高中数学_椭圆,知识题型总结
(完整版)高考椭圆题型总结

椭圆题型总结一、 椭圆的定义和方程问题 (一) 定义:PA+PB=2a>2c1. 命题甲:动点P 到两点B A ,的距离之和);,0(2常数>=+a a PB PA 命题乙: P 的轨迹是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ( )A 。
充分不必要条件 B.必要不充分条件 C 。
充要条件 D.既不充分又不必要条件2. 已知1F 、2F 是两个定点,且421=F F ,若动点P 满足421=+PF PF 则动点P 的轨迹是( )A 。
椭圆 B.圆 C.直线 D.线段3. 已知1F 、2F是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长P F 1到Q ,使得2PF PQ =,那么动点Q的轨迹是( )A.椭圆B.圆C.直线D.点4. 已知1F 、2F 是平面α内的定点,并且)0(221>=c c F F ,M 是α内的动点,且a MF MF 221=+,判断动点M 的轨迹。
5. 椭圆192522=+y x 上一点M 到焦点1F 的距离为2,N 为1MF 的中点,O 是椭圆的中心,则ON 的值是 。
(二) 标准方程求参数范围1. 若方程13522=-+-k y k x 表示椭圆,求k 的范围。
(3,4)U(4,5) 2.轴上的椭圆”的表示焦点在”是“方程“y ny mx n m 1022=+>>( ) A.充分而不必要条件 B 。
必要不充分条件 C 。
充要条件 D 。
既不充分又不必要条件3. 已知方程112522=-+-m y m x 表示焦点在Y 轴上的椭圆,则实数m 的范围是 。
4. 已知方程222=+ky x 表示焦点在Y 轴上的椭圆,则实数k 的范围是 . 5. 方程231y x -=所表示的曲线是 .6. 如果方程222=+ky x 表示焦点在y 轴上的椭圆,求实数k 的取值范围. 7. 已知椭圆06322=-+m y mx 的一个焦点为)2,0(,求m 的值。
椭圆题型及方法总结

椭圆题型及方法总结
椭圆题型及方法总结:
1. 求椭圆的标准方程:通过给定的信息,如焦点、顶点、直径长度等,使用定义式以及椭圆的性质,将椭圆的方程转化为标准方程:$(x-h)^2/a^2 + (y-k)^2/b^2 = 1$,其中$(h,k)$为椭圆的中心坐标。
2. 求椭圆的焦点坐标:已知椭圆的方程,可以通过标准方程得到椭圆的中心坐标$(h,k)$,然后使用椭圆的性质,计算出焦点的坐标。
3. 求椭圆的顶点坐标:已知椭圆的方程,可以通过标准方程得到椭圆的中心坐标$(h,k)$,然后使用椭圆的性质,计算出顶点的坐标。
4. 求椭圆的参数方程:已知椭圆的方程,可以通过给定的信息,如焦点、顶点、直径长度等,使用定义式以及椭圆的性质,将椭圆的方程转化为参数方程:$x = h + a \cos t$,$y = k + b \sin t$,其中$(h,k)$为椭圆的中心坐标,$a$和$b$分别为椭圆的半
长轴和半短轴长度。
5. 求椭圆的离心率:已知椭圆的方程,可以通过标准方程得到椭圆的半长轴长度$a$和半短轴长度$b$,然后使用离心率的定义式计算出椭圆的离心率:$e = \sqrt{1 - \frac{b^2}{a^2}}$。
6. 求椭圆的面积和周长:已知椭圆的方程,可以通过给定的信
息,如半长轴长度$a$和半短轴长度$b$,使用椭圆的性质计算出椭圆的面积和周长。
以上是常见的椭圆题型及解题方法的总结,具体问题具体分析,有时需要结合其他几何知识来解决问题。
(新)高中数学-椭圆-知识题型总结

陈氏优学教学课题椭圆知识点一:椭圆的定义 平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若,则动点的轨迹为线段;若,则动点的轨迹无图形.讲练结合一.椭圆的定义1.若ABC ∆的两个顶点()()4,0,4,0A B -,ABC ∆的周长为18,则顶点C 的轨迹方程是 知识点二:椭圆的标准方程1.当焦点在轴上时,椭圆的标准方程:,其中;2.当焦点在轴上时,椭圆的标准方程:,其中;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有和;3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,;当焦点在轴上时,椭圆的焦点坐标为,。
讲练结合二.利用标准方程确定参数1.椭圆2214x y m+=的焦距为2,则m = 。
2.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。
知识点三:椭圆的简单几何性质椭圆的的简单几何性质(1)对称性对于椭圆标准方程,把x换成―x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以椭圆是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围椭圆上所有的点都位于直线x=±a和y=±b所围成的矩形内,所以椭圆上点的坐标满足|x|≤a,|y|≤b。
(3)顶点①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆(a>b>0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1(―a,0),A2(a,0),B1(0,―b),B2(0,b)。
③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。
a和b分别叫做椭圆的长半轴长和短半轴长。
(4)离心率①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作。
椭圆基本知识点与题型总结

椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的简单几何性质标准方程12222=+by a x )0(>>b a 12222=+bx a y )0(>>b a 图形性质焦点、焦距)0,(1c F -,)0,(2c F ,cF F 221=),0(1c F -,),0(2c F cF F 221=范围a x ≤,b y ≤b x ≤,ay ≤顶点)0,(a ±,),0(b ±),0(a ±,)0,(b ±对称性关于x 轴、y 轴,轴对称,关于原点中心对称轴长长轴长=a 2,短轴长=b2离心率()10122<<-==e ab ac e e 越小,椭圆越圆;e 越大,椭圆越扁通径过焦点且垂直于长轴的弦,其长ab 22(通径为最短的焦点弦)准线方程ca x 2±=ca y 2±=焦半径01ex a PF +=,02ex a PF -=01ey a PF +=,02ey a PF -=1.椭圆标准方程中的三个量c b a ,,的几何意义222c b a +=(见右图)2.椭圆的一般方程:22Ax By C +=()B A C B A 0ABC ≠≠同号,,,,且3.椭圆的参数方程:{cos sin x a y b ϕϕ==(其中ϕ为参数)4.椭圆焦点三角形问题(1)焦点三角形周长:ca 22+(2)在21F PF ∆中,有余弦定理:()θcos 2P P 22122212PF PF F F c -+=经常变形为:()()θcos 22-PF 221212212PF PF PF PF PF c -+=即:()()θcos 22-22212122PF PF PF PF a c -=(3)焦点三角形面积2tan cos 1sin sin 21S 2221P 21θθθθb b PF PF y c p F F =+=⋅=⋅=∆,其中21PF F ∠=θ5.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠为最大角。
椭圆题型完美归纳(经典)

椭圆题型概括一、知识总结1.椭圆的定义:把平面内与两个定点F1 , F2的距离之和等于常数(大于F1 F2)的点的轨迹叫做椭圆 .这两个定点叫做焦点,两焦点的距离叫做焦距(设为 2c) .2.椭圆的标准方程:x 2 y 21( a >b>0)y 2 x 21 ( a >b>0)a 2b 2 a 2 b2y yM F 2cc cO c xF 1 O F 2 x MF 1焦点在座标轴上的椭圆标准方程有两种情况,可设方程为 mx2 ny2 1(m 0, n 0) 不用考虑焦点地点,求出方程。
3.范围 . 椭圆位于直线 x=± a 和 y=± b 围成的矩形里. |x|≤a,|y|≤ b.4.椭圆的对称性椭圆是对于 y 轴、 x 轴、原点都是对称的.坐标轴是椭圆的对称轴.原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心.5.极点椭圆有四个极点: A1(-a, 0)、A2(a, 0)、B1(0, -b)、B2(0, b).线段 A1A2、 B1B2分别叫做椭圆的长轴和短轴.。
长轴的长等于 2a. 短轴的长等于 2b.|B 1F 1|=|B 1F 2|= |B 2F 1|= |B 2F 2|=a .在 Rt △OB 2F 2 中, |OF 2|2= |B 2F 2|2-|OB 2|2,即 c 2=a 2-b 2.yB 2A 1ba A 2cF 2xF 1 OB 16.离心率 ec(0 e 1)a7. 椭圆x 2y 2 1 (a > > 0) 的左右焦点分别为 1, F 2 ,点 P 为椭圆上随意一点a 2b 2 bFF 1PF 2,则椭圆的焦点角形的面积为SFPF2b 2 tan .128. 椭圆x 2y 2 1 ( > > )的焦半径公式a 2b 2 a b 0| MF 1 | a ex 0 , | MF 2 | a ex 0 ( F 1( c,0) , F 2 (c,0) M ( x 0 , y 0 ) ).9. AB 是椭圆x 2y 2 1的不平行于对称轴的弦 , Ma 2b 2(x 0 , y 0 ) 为 AB 的中点,则kOMkABb 2 ,即K ABb 2 x 0 。
高三数学椭圆常考题型

高三数学椭圆常考题型一、椭圆的基本性质椭圆是一种常见的二次曲线,具有以下基本性质:1. 椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1 (a > b > 0)。
2. 椭圆的焦点距离为:c = sqrt(a^2 - b^2)。
3. 椭圆的离心率e = c/a,离心率的取值范围是[0,1]。
4. 椭圆的准线方程为:x = ±a^2/c。
二、常考题型及解析1. 椭圆的定义与标准方程【例1】已知椭圆C的中心在原点,焦点在x轴上,离心率为1/2,且椭圆C上一点到两焦点的距离之和为4。
(1) 求椭圆C的标准方程;(2) 若AB是过椭圆C中心的弦,M是AB的中点,且|AB| = 4√5,求线段AB 的长。
【解析】(1) 根据题意,设椭圆C的标准方程为:x^2/a^2 + y^2/b^2 = 1 (a > b > 0)。
由离心率的定义,我们有e = c/a = 1/2。
再根据椭圆的定义,到两焦点的距离之和为4,所以2a = 4,即a = 2。
由离心率的定义和已知条件,我们可以得到b = sqrt(a^2 - c^2) = sqrt(4 - 1) = sqrt3。
所以椭圆C的标准方程为:x^2/4 + y^2/3 = 1。
(2) 设AB的方程为y = kx + t。
代入椭圆方程得到二次方程(3 + 4k^2)x^2 +8ktx + 4t^2 - 12 = 0。
设A(x1,y1),B(x2,y2),则有x1 + x2 = -8kt/(3 + 4k^2),x1x2 = (4t^2 - 12)/(3 + 4k^2)。
由弦长公式得|AB| = sqrt((x1 - x2)^2 + (y1 - y2)^2) = sqrt((1 + k^2)(x1 - x2)^2) = sqrt((1 + k^2)[(x1 + x2)^2 - 4x1x2])。
将已知条件代入得到k 和t 的关系,进一步求出线段AB的长为8sqrt(3-k^2)。
《椭圆》知识点归纳和题型归类

《椭圆》知识点归纳和题型归类椭圆的定义和性质- 椭圆是指平面上到两个定点的距离之和等于常数的所有点的轨迹。
- 椭圆有两个焦点和一个长轴和短轴。
- 长轴是通过两个焦点并且垂直于短轴的线段。
- 短轴是通过两个焦点并且垂直于长轴的线段。
- 椭圆的离心率介于0和1之间,离心率越接近0,椭圆越接近于圆形。
椭圆的方程和图形特征- 椭圆的标准方程为 (x/a)^2 + (y/b)^2 = 1,其中a和b分别为长轴和短轴的一半。
- 椭圆的图形特征是:中心在原点(0, 0),x轴和y轴为对称轴。
- 椭圆在x轴和y轴上的截距分别为±a和±b。
- 椭圆的焦点坐标为(±c, 0),其中c为焦距,c^2 = a^2 - b^2。
椭圆的常见题型1. 确定椭圆的方程- 已知椭圆的焦点坐标和离心率,求椭圆的方程。
- 已知椭圆的端点坐标和离心率,求椭圆的方程。
- 已知椭圆的顶点坐标和离心率,求椭圆的方程。
2. 求椭圆的参数- 已知椭圆的方程,求椭圆的长轴、短轴、焦点和离心率。
3. 确定点的位置关系- 判断给定点是否在椭圆上。
- 判断给定点是否在椭圆内部或外部。
4. 求椭圆上的点的坐标- 已知椭圆的方程和角度,求椭圆上的点的坐标。
- 已知椭圆的方程和弧长,求椭圆上的点的坐标。
5. 求椭圆的切线和法线- 已知椭圆上的点,求椭圆的切线和法线。
6. 求椭圆的周长和面积- 已知椭圆的长轴和短轴,求椭圆的周长和面积。
以上是关于椭圆的知识点归纳和常见题型归类,希望对您有所帮助。
高中数学-椭圆常考题型汇总及练习

高中数学-椭圆常考题型汇总及练习高中数学-椭圆常考题型汇总及练第一部分:复运用的知识一)椭圆几何性质椭圆的第一定义是:平面内与两定点F1、F2距离和等于常数(大于F1F2)的点的轨迹叫做椭圆。
两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距(2c)。
椭圆的几何性质以x^2/a^2 + y^2/b^2 = 1为例:范围由标准方程可知,椭圆上点的坐标(x,y)都适合不等式2≤x^2/a^2 + y^2/b^2 ≤1,即abx≤a,y≤b。
这说明椭圆位于直线x=±a和y=±b所围成的矩形里(封闭曲线)。
该性质主要用于求最值、轨迹检验等问题。
椭圆还有以下对称性:关于原点、x轴、y轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。
椭圆的顶点(椭圆和它的对称轴的交点)有四个:A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b)。
长轴为A1A2,长度为2a;短轴为B1B2,长度为2b。
椭圆的离心率e有以下几个性质:(1)椭圆焦距与长轴的比e=c/a,其中c为焦距;(2)a^2=b^2+c^2,即a是长半轴长,b是短半轴长;(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关。
当e接近于1时,椭圆越扁;当e接近于0时,椭圆越接近圆。
椭圆还有通径(过椭圆的焦点且垂直于长轴的弦)和焦点三角形等性质。
二)运用的知识点及公式在解题过程中,我们需要掌握以下知识点和公式:1、两条直线.2、XXX定理:若一元二次方程ax^2+bx+c=0(a≠0)有两个不同的根x1,x2,则2bc/(a(x1+x2))=-1,x1+x2=-b/a。
1.中点坐标公式:对于点A(x1,y1)和点B(x2,y2),它们的中点坐标为(x,y),其中x=(x1+x2)/2,y=(y1+y2)/2.2.弦长公式:如果点A(x1,y1)和点B(x2,y2)在直线y=kx+b(k≠0)上,则y1=kx1+b,y2=kx2+b。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陈氏优学教学课题椭圆知识点一:椭圆的定义 平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若,则动点的轨迹为线段;若,则动点的轨迹无图形.讲练结合一.椭圆的定义1.若ABC ∆的两个顶点()()4,0,4,0A B -,ABC ∆的周长为18,则顶点C 的轨迹方程是 知识点二:椭圆的标准方程1.当焦点在轴上时,椭圆的标准方程:,其中;2.当焦点在轴上时,椭圆的标准方程:,其中;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有和;3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,;当焦点在轴上时,椭圆的焦点坐标为,。
讲练结合二.利用标准方程确定参数1.椭圆2214x y m+=的焦距为2,则m = 。
2.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。
知识点三:椭圆的简单几何性质椭圆的的简单几何性质(1)对称性对于椭圆标准方程,把x 换成―x ,或把y 换成―y ,或把x 、y 同时换成―x 、―y ,方程都不变,所以椭圆是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围椭圆上所有的点都位于直线x=±a 和y=±b 所围成的矩形内,所以椭圆上点的坐标满足|x|≤a ,|y|≤b 。
(3)顶点①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆(a>b>0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1(―a,0),A2(a,0),B1(0,―b),B2(0,b)。
③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。
a和b分别叫做椭圆的长半轴长和短半轴长。
(4)离心率①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作。
②因为a>c>0,所以e的取值范围是0<e<1。
e越接近1,则c就越接近a,从而越小,因此椭圆越扁;反之,e越接近于0,c就越接近0,从而b越接近于a,这时椭圆就越接近于圆。
当且仅当a=b时,c=0,这时两个焦点重合,图形变为圆,方程为x2+y2=a2。
椭圆的图像中线段的几何特征(如下图):(1),,;(2),,;(3),,;知识点四:椭圆与(a>b>0)的区别和联系标准方程图形性质焦点,,焦距范围,,对称性关于x轴、y轴和原点对称顶点,,轴长轴长=,短轴长=离心率准线方程焦半径,,注意:椭圆,(a>b>0)的相同点为形状、大小都相同,参数间的关系都有a >b >0和,a 2=b 2+c 2;不同点为两种椭圆的位置不同,它们的焦点坐标也不相同。
题型一 椭圆焦点三角形面积公式的应用定理 在椭圆12222=+by a x (a >b >0)中,焦点分别为1F 、2F ,点P 是椭圆上任意一点,θ=∠21PF F ,则2tan221θb S PF F =∆.证明:记2211||,||r PF r PF ==,由椭圆的第一定义得.4)(,2222121a r r a r r =+∴=+在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ配方得:.4cos 22)(22121221c r r r r r r =--+θ即.4)cos 1(242212c r r a =+-θ.cos 12cos 1)(222221θθ+=+-=∴b c a r r由任意三角形的面积公式得:2tan 2cos 22cos2sin2cos 1sin sin 2122222121θθθθθθθ⋅=⋅=+⋅==∆b b b r r S PF F ..2tan 221θb S PF F =∴∆典题妙解例1 若P 是椭圆16410022=+y x 上的一点,1F 、2F 是其焦点,且︒=∠6021PF F ,求 △21PF F 的面积.解法一:在椭圆16410022=+y x 中,,6,8,10===c b a 而.60︒=θ记.||,||2211r PF r PF == Py F 1 O F 2 xPA x yB x y x x x x k k k ()()()11221212228241,、,,则、是方程的两个根,于是,+=-+又为的中点,∴,解之得,故所求直线方M AB x x k k k k 122224241212+=-+==-() 程为x y +-=240法二 设直线与椭圆的交点为,、,,,为的中点,A x y B x y M AB ()()()112221∴,,又、两点在椭圆上,则,x x y y A B x y x y 121212122222424164+=+=+=+ =-+-=164012221222,两式相减得()()x x y y∴y y x x x x y y 12121212412--=-++=-()即,故所求直线为k x y AB =-+-=12240 点差法1.过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y =21x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l对称,试求直线l 与椭圆C 的方程.命题意图:本题利用对称问题来考查用待定系数法求曲线方程的方法,设计新颖,基础性强,属★★★★★级题目.知识依托:待定系数法求曲线方程,如何处理直线与圆锥曲线问题,对称问题. 错解分析:不能恰当地利用离心率设出方程是学生容易犯的错误.恰当地利用好对称问题是解决好本题的关键.技巧与方法:本题是典型的求圆锥曲线方程的问题,解法一,将A 、B 两点坐标代入圆锥曲线方程,两式相减得关于直线AB 斜率的等式.解法二,用韦达定理.以下同解法一.题型三 弦长公式与焦半径公式1、一般弦长公式弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则AB=2121k x x +-,(若12,y y 分别为A 、B 的纵坐标,则AB=21211y y k -+),若弦AB 所在直线方程设为x ky b =+,则AB =2121k y y +-。
2、焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。
1. 第二定义:平面内与一个定点的距离和它到一条定直线的距离之比是常数e cae M =<<()01的动点的轨迹叫做椭圆,定点为椭圆的一个焦点,定直线为 椭圆的准线,常数e 是椭圆的离心率。
注意:①对对应于右焦点,的准线称为右准线,x a y b a b F c 22222100+=>>()()方程是,对应于左焦点,的准线为左准线x a c F c x a c=-=-2120()②e 的几何意义:椭圆上一点到焦点的距离与到相应准线的距离的比。
时,点P 横坐标的取值范围是_______________。
(2000年全国高考题) 分析:可先求∠F 1PF 2=90°时,P 点的横坐标。
解:法一 在椭圆中,,,,依焦半径公式知,a b c PF x ====+3253531|| ||||||||PF x F PF PF PF F F 2121222122353=-⇔+<⇔,由余弦定理知∠为钝角 ()()()353353259535352222++-<⇔<-<<x x x x ,应填 法二 设,,则当∠°时,点的轨迹方程为,P x y F PF P x y ()1222905=+=由此可得点的横坐标±,点在轴上时,∠;点在轴上P x P x F PF P y ==35012 时,∠为钝角,由此可得点横坐标的取值范围是F PF P x 123535-<<题型四 参数方程3. 椭圆参数方程问题:如图以原点为圆心,分别以a 、b (a>b>0)为半径作两个圆,点B 是大圆半径OA 与小圆的交点,过点A 作AN ⊥Ox ,垂足为N ,过点B 作BN ⊥AN ,垂足为M ,求当半径OA 绕O 旋转时点M 的轨迹的参数方程。
解:设点的坐标是,,是以为始边,为终边的正角,取为M x y()ϕϕOx OA参数。
那么∴x ON OAy NM OBx ay b======⎧⎨⎩||cos||sincossin()ϕϕϕϕ1这就是椭圆参数方程:为参数时,称为“离心角”ϕϕ说明:<1> 对上述方程(1)消参即xaybxayb==⎧⎨⎪⎪⎩⎪⎪⇒+=cossinϕϕ22221普通方程<2>由以上消参过程可知将椭圆的普通方程进行三角变形即得参数方程。
直线与椭圆位置关系:xayby kx b22221+==+②求椭圆上动点P(x,y)到直线距离的最大值和最小值,(法一,参数方程法;法二,数形结合,求平行线间距离,作l'∥l且l'与椭圆相切)例4. 已知椭圆,在椭圆上求一点,使到直线:x y P P l x y228840+=-+=的距离最小并求出距离的最小值(或最大值)?解:法一设,由参数方程得P(cos sin)()22θθ则d=-+=--|cos sin||sin()|2242342θθθϕ其中,当时,tanminϕθϕπ=-===2221222d此时,cos sin sin cosθϕθϕ=-=-==22313即点坐标为,P P()-8313法二因与椭圆相离,故把直线平移至,使与椭圆相切,则与的距离,l l l l l l'''即为所求的最小值,切点为所求点最大('')l→设:,则由消得l x y m x y mx yx'-+=-+=+=⎧⎨⎩88229280449802222y my m m m-+-==--=,令×∆()解之得±,为最大,由图得m m=-=-333()此时,,由平行线间距离得P l()min-=8313222222000210310123x ya b e A Ba bAB x PAB C x y xF AF BF+=>>=+=椭圆()的离心率,、是椭圆上关于坐标不对称的两点,线段的中垂线与轴交于点(,)。
()设中点为(,),求的值。
()若是椭圆的右焦点,且,求椭圆的方程。
5.在ABC △中,3,2||,300===∠∆ABC S AB A .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .讲练结合六.最值问题1.椭圆2214x y +=两焦点为F 1、F 2,点P 在椭圆上,则|PF 1|·|PF 2|的最大值为_____,最小值为_____2、椭圆2212516x y +=两焦点为F 1、F 2,A(3,1)点P 在椭圆上,则|PF 1|+|PA|的最大值为_____,最小值为 ___3、已知椭圆2214x y +=,A(1,0),P 为椭圆上任意一点,求|PA|的最大值 最小值 。