第六章 生物氧化
第六章 新陈代谢总论与生物氧化

第六章新陈代谢总论与生物氧化一、解释名词1.生物氧化:2.有氧呼吸与无氧呼吸:3.呼吸链4.氧化磷酸化5. P/O比6.末端氧化酶二、是非题:1.物质在空气中燃烧和在体内的生物氧化的化学本质是完全相同的。
2.生物界NADH呼吸链应用最广。
3.当一个体系的熵值减少到最小时该体系处于热力学平衡状态。
4.在生物氧化体系内,电子受体不一定是氧,只要它具有比电子供体较正的E0′时呼吸作用就能进行。
5.各种细胞色素组分,在电子传递体系中都有相同的功能。
6.呼吸链中氧化还原电位跨度最大的一步是在细胞色素aa3-O2之间。
7.呼吸链细胞色素氧化酶的血红素辅基Fe原子只形成5个配位键,另一个配位键的功能是与O2结合。
8.解偶联剂的作用是解开电子传递和磷酸化的偶联关系,并不影响ATP的形成。
9.鱼藤酮不阻止苹果酸氧化过程中形成的NADH+H+通过呼吸链生成ATP10.寡霉素对氧消耗的抑制作用可被2,4-二硝基苯酚解除。
11.6—磷酸葡萄糖含有高能磷酸基团,所以它是高能化合物。
12.从低等单细胞生物到最高等的人类,能量的释放、贮存和利用都以ATP为中心。
13.ATP虽然含有大量的自由能,但它并不是能量的贮存形式。
14.ATP在高能化合物中占有特殊地位,它起着共同的中间体的作用。
15.有机物的自由能决定于其本身所含基团的能量,一般是越稳定越不活泼的化学键常具有较高的自由能。
16.磷酸肌酸是ATP高能磷酸基的贮存库,因为磷酸肌酸只能通过这唯一的形式转移其磷酸基团。
三、填空题1.生物体内形成ATP的方式有:⑴__________________、⑵___________________和⑶________________________。
2.代谢物在细胞内的生物氧化与在体外燃烧的主要区别是、和。
3.生物氧化主要通过代谢物的反应实现的,H2O是通过形成的。
4.化学反应过程中,自由能的变化与平衡常数有密切的关系,ΔG0′=。
6.在氧化还原反应中,自由能的变化与氧化还原势有密切的关系,ΔG0=。
第六章生物氧化

琥珀酸
琥珀酰CoA合成酶
底物水平磷酸化的反应
§1 生成ATP的氧化磷酸化体系
二、氧化磷酸化将氧化呼吸链释能与ADP磷酸 化生成ATP偶联
(一)氧化磷酸化偶联部位在复合体Ⅰ、Ⅲ、 Ⅳ内
推测氧化磷酸化的偶联部位
测定P/O比值 自由能变化 (⊿Gº‘=-nF⊿Eº’)
1. 测定P/O比值 是指代谢物在线粒体氧化时, 以每消耗1mol氧原子所消耗无机磷的mol数(或 ADP数),即生成ATP的mol数。
产 生 的 CO2 、 H2O 由 物 质 中 的 碳和氢直接与氧
结合生成。
生物氧化的一般过程
糖原
甘油三脂
蛋白质
葡萄糖
脂酸+甘油 乙酰CoA
氨基酸
TAC
CO2 2H
ADP+Pi ATP 呼吸链 H2O
§1 生成ATP的氧化磷酸化体系
一、氧化呼吸链是一系列有电子传递功能的氧化还 原组分
二、氧化磷酸化将氧化呼吸链释能与ADP磷酸化生 成ATP偶联
1. 复合体Ⅰ作用是将NADH中的电子传递给泛醌 2. 复合体Ⅱ功能是将电子从琥珀酸传递到泛醌 3. 泛醌 4. 复合体Ⅲ功能是将电子从还原型泛醌传递给细
胞色素c 5. 复合体Ⅳ将电子从细胞色素C传递给氧
1. 复合体Ⅰ作用是将NADH中的电子传 递给泛醌(ubiquinone)
NADH 它是由NAD+接受多种代谢产物脱氢得 到的产物。NADH所携带的电子是线粒体 呼吸链主要电子供体之一。
功 能:
复合体Ⅰ 复合体Ⅱ
2e QH2
复合体Ⅲ
QH2
(一)氧化呼吸链由4种具有传递电 子能力的复合体组成
1. 复合体Ⅰ作用是将NADH中的电子传递给泛 醌
人民卫生出版社《生物化学》第六章 生物氧化

⊿Gº’ = -nF ⊿Eº'
n:传递电子数;F:法拉第常数
➢ 合成1摩尔ATP 需能量约30.5kJ
偶联部位
NADH~CoQ CoQ~Cytc Cyta-a3~O2
电位变化 (∆E0')
0.36V 0.21V 0.53V
自由能变化 (∆G0')
69.5KJ/mol 40.5KJ/mol 102.3KJ/mol
三、NADH和FADH2是呼吸链的电子供体
1、NADH氧化呼吸链 NADH →复合体Ⅰ→CoQ →复合体Ⅲ→Cyt c →复合体Ⅳ→O2
2、琥珀酸氧化呼吸链 琥珀酸 →复合体Ⅱ →CoQ →复合体Ⅲ→Cyt c →复合体Ⅳ→O2
呼吸链各组分的排列顺序的实验依据
➢ 标准氧化还原电位 ➢ 特异抑制剂阻断 ➢ 还原状态呼吸链缓慢给氧 ➢ 将呼吸链拆开和重组
生物氧化与体外氧化之不同点
生物氧化
➢ 反应环境温和,酶促反应逐步进 行,能量逐步释放,能量容易捕 获,ATP生成效率高。
体外氧化
➢ 能量突然释放。
➢ 通过加水脱氢反应使物质能间接 获得氧;脱下的氢与氧结合产生 H2O,有机酸脱羧产生CO2。
➢ 物质中的碳和氢直接氧 结合生成CO2和H2O 。
生物氧化的一般过程
胞液侧 4H+
2H+ 4H+ Cyt c
+
+++++ +
++
+
Q
Ⅰ
--
NADH+H+
NAD+
Ⅱ
-
延胡索酸
琥珀酸
Ⅳ
Ⅲ- - -
第六章 生物氧化

转运机制不同! 转运机制不同!
转运机制 :
α-磷酸甘油穿梭(脑、骨骼肌) 磷酸甘油穿梭( 磷酸甘油穿梭 骨骼肌)
FADH2 2 ATP 分子葡萄糖氧化生成36分子 (1酸-天冬氨酸穿梭 肝 心肌) 苹果酸 天冬氨酸穿梭 (肝、心肌
NADH+H+ 3 ATP
O2 CO2和H2O ADP+Pi
能量
ATP
热能
二、生物氧化的一般过程
糖原 三酯酰甘油 蛋白质 氨基酸
葡萄糖
脂酸+甘油 脂酸 甘油
乙酰CoA 乙酰CoA
呼吸链 ATP
CO2
TAC
2H
H2O
氧化 磷酸化
ADP+Pi
三、生物氧化特点
一般规律:加氧、脱氢、失电子等; 一般规律:加氧、脱氢、失电子等; 最终产物: 最终产物:CO2,H2O和释放能量 和释放能量 反应:温和,释能:逐步; 反应:温和,释能:逐步; 加水脱氢反应:物质间接获氧,增加脱氢。 加水脱氢反应:物质间接获氧,增加脱氢。
ADP
~P
生物体内能量的储存和利 用都以ATP为中心。 为中心。 用都以 为中心
思考题:
呼吸链概念? 呼吸链概念? 氧化磷酸化概念? 氧化磷酸化概念? 氧化磷酸化抑制剂有哪些?作用部位? 氧化磷酸化抑制剂有哪些?作用部位?
谷氨酸
H
谷草转 氨酶
O -OOC-CH2-CH2-C-COO-
NADH +H+
α-酮戊二酸 酮戊二酸
OH
NAD+
苹果酸
胞液
苹果酸-α苹果酸 酮 戊二酸 转运体
-OOC-CH 2-C-COO H
基质
ATP的生成和利用 ATP
第六章生物氧化-讲义

酶(是以复合体(complex) 形式存在),每种酶复合体 中含特定的辅酶
复合体
酶名称
辅基
复合体Ⅰ 复合体Ⅱ
复合体Ⅲ
复合体Ⅳ
NADH-泛醌还原酶
琥珀酸-泛醌还原 酶
泛醌-细胞色素c还 原酶
细胞色素氧化酶
FMN, Fe-S FAD, Fe-S
血红素b、 c1, Fe-S 血红素a,
Cu
* 泛醌 和 Cyt c 均不包含在上述四种复合体中。
已知的铁硫蛋白有多种: 最简单的是单个铁四面与蛋
白质中半胱氨酸的硫络合; Fe2S2,含有两个Fe原子与
两个无机S原子及Βιβλιοθήκη 个Cys;铁硫蛋白 (Fe-S)
作用——递电子体 递电子机制
Fe2+
Fe3+ + e-
4、 辅酶Q-----泛醌(CoQ)
作用——递氢体
递氢机制
5、细胞色素类 ( Cyt)
❖ 1、反应条件温和
❖ T:36—37C。 PH:7.35—7.45
❖ 2、氧化方式不同
❖
------以脱氢、脱电子
❖ 3、CO2产生的方式
❖
------有机酸脱羧
❖ 4、能量的释放过程及形式
❖
---物质分解逐渐释放能量并先储存在
❖
ATP分子中
生物氧化中物质的氧化方式
(一) 加氧
Cu +
1 2
O2
2e Cyta3
细胞色素氧化酶
1/2O2
O2-
呼吸链中细胞色素的 排列及电子传递过程
2e
2Fe2+
2Fe3+
2e 2Fe2+
2Fe3+
第6章 生物氧化

功能:将电子从细胞色素 传递给 传递给O 功能:将电子从细胞色素C传递给 2
1 ADP和ATP的调节作用 和 的调节作用 ADP增高 增高/ATP降低 增高 降低 ADP降低 降低/ATP升高 降低 升高 2 甲状腺激素(促进) 甲状腺激素(促进) 甲亢病人基础代谢率高(活化 甲亢病人基础代谢率高(活化ATP酶) 酶 促进氧化磷酸化 抑制氧化磷酸化
46
3 氧化磷酸化的抑制剂
52
磷酸甘油脱氢酶
磷酸甘油穿梭 肌肉,神经) (肌肉,神经)
苹果酸-天冬氨酸甘油穿梭(肝脏,心脏) 苹果酸 天冬氨酸甘油穿梭(肝脏,心脏) 天冬氨酸甘油穿梭
苹果酸
1分子葡萄糖有氧氧化 分子葡萄糖有氧氧化 肌肉和神经组织中生成36ATP 肌肉和神经组织中生成 心脏和肝脏中生成38ATP 心脏和肝脏中生成
4
生物氧化的特点
生物氧化与体外燃烧的比较
生物氧化 反应条件 反应过程 能量释放 CO2生成方式 温 和 (体温、pH近中性) 体温、pH近中性) 逐步进行的酶促反应 逐步进行 (化学能、热能) 化学能、热能) 有机酸脱羧 体外燃烧 剧 烈 (高温、高压) 高温、高压) 一步完成 瞬间释放 (热能) 热能) 碳和氧结合
29
生物氧化产物2 生物氧化产物
第一条呼吸链: 第一条呼吸链: NADH氧化呼吸链 氧化呼吸链
CytC
复合体Ⅰ 复合体Ⅰ
复合体Ⅲ 复合体Ⅲ
复合体Ⅳ 复合体Ⅳ
第六章 生物氧化

化学渗透假说简单示意图
线粒体内膜
线粒体基质
ADP
H2O
ATP
化 学 渗 透 假 说
化学渗透假说详细示意图
胞液侧 H+
H+ H+ Cyt c
+
+++++ +
++
+
线粒体内膜
Q
F
Ⅰ
Ⅱ
-
-
Ⅳ
0
- Ⅲ---
--
NADH+H+ NAD+
延胡索酸 琥珀酸
H2O 1/2O2+2H+
基质侧
ADP+Pi
-
F1
ATP
H+
ATP合酶的分子结构
线粒体膜间隙 线粒体内膜
线粒体基粒
第六章 生物氧化
一、概述
生物氧化-有机物质在生物体内的氧化分解。
生物氧化的两大体系: 线粒体生物氧化体系:产能 非线粒体生物氧化体系:生物转化 主要解毒,参与代谢物、药物及 毒物的清除、排泄
非线粒体生物氧化:生物转化 主要功能:解毒 超氧化物歧化酶(SOD )
清除体内的超氧离子(O2﹣)
2O2﹣+ 2H+ SOD H2O2 + O2 过氧化氢酶 H2O + O2
1.以下有关生物氧化的叙述有误的是 ( )。
A.生物氧化是有机物质在生物体内的氧 化分解过程;
B.生物氧化的两大体系是:线粒体生物 氧化体系及非线粒体生物氧化体系;
C.生物氧化过程ATP在人体内的生成方式 有底物磷酸化和氧化磷酸化;
生物化学第六章 生物氧化(共77张PPT)

O O- P
O-
O O P O-
O-
NH2
N
N
焦磷酸
ATP(三磷酸腺苷) 千卡/摩尔
O O- P
O-
O O- P
O-
O O- P
O-
NN OCH2 O
HH
H
H
OH OH
(3)烯醇式磷酸化合物
COOH O CO PO CH2 O
磷酸烯醇式丙酮酸
千卡/摩尔
2.氮磷键型
O
NH
PO
C NH O
N CH3 C H 2C O O H
利用专一性电子传递抑制剂选择性的阻断呼吸 链中某个传递步骤,再测定链中各组分的氧化-还原 状态情况,是研究电子传递中电子传递体顺序的一 种重要方法。
2、常用的几种电子传递抑制剂及其作用部位
(1)鱼藤酮、安密妥、杀粉蝶菌素:其作用是阻断电子在NADH— Q还原酶内的传递,所以阻断了电子由NADH向CoQ的传递。
3.生成二氧化碳的氧化反应
(1)直接脱羧作用 氧化代谢的中间产物羧酸在脱羧酶的催化下,直接
从分子中脱去羧基。例如丙酮酸的脱羧。 (2)氧化脱羧作用
氧化代谢中产生的有机羧酸(主要是酮酸)在氧化脱
羧酶的催化下,在脱羧的同时,也发生氧化(脱氢)作用。 例如苹果酸的氧化脱羧生成丙酮酸。
第二节、生物能及其存在形式
4、复合体Ⅳ: 细胞色素c氧化酶
功能:将电子从细胞色素c传递给氧
复合体IV
还原型Cytc → CuA→a→a3→CuB
→O2
其中Cyt a3 和CuB形成的活性部位将电子交给O2。
复 合 体 Ⅳ 的 电 子 传 递 过 程
Cytc
e-
胞液侧
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章生物氧化
1.氧化呼吸链(电子传递链):
传递H和e的酶或辅酶分别为递氢体和递电子体。
递氢也需传递电子。
(一)4种传递电子的复合体:复合体ⅠⅢⅣ完全镶嵌在内膜中,复合体Ⅱ镶嵌在内膜内侧。
1)复合体Ⅰ:NADH-泛醌还原酶。
a.传递过程:NADH→FMN→Fe-S→CoQ→Fe-S→CoQ(内膜上)得到:CoQH2。
b.质子泵功能:每次传递e可将4H+从内膜基质侧泵向胞质侧。
c.关键物质:NAD+:5价;NADH:3价。
Fe-S:含等量Fe、S原子。
FMN、FAD:含核黄素(维生素B2)功能结构异咯嗪环。
泛醌(CoQ):脂溶性。
不属于复合体。
同时传递H和e。
2)复合体Ⅱ:琥珀酸脱氢酶。
传递过程:琥珀酸→FAD→Fe-S→CoQ 得到:CoQH2。
无质子泵功能。
3)复合体Ⅲ:细胞色素b-c1复合体。
有质子泵作用。
a.传递过程:CoQH2→Cyt b562,566→Fe-S→Cyt c1→Cyt c即:“Q循环”传递2e,4H+。
b.其中Cyt c为氧化呼吸链唯一水溶性球状蛋白。
不属于复合体Ⅲ。
4)复合体Ⅳ:细胞色素c氧化酶。
传递过程: Cyt c→CuA→Cyt a→CuB-Cyt a3→O2有质子泵功能
(二)呼吸链组分的顺序:
1)顺序原理:按氧化还原电位由低到高。
2)呼吸链两途径:
①NADH呼吸链:NAD H→复合体Ⅰ→CoQ→复合体Ⅲ→复合体Ⅳ→O2
②FADH2呼吸链:琥珀酸→复合体Ⅱ→CoQ→复合体Ⅲ→复合体Ⅳ→O2
2.氧化磷酸化:
1)磷酸化方式:①底物水平磷酸化:与脱氢反应偶联。
②氧化磷酸化:
2)氧化磷酸化偶联部位(生成ATP的部位),复合体ⅠⅢⅣ。
确定方式:(1)P/O比值:每消耗1/2molO2所生成ATP的mol数。
(2)自由能变化。
3)氧化磷酸化机制:产生跨线粒体内膜的质子梯度。
(化学渗透假说)
复合体ⅠⅢⅣ向内膜胞质侧泵出的ATP分别为4H+、4H+、2H+。
4)ATP合成:
(一)ATP合成酶(复合体Ⅴ):
(1)F1(亲水部分):α3β3γδε组成。
αβ生成ATP,催化部分为β亚基,但需要有α亚基才有活性。
(2)F0(疏水部分):a、b2、c9~12组成。
(二)ATP合成的结合变构机制:
(1)β亚基3种构型:开放型(O)无活性,与配体亲和力低;
疏松型(L)无活性,与ADP、Pi疏松结合。
紧密型(T)有ATP合成活性,和本体高亲和。
(2)合成过程:ADP、Pi结合于L型,质子流驱动β亚基变为T型,合成ATP,
再转变为O型,释放出ATP。
转子循环一周生成3个ATP,每个ATP耗3个质子。
3.氧化磷酸化受某些内外源因素影响:
(一)氧化磷酸化抑制剂:
1)呼吸链抑制剂:
(1)阻断复合体Ⅰ:鱼藤酮、粉蝶霉素A、异戊巴比妥。
(阻断e从铁硫中心到CoQ)
(2)阻断复合体Ⅱ:萎锈灵。
(3)阻断复合体Ⅲ:抗霉素A。
(4)阻断复合体Ⅳ:CN-、N3-(结合氧化型Cyt a3);CO(结合还原型Cyt a3)
2)解偶联剂:破坏电子传递建立的跨膜质子电化学梯度,储存的能量以热能释放。
如:二硝基苯酚(DNP)。
棕色脂肪组织中的解偶联蛋白。
3)ATP合酶抑制剂:同时抑制电子传递和ATP生成。
如:寡霉素。
(二)ADP是调节氧化磷酸化速率的主要因素:ADP浓度升高,使氧化磷酸化加速。
(三)甲状腺激素:刺激机体耗氧量与产热同时增加。
(四)线粒体DNA(mtDNA)突变:突变率远高于核DNA。
4.ATP的核心作用:
(1)UTP、CTP、GTP只能在核苷二磷酸激酶催化下,从ATP获得末端~P而合成。
(2)ATP充足时,末端~P转移给肌酸,生成磷酸肌酸。
为高能键能量储存形式。
存在于骨骼肌、心肌、脑。
5.线粒体内膜对物质选择性转运:(外膜对物质通透性、选择性低)
(一)胞质中NADH入线粒体的穿梭机制:
1)α-磷酸甘油穿梭:存在于脑、骨骼肌。
入内膜变成FADH2。
过程:见书。
2)苹果酸-天冬氨酸穿梭:存在于肝、心肌。
入内膜仍为NADH。
过程:见书。
(二)ATP-ADP转位酶:
位于:线粒体内膜。
作用:促进ADP进入和ATP移出紧密偶联。
1分子ATP在线粒体生成并转运至胞质需4个H+回流入线粒体基质。
NADH呼吸链每传递2H泵出10H+,生成2.5个ATP
FADH2呼吸链每传递2H泵出6H+,生成1.5个ATP
6.其他不生成ATP氧化体系:
(一)抗氧化酶体系:
反应活性氧类(ROS):O2-、H2O2、-OH。
来源:氧化呼吸链漏出的e与O2生成。
(1)过氧化氢酶:存在于过氧化物酶体:2H2O2→2H2O+ O2
(2)谷胱甘肽过氧化物酶:体内防止活性氧类损伤的主要酶。
还原H2O2、ROOH。
氧化型谷胱甘肽由NADH+H+提供2H,变成还原型谷胱甘肽。
(3)超氧化物酶(SOD):2O2+2H+-→H2O2+O2
(二)微粒体细胞色素P450单加氧酶:催化O2中一个O羟化,另一个O还原成水。