. 深度学习方法深度学习是一种基于人工神经网络的技术,通过多层次的神经网络结构,实现对图像数据的高级特征提取和学习。
深度学习在图像识别领域取得了巨大的成功,如卷积神经网络(CNN)和循环神经网络(RNN)等。
三、模式识别在图像识别中的应用模式识别在图像识别中有着广泛的应用,涵盖了各个领域和行业。
1. 人脸识别人脸识别是图像识别领域的一个重要应用方向,通过模式识别技术可以实现对人脸的自动检测、识别和验证。
人脸识别技术在安防、金融、医疗等领域有着广泛的应用。
2. 物体识别物体识别是指识别图像中的各种物体和实体,通过模式识别技术可以实现对不同物体的分类和识别。
图像识别入门指南

图像识别入门指南随着人工智能的飞速发展,图像识别作为一项重要的技术领域,变得越来越受到关注。
无论是在医疗、安防还是智能驾驶等领域,图像识别都发挥着重要作用。
本文将为大家介绍图像识别的基本概念、方法和应用,帮助读者踏入这个引人入胜的领域。
一、概述图像识别是指通过计算机算法对图像进行分析和理解,从而识别出图像中的特定目标或信息。
它是从计算机视觉领域发展而来,利用模式识别、机器学习等技术手段,实现了计算机对图片、视频等多媒体信息的自动分析与解释。
二、基本方法1. 特征提取特征提取是图像识别的第一步,它将图像中的重要信息转化为计算机可以理解的数据形式。
常用的特征提取方法包括颜色特征、纹理特征、边缘特征等。
通过选择适当的特征提取方法,可以使得图像的特征更加明显,为后续的识别操作提供更好的基础。
2. 分类器分类器是图像识别的核心,它是根据图像的特征来判断图像所属类别的模型或算法。
常见的分类器包括支持向量机(SVM)、卷积神经网络(CNN)等。
其中,CNN是目前最为流行的分类器之一,它能够通过学习大量图像数据自动提取特征,并进行准确的分类。
3. 目标检测目标检测是图像识别的一个重要应用领域,它主要是在图像中寻找和定位特定目标。
常用的目标检测方法有滑动窗口法、区域建议法等。
通过目标检测技术,可以实现对图像中多个目标的同时检测和识别,提高系统的准确性和效率。
三、应用领域1. 医疗影像分析图像识别在医疗领域的应用越来越广泛,如肿瘤检测、病理分析等。
通过对医疗影像进行图像识别,可以帮助医生发现潜在的疾病和异常情况,提高疾病的早期诊断和治疗效果。
2. 智能安防图像识别在智能安防系统中发挥着重要作用。
通过对视频监控图像的分析和识别,可以实现对异常行为的实时监控和预警。
同时,还可以对重要区域进行智能识别,方便安防人员的管理和布防。
3. 自动驾驶自动驾驶技术是目前的热门研究领域之一,而图像识别在其中扮演着至关重要的角色。
通过对实时采集的图像进行识别和分析,可以实现对周围环境的感知和判断,提高自动驾驶系统的安全性和准确性。
图像识别与模式识别算法比较分析

图像识别与模式识别算法比较分析图像识别和模式识别是计算机视觉领域中重要的研究方向,主要目标是自动化识别和理解图像中的信息。
虽然两种算法在目标上有所相似,但它们在方法和应用方面存在一些差异。
本文将对图像识别和模式识别算法进行比较分析,探讨它们的特点、应用领域以及优缺点。
一、图像识别算法图像识别算法旨在通过计算机对输入的图像数据进行处理和分析,以自动识别图像中的对象或特征。
以下是一些常见的图像识别算法:1.1 特征提取算法特征提取算法是图像识别的基础,其目标是从图像中提取出与所需识别对象相关的特征。
常见的特征包括颜色、纹理、形状等。
特征提取算法有边缘检测、尺度不变特征变换(SIFT)、方向梯度直方图(HOG)等。
1.2 分类算法分类算法是图像识别的核心部分,其目的是将提取的特征与预定义的类别进行匹配,判断图像属于哪个类别。
常见的分类算法有支持向量机(SVM)、卷积神经网络(CNN)等。
二、模式识别算法模式识别算法是对复杂数据模式进行分类与分析的一种方法。
下面是一些常见的模式识别算法:2.1 统计模式识别算法统计模式识别算法主要基于统计分析方法,通过对已知类别的样本进行建模,并对新样本进行概率估计以实现分类。
常见的统计模式识别算法有贝叶斯决策理论、最大似然估计等。
2.2 人工神经网络算法人工神经网络算法模拟人脑神经元网络的工作原理,通过构建多层神经网络,并利用反向传播算法进行训练和学习,实现对复杂模式的识别。
常见的人工神经网络算法有多层感知器(MLP)、自组织映射(SOM)等。
三、比较分析图像识别算法和模式识别算法在方法和应用方面存在一些差异。
3.1 方法上的差异图像识别算法主要关注图像的低层次特征提取和高层次特征分类,通过提取图像的外观和结构特征来识别图像中的对象或场景。
而模式识别算法更加注重数据的高层次特征表示和模式之间的关联分析,通过对数据的统计特性进行建模和分类来识别模式。
3.2 应用领域上的差异图像识别算法主要应用于计算机视觉、人机交互、智能监控等领域。
使用计算机视觉技术进行图像识别的步骤和方法

使用计算机视觉技术进行图像识别的步骤和方法计算机视觉技术是一门涉及图像处理、模式识别和计算机学习的科学领域。
它的目标是使计算机能够像人类一样理解和解释图像,并进行自动化的图像分析和识别。
在本文中,将详细介绍使用计算机视觉技术进行图像识别的步骤和方法。
图像识别是计算机视觉技术中的一个重要应用领域,它涉及将输入的图像与预定义的类别或对象进行比较,并确定图像所属的类别或识别出其中的对象。
下面是使用计算机视觉技术进行图像识别的一般步骤和方法:1. 收集和准备数据:图像识别的首要任务是收集具有代表性的数据集并进行预处理。
这些数据集应包含不同类别或对象的图像样本。
预处理步骤可能包括图像的缩放、裁剪、旋转、调整亮度和对比度等操作,以确保数据集的一致性和准确性。
2. 特征提取:特征提取是图像识别的关键步骤。
它涉及将图像转换成可量化和可度量的特征向量。
常用的特征提取方法包括灰度直方图、颜色直方图、梯度方向直方图和局部二值模式等。
这些特征可以通过图像处理算法和数学模型来提取。
3. 模型训练:在进行图像识别之前,必须训练一个机器学习模型。
常用的机器学习算法包括支持向量机(SVM)、随机森林(Random Forest)和卷积神经网络(Convolutional Neural Networks,CNN)等。
通过输入已经标记好的图像和相应的类别标签,机器学习模型能够学习和识别图像中的模式和特征。
4. 模型评估和优化:训练完成后,需要对模型进行评估和优化。
这就是通过测试数据集来对模型的准确性、召回率和精确度等指标进行评估。
如果模型表现不佳,可以调整模型的超参数、增加训练样本或使用集成学习等方法来提高模型的性能。
5. 图像分类和识别:一旦模型训练完成并通过评估,就可以使用它来进行图像分类和识别。
这是将新的、未知的图像输入到模型中,并利用先前学习到的模型权重和特征来确定图像所属的类别或对象。
模型会根据每个类别的概率分布输出最可能的类别结果。
Python中的图像特征提取与模式识别方法

Python中的图像特征提取与模式识别方法引言图像特征提取与模式识别是计算机视觉领域中的重要研究内容,通过对图像进行特征提取和模式识别,可以实现识别图像中的目标物体、检测和匹配图像中的模式等应用。
Python作为一种强大的编程语言,提供了丰富的库和工具,可以方便地进行图像特征提取与模式识别的研究和应用。
本文将介绍Python中常用的图像特征提取与模式识别方法,包括颜色特征提取、纹理特征提取、形状特征提取等内容。
一、颜色特征提取1. RGB颜色特征提取RGB颜色模型是一种常用的颜色表示方法,通过对图像中每个像素的红、绿、蓝三个通道进行分析,可以提取出图像的颜色特征。
在Python中,可以使用OpenCV库来实现RGB颜色特征提取,首先需要加载图像,并将图像转换为RGB模式,然后使用统计方法计算图像中各种颜色的分布情况。
2. HSV颜色特征提取HSV颜色模型将颜色的明度、饱和度和色调分为三个通道,与RGB颜色模型相比更加直观和可解释。
在Python中,可以使用skimage库来实现HSV颜色特征提取,通过计算图像中不同色调和饱和度的分布情况,可以得到图像的颜色特征。
二、纹理特征提取纹理特征是图像中重要的描述性特征,能够用来描述图像中的细节和结构。
常用的纹理特征提取方法包括灰度共生矩阵(GLCM)、局部二值模式(LBP)等。
1. 灰度共生矩阵(GLCM)灰度共生矩阵是一种描述图像纹理的统计方法,通过计算图像中不同灰度级别像素的空间分布关系,可以得到图像的纹理特征。
在Python中,可以使用skimage库来计算灰度共生矩阵,并通过计算一些统计量(如对比度、能量、熵等)来描述图像的纹理特征。
2. 局部二值模式(LBP)局部二值模式是一种描述图像纹理的局部特征算子,通过比较像素点与其邻域像素的灰度值,可以得到一个二进制编码,用来表示该像素的纹理特征。
在Python中,可以使用skimage库来计算局部二值模式,并通过计算直方图等方式来描述图像的纹理特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1图像模式识别的方法图像模式识别的方法很多,从图像模式识别提取的特征对象来看,图像识别方法可分为以下几种:基于形状特征的识别技术、基于色彩特征的识别技术以及基于纹理特征的识别技术。
其中,基于形状特征的识别方法,其关键是找到图像中对象形状及对此进行描述,形成可视特征矢量,以完成不同图像的分类,常用来表示形状的变量有形状的周长、面积、圆形度、离心率等。
基于色彩特征的识别技术主要针对彩色图像,通过色彩直方图具有的简单且随图像的大小、旋转变换不敏感等特点进行分类识别。
基于纹理特征的识别方法是通过对图像中非常具有结构规律的特征加以分析或者则是对图像中的色彩强度的分布信息进行统计来完成。
从模式特征选择及判别决策方法的不同可将图像模式识别方法大致归纳为两类:统计模式(决策理论)识别方法和句法(结构)模式识别方法。
此外,近些年随着对模式识别技术研究的进一步深入,模糊模式识别方法和神经网络模式识别方法也开始得到广泛的应用。
在此将这四种方法进行一下说明。
2.1.1句法模式识别对于较复杂的模式,如采用统计模式识别的方法,所面临的一个困难就是特征提取的问题,它所要求的特征量十分巨大,要把某一个复杂模式准确分类很困难,从而很自然地就想到这样的一种设计,即努力地把一个复杂模式分化为若干较简单子模式的组合,而子模式又分为若干基元,通过对基元的识别,进而识别子模式,最终识别该复杂模式。
正如英文句子由一些短语,短语又由单词,单词又由字母构成一样。
用一组模式基元和它们的组成来描述模式的结构的语言,称为模式描述语言。
支配基元组成模式的规则称为文法。
当每个基元被识别后,利用句法分析就可以作出整个的模式识别。
即以这个句子是否符合某特定文法,以判别它是否属于某一类别。
这就是句法模式识别的基本思想。
句法模式识别系统主要由预处理、基元提取、句法分析和文法推断等几部分组成。
由预处理分割的模式,经基元提取形成描述模式的基元串(即字符串)。
句法分析根据文法推理所推断的文法,判决有序字符串所描述的模式类别,得到判决结果。
问题在于句法分析所依据的文法。
不同的模式类对应着不同的文法,描述不同的目标。
为了得到于模式类相适应的文法,类似于统计模式识别的训练过程,必须事先采集足够多的训练模式样本,经基元提取,把相应的文法推断出来。
实际应用还有一定的困难。
2.1.2统计模式识别统计模式识别是目前最成熟也是应用最广泛的方法,它主要利用贝叶斯决策规则解决最优分类器问题。
统计决策理论的基本思想就是在不同的模式类中建立一个决策边界,利用决策函数把一个给定的模式归入相应的模式类中。
统计模式识别的基本模型如图2,该模型主要包括两种操作模型:训练和分类,其中训练主要利用己有样本完成对决策边界的划分,并采取了一定的学习机制以保证基于样本的划分是最优的;而分类主要对输入的模式利用其特征和训练得来的决策函数而把模式划分到相应模式类中。
统计模式识别方法以数学上的决策理论为基础建立统计模式识别模型。
其基本模型是:对被研究图像进行大量统计分析,找出规律性的认识,并选取出反映图像本质的特征进行分类识别。
统计模式识别系统可分为两种运行模式:训练和分类。
训练模式中,预处理模块负责将感兴趣的特征从背景中分割出来、去除噪声以及进行其它操作;特征选取模块主要负责找到合适的特征来表示输入模式;分类器负责训练分割特征空间。
在分类模式中,被训练好的分类器将输入模式根据测量的特征分配到某个指定的类。
统计模式识别组成如图2所示。
图2 统计模式识别模型2.1.2.1几种统计模式识别的方法统计模式识别根据采用方法的不同可以进行多种形式的分类:通过贝叶斯决策理论对条件密度已知的样本进行分类;对于类条件密度不明的情况,可根据训练样本的类别是否己知将分类问题分为监督学习和非监督学习两大类;监督学习和非监督学习又可根据是否通过参数决策分为参数估计和非参数估计。
统计模式识别的另一种分类方法是根据决策界是否直接得到将其分为几何方法和基于概率密度的方法。
几何方法经常直接从优化一定的代价函数构造决策界;而基于概率密度的方法要首先估计密度函数然后构造分类函数指定决策界。
1、几何分类法1) 模板匹配法它是模式识别中的一个最原始、最基本的方法,它将待识模式分别与各标准模板进行匹配,若某一模板与待识模式的绝大多数单元均相匹配,则称该模板与待识模式“匹配得好”,反之则称“匹配得不好”,并取匹配最好的作为识别结果。
2)距离分类法距离是一种重要的相似性度量,通常认为空间中两点距离越近,表示实际上两样本越相似。
大约有十余种作为相似性度量的距离函数,其中使用最广泛的是欧氏距离。
它是使用最为广泛的方法,常用的有平均样本法、平均距离法、最近邻法和K-近邻法。
3)线性判别函数和上述的方法不同,判决函数法是以判决边界的函数形式的假定为其特性的,而上述的方法都是以所考虑的分布的假定为其特性的。
假如我们有理由相信一个线性判决边界取成:d d x w x w x w x g +++=Λ2211)(是合适的话,那么剩下的问题就是要确定它的权系数。
权系数可通过感知器算法或最小平方误差算法来实现。
但作为一条规则,应用此方法必须注意两点;第一就是方法的可适性问题,第二就是应用判决函数后的误差准则。
4)非线性判别函数线性判决函数的特点是简单易行,实际应用中许多问题往往是非线性的,一种处理的办法将非线性函数转换为线性判决函数,所以又称为广义线性判决函数。
另一种方法借助电场的概念,引入非线性的势函数,它经过训练后即可用来解决模式的分类问题。
2 概率分类法几何分类法是以模式类几何可分为前提条件的,在某些分类问题中这种条件能得到满足,但这种条件并不经常能得到满足,模式的分布常常不是几何可分的,即在同一区域中可能出现不同的模式,这时,必须借助概率统计这一数学工具。
可以说,概率分类法的基石是贝叶斯决策理论。
设有R 类样本,分别为w1, w2 , … , wR,若每类的先验概率为P(wii), i = 1,2 ,3,…R,对于一随机矢量X,每类的条件概率为(又称类概率密度)P(X/Wii),则根据Bayes 公式,后验概率为:∑==R i ii i i i w p w X p w p w X p X w p 1)()|()()|()|(从后验概率出发,有Bayes 法则:ij R j i w X X w p j j i ≠∀=∈=;且,,,,,其中则若Λ21)],|(max [ arg2.1.2.2朴素贝叶斯分类器 朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。
通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。
为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或亚洲人,但在没有其它可用信息下,我们会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础。
朴素贝叶斯分类的工作过程如下:(1)每个数据样本用一个n 维特征向量{}n x x x X ,...,21=表示,分别描述对n 个属性A 1,A 2,…A n 样本的n 个度量。
(2)假定有m 个类C 1,C 2,…C m 。
给定一个未知的数据样本X (即没有类标号),分类法将预测X 属于具有最高后验概率(条件X 下)的类。
即是说,朴素贝叶斯分类将未知的样本分配给类C i ,当且仅当()()i j m j X C P X C Pj i ≠≤≤>,1, 这样,最大化()X C P i 。
其()X C P i 最大的类C i 称为最大后验假定。
根据贝叶斯定理()()()()X P H P H X P X H P =, ()()()()X P C P C X P X C P i i i =(3)由于P(X)对于所有类为常数,只需要()()i i C P C X P 最大即可。
如果类的先验概率未知,则通常假定这些类是等概率的,即P(C 1)=P(C 2)=…=P(C m )。
并据此只对()i C X P 最大化。
否则,最大化()()i i C P X P 。
注意,类的先验概率可以用()s s C P i i =计算其中s i 是类C i 中的训练样本数,而s 是训练样本总数。
(4)给定具有许多属性的数据集,计算()i C X P 的开销可能非常大。
为降低计算()i C X P 的开销,可以做类条件独立的朴素假定。
给定样本的类标号,假定属性值相互条件独立,即在属性间,不存在依赖关系。
这样,()()∏==nk i k i C x p C X P 1 (7.8)概率()i C X P 1,()i X P 2,…()i n C X P 可以由训练样本估值,其中(a )如果A k 是分类属性,则()i ik i k s s C X P =,其中s ik 是在属性A k 上具有值x k 的类C i 的样本数,而s i 是C i 中的训练样本数。
(b )如果A k 是连续值属性,则通常假定该属性服从高斯分布,因而,()()e i C i i i i C k x x g C X P C C C k i k 22221,,σμπσσμ⎪⎭⎫ ⎝⎛-== (7.9)其中,给定类C i 的训练样本属性A k 的值,()i i C C k x g σμ,,是属性A k 的高斯密度函数,而i i C C σμ,分别为平均值和标准差。
(5)为对未知样本X 分类,对每个类C i ,计算()()i i C P X P 。
样本X 被指派到类C i ,当且仅当()()()()i j m j C P C X P C P C X P j j i i ≠≤≤>,1, 换言之,X 被指派到其()()i i C P X P 最大的类C i 。
整个朴素贝叶斯分类分为三个阶段:第一阶段——准备工作阶段,这个阶段的任务是为朴素贝叶斯分类做必要的准备,主要工作是根据具体情况确定特征属性,并对每个特征属性进行适当划分,然后由人工对一部分待分类项进行分类,形成训练样本集合。
这一阶段的输入是所有待分类数据,输出是特征属性和训练样本。
这一阶段是整个朴素贝叶斯分类中唯一需要人工完成的阶段,其质量对整个过程将有重要影响,分类器的质量很大程度上由特征属性、特征属性划分及训练样本质量决定。
第二阶段——分类器训练阶段,这个阶段的任务就是生成分类器,主要工作是计算每个类别在训练样本中的出现频率及每个特征属性划分对每个类别的条件概率估计,并将结果记录。
其输入是特征属性和训练样本,输出是分类器。
这一阶段是机械性阶段,根据前面讨论的公式可以由程序自动计算完成。