高考数学-数列通项公式求解方法总结
【高考数学】数列的证明和求数列通项公式

数列的证明和求数列通项公式数列的通项公式在高考中数列部分的考查既是重点又是难点,不论是选择题或填空题中对基础知识的考查,还是压轴题中与其他章节知识的综合,抓住数列的通项公式通常是解题的关键和解决数列难题的瓶颈。
求通项公式也是学习数列时的一个难点。
由于求通项公式时渗透多种数学思想方法,因此求解过程中往往显得方法多、灵活度大、技巧性强。
【基础知识整合】一、等差(等比)数列的证明常用方法: 1.定义法判断一个数列是等差数列,常采用的两个式子1n n a a d --=和1n n a a d +-=有差别,前者必须加上“2n ≥”,否则1n =时0a 无意义;在等比数列中一样有:①2n ≥时,有1nn a q a -==(常数q 0≠);②n *∈N 时,有1n na q a +==(常数q 0≠). 2.中项法212{}n n n n a a a a +++=⇔是等差数列,221(0)n n n n a a a a ++=≠{}n a ⇔是等比数列,这是证明数列{}n a 为等差(等比)数列的另一种主要方法 二、求数列通项公式的常用方法: 1. 公式法、利用11(1)(2)n nn S n S S n a -=⎧=⎨-≥⎩2. 求差(商)法:类似于 “12211125222n n a a a n +++=+ , 12321n n a a a a n +=+”等条件时,使用求差(商)法求解;3. 累加法:类似于“()1n n a a f n +-=”的条件时,使用累加法求解()11n n a a f n --=-[来源:学*科*网]()122n n a a f n ---=- ()233n n a a f n ---=-……()211a a f -=以上式子左右分别相加,得()()()()11231n a a f n f n f n f -=-+-+-⋅⋅⋅⋅⋅⋅ 所以得到()()()()11231n a f n f n f n f a =-+-+-⋅⋅⋅⋅⋅⋅⋅++ 4. 累乘法:类似于“()1n na f n a +=”的条件时,使用累乘法求解; ()()()()324112311231nn n a a a a a a f f f f n a a a a -==-5. 倒数法:类似于“1nn n ka a a k+=+”的条件时,使用倒数法求解 如:1121,2nn n a a a a +==+,求n a由已知得:1211122n n n n a a a a ++==+,∴11112n n a a +-= ∴1n a ⎧⎫⎨⎬⎩⎭为等差数列,111a =,公差为12,∴()()11111122n n n a =+-=+,∴21n a n =+ 6. 构造法:[来源:学科网ZXXK]比如:()1,0,1,0n n a ka d k d k k d -=+≠≠≠为常数,[来源:学科网ZXXK]可转化为等比数列,设()()111n n n n a c k a c a ka k c --+=+⇒=+- 令()1k c d -=,∴1d c k =-,∴1n d a k ⎧⎫+⎨⎬-⎩⎭是首项为11d a k +-,k 为公比的等比数列 ∴1111n n d d a a k k k -⎛⎫+=+ ⎪--⎝⎭,1111n n d d a a k k k -⎛⎫=+- ⎪--⎝⎭∴ 类型一 等差(等比)数列的证明 【典例1】 【2016年高考新课标Ⅲ(17)】已知数列{}n a 错误!未找到引用源。
高考数学难点突破:数列通项公式推导技巧

高考数学难点突破:数列通项公式推导技巧在高考数学中,数列一直是重点和难点内容,而数列通项公式的推导更是重中之重。
掌握了数列通项公式的推导技巧,就相当于握住了解决数列问题的关键钥匙。
接下来,让我们一起深入探讨数列通项公式的推导技巧。
一、等差数列通项公式的推导等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的数列。
这个常数称为等差数列的公差,通常用字母 d 表示。
假设等差数列的首项为\(a_1\),公差为 d,那么第二项就是\(a_2 = a_1 + d\),第三项\(a_3 = a_2 + d = a_1 + 2d\),第四项\(a_4 = a_3 + d = a_1 + 3d\)……以此类推,我们可以发现第 n 项\(a_n = a_1 +(n 1)d\)。
通过这种逐步推导的方式,我们很容易理解等差数列通项公式的由来。
二、等比数列通项公式的推导等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的数列。
这个常数称为等比数列的公比,通常用字母 q 表示。
设等比数列的首项为\(a_1\),公比为 q,那么第二项\(a_2 =a_1q\),第三项\(a_3 = a_2q = a_1q^2\),第四项\(a_4 = a_3q =a_1q^3\)……依此类推,第 n 项\(a_n = a_1q^{n 1}\)。
理解这个推导过程,对于掌握等比数列的通项公式至关重要。
三、累加法推导通项公式对于形如\(a_{n + 1} a_n = f(n)\)的递推关系式,我们可以使用累加法来推导通项公式。
例如,已知\(a_{n + 1} a_n = 2n\),且\(a_1 = 1\)。
那么\(a_2 a_1 = 2×1\),\(a_3 a_2 = 2×2\),\(a_4 a_3 = 2×3\),……,\(a_n a_{n 1} = 2(n 1)\)。
将上述式子相加:\\begin{align}a_n a_1&= 2×1 + 2×2 + 2×3 +\cdots + 2(n 1)\\&= 2×(1 + 2 + 3 +\cdots +(n 1))\\&= 2×\frac{(n 1)n}{2}\\&= n(n 1)\end{align}\因为\(a_1 = 1\),所以\(a_n = n(n 1) + 1\)。
高考数列求通项总结(高三数学)

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
数列通项公式常见求法 (1)

数列通项公式的常见求法数列在高中数学中占有非常重要的地位,每年高考都会出现相关数列的方面的试题,一般分为小题和大题两种题型,而数列的通项公式的求法是常考的一个知识点,一般常出现在大题的第一小问中,所以掌握好数列通项公式的求法不但有利于我们掌握好数列知识,更有助于我们在高考中取得好的成绩。
下面本文将中学数学中相关数列通项公式的常见求法实行较为系统的总结,希望能对同学们有所协助。
一.公式法高中重点学了等差数列和等比数列,当题中已知数列是等差数列或等比数列,在求其通项公式时我们就能够直接利用等差或等比数列的公式来求通项,只需求得首项及公差公比。
1、等差数列公式 例1、(2011辽宁理)已知等差数列{a n }满足a 2=0,a 6+a 8=-10 (I )求数列{a n }的通项公式;解:(I )设等差数列{}n a 的公差为d ,由已知条件可得110,21210,a d a d +=⎧⎨+=-⎩解得11,1.a d =⎧⎨=-⎩故数列{}n a 的通项公式为2.n a n =- 2、等比数列公式例2.(2011重庆理)设{}n a 是公比为正数的等比数列,12a =,324a a =+。
(Ⅰ)求{}n a 的通项公式解:I )设q 为等比数列{}n a 的公比,则由21322,4224a a a q q ==+=+得,即220q q --=,解得21q q ==-或(舍去),所以 2.q =所以{}n a 的通项为1*222().n n n a n N -=⋅=∈3、通用公式若已知数列的前n 项和n S 的表达式,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥-==-211n S S n S a n nn n 求解。
一般先求出a1=S1,若计算出的an 中当n=1适合时能够合并为一个关系式,若不适合则分段表达通项公式。
例3、已知数列}{n a 的前n 项和12-=n s n ,求}{n a 的通项公式。
高考数学-数列通项公式求解方法总结

求数列通项公式的十种方法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n na a ++-=,故数列{}2nn a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n na a ++-=,说明数列{}2nn a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。
例3 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
求数列通项公式的七种模型

一、高考数列求通项公式模型【简便记忆】二.高考数列求通项公式【详细解读】1.【归纳法】 适用于:列举法给出的数列模型即1234,a a a a ,,···; 【模型特征】:给出数列的前几项,通过归纳、猜想、找规律。
【求解方法】根据1(2)34⎧⎪⎪⎨⎪⎪⎩()相邻项的特征分式中分子、分母的特征()拆项后的特征()各项的序号与项之间的变与不变特征例1.根据数列前几项,写出下列各数列的一个通项公式。
(1)—1,7,—13,19,···; (2)0.8, 0.88,0.888,···; (3)115132961,,,,,248163264--,···; ●点评:该法属于不完全归纳法,仅用来解选择、填空题,对于大题,用此法还要用数学归纳法进行证明,另外求得的通项公式一定要代值检验,以防出错。
2.【累加法】 适用于:1()n n a a f n +=+模型(先累后求和) 【模型特征】:1()n n a a f n +、系数相同,作差,是关于n 的函数。
【求解方法】221()(()()-=()()()1()()(1)n n f n pn q f n pn qn r a a f n f n pq r f n n n +=+⇒⎧⎪=++⇒⎪⎪=+⇒⎨⎪⎪=⇒+⎪⎩一次型)等差求和二次型分组求和指数型等比求和分式型裂项求和化为例2. 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
(一次型) 答案:等差求和2n a n =例3. 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
(指数型) 答案:等比求和31n n a n =+-练习1.已知数列{}n a 的首项为1,且写*12()n n a a n n N +=+∈出数列{}n a 的通项公式. (一次型)答案:等差求和21n a n n =-+练习2.已知数列}{n a 满足13a =,11(2)(1)n n a a n n n -=+≥-,求此数列的通项公式.答案:裂项求和12n a n=-3.【累乘法】 适用于: 1()n n a f n a += 模型(先累后求商)【模型特征】1()n n a a f n +、系数相同,作商,是关于n 分式型的函数。
数列之通项公式求法 高考数学解题技巧归纳(新高考地区专用)

1+
为首项,以
−1
为公比的等比数列
∴
+
=(
−1
1+
)
−1
−1解得:
=(
1+
)
−1
−1 −
−1
例 4、数列an 中,a1 1 , an 3an1 2 ,求数列an 的通项公式
解:设 an 3 an1 即an 3an1 2
对比 an 3an1 2 ,可得 1
an 1 3 an1 1 an 1 是以 2 为首项,3 为公比的等比数列 an 1 a1 1 3n1
2 3
bn
1
1
3 bn1
1
bn
1
为公比是
1 3
的等比数列
bn
1
b1
1
1 3
n 1
bn
1
1 3
n
即
n an
1
1 3
n
an
1
n 1 3
n
n 3n 3n 1
移项整理得: 1 = 1 + 1 −1
令 = 1 ,则 = −1 + 1, 从而转化为第①种形式进行处理。
例 6、已知在数列 an 中,an 0, a1 2 ,且an1 an 2an1an
求数列 an 的通项公式;
解:∵ +1 − = 2 +1 ;且 +1 ≠ 0
∴ 1 − 1 = 2 ,即 1 − 1 =− 2
9 2
n
,
显然
a1
7 2
满足上式,
∴数列an的通项公式为an
9 2
n
n N
.
【跟踪训练】4、已知数列an 满足
高中数学求解数列通项公式常用方法总结

高中数学求解数列通项公式常用方法总结(共15种类型类型1(迭加法1112212212(212(log 1(n 1n nn n n n n n n a a f n n-++-⎧⎪⎪⎪-+⎪⎪--==⎨⎪⎪⎪⎪⎪+⎩,n a a求,11=以上6种情况都要试着做一遍例1:已知数列{}n a满足11211,2n n a a a n n+=-=+,求n a。
解:由条件知:121111(11n n a a n n n n n n+-===-+++分别令1,2,3,,(1n n=-,代入上式得(1n-个等式累加之,即21 32431((((n n a a a a a a a a--+-+-++-1111111(1(((223341n n=-+-+-++--所以111n a a n-=-111131, 1222n a a n n=∴=+-=-类型2(迭乘法11(=2n n n n a f n n a++⎧⎪=⎨⎪⎩,n a a求,11=例2:已知数列{}n a满足112,31n n n a a a n+==+,求n a。
解:由条件知11n n a n a n+=+,分别令1,2,3,,(1n n=-,代入上式得(1n-个等式累乘之,即3241231112311234n n n a a a a a n a a a a n a n--=⨯⨯⨯⨯⇒=又122,33n a a n=∴=∵类型3(退一相减法递推公式为S n与a n的关系式。
(或(n n S f a=解法:这种类型一般利用11(1(2n n n S n a S S n-=⎧=⎨-≥⎩与11((n n n n n a S S f a f a--=-=-消去n S(2n≥或与1 ((2n n n S f S S n-=-≥消去n a进行求解。
常见题型:1、12++=n n S n,n a求(关系与n S n2、n n n a a S求,23+=(关系与n n a S3、n n a a a a n 22223133221+⋅⋅⋅+++=+,求n a(n a n与例:已知数列{}n a前n项和214 2n n n S a-=--.(1求1n a+与n a的关系;(2求通项公式n a.解:(12142n n n S a-=--得:111142n n n S a++-=--于是112111((22n n n n n n S S a a++---=-+-所以1111111222n n n n n n n a a a a a+++-=-+⇒=+.类型3(构造法1 n 1n a pa q+=+(其中,p q均为常数,((10pq p-≠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学-数列通项公式求解方法总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN求数列通项公式的十种方法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n na a ++-=,故数列{}2nn a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nna n =-。
评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。
例3 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-评注:本题解题的关键是把递推关系式1231n n n a a +=+⨯+转化为1231n n n a a +-=⨯+,进而求出11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+,即得数列{}n a 的通项公式。
例4 已知数列{}n a 满足1132313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯-评注:本题解题的关键是把递推关系式13231n n n a a +=+⨯+转化为111213333n n n n n a a +++-=+,进而求出112232111122321()()()()333333333n n n n n n n n n n n n a a a a a a a a a -----------+-+-++-+,即得数列3n n a ⎧⎫⎨⎬⎩⎭的通项公式,最后再求数列{}n a 的通项公式。
三、累乘法例5 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+⨯转化为12(1)5n n na n a +=+,进而求出13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅,即得数列{}n a 的通项公式。
例6 (2004年全国I 第15题,原题是填空题)已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式。
解:因为123123(1)(2)n n a a a a n a n -=++++-≥① 所以1123123(1)n n n a a a a n a na +-=++++-+②用②式-①式得1.n n n a a na +-=则1(1)(2)n n a n a n +=+≥故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=。
所以,{}n a 的通项公式为!.2n n a =评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为11(2)n na n n a +=+≥,进而求出132122n n n n a a a a a a a ---⋅⋅⋅⋅,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式。
四、待定系数法例7 已知数列{}n a 满足112356n n n a a a +=+⨯=,,求数列{}n a 的通项公式。
解:设1152(5)n n n n a x a x +++⨯=+⨯④将1235n n n a a +=+⨯代入④式,得12355225n n n n n a x a x ++⨯+⨯=+⨯,等式两边消去2n a ,得135525n n n x x +⋅+⋅=⋅,两边除以5n ,得352,1,x x x +==-则代入④式得1152(5)n n n n a a ++-=-⑤由1156510a -=-=≠及⑤式得50nn a -≠,则11525n n nn a a ++-=-,则数列{5}n n a -是以1151a -=为首项,以2为公比的等比数列,则152n n n a --=,故125n n n a -=+。
评注:本题解题的关键是把递推关系式1235n n n a a +=+⨯转化为1152(5)n n n n a a ++-=-,从而可知数列{5}n n a -是等比数列,进而求出数列{5}n n a -的通项公式,最后再求出数列{}n a 的通项公式。
例8 已知数列{}n a 满足1135241n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解:设1123(2)n n n n a x y a x y +++⨯+=+⨯+ ⑥将13524n n n a a +=+⨯+代入⑥式,得1352423(2)n n n n n a x y a x y ++⨯++⨯+=+⨯+整理得(52)24323n n x y x y +⨯++=⨯+。
令52343x x y y +=⎧⎨+=⎩,则52x y =⎧⎨=⎩,代入⑥式得115223(522)n n n n a a +++⨯+=+⨯+⑦由11522112130a +⨯+=+=≠及⑦式,得5220nn a +⨯+≠,则115223522n n nn a a +++⨯+=+⨯+, 故数列{522}n n a +⨯+是以1152211213a +⨯+=+=为首项,以3为公比的等比数列,因此1522133n n n a -+⨯+=⨯,则1133522n n n a -=⨯-⨯-。
评注:本题解题的关键是把递推关系式13524n n n a a +=+⨯+转化为115223(522)n n n n a a +++⨯+=+⨯+,从而可知数列{522}n n a +⨯+是等比数列,进而求出数列{522}n n a +⨯+的通项公式,最后再求数列{}n a 的通项公式。
例9 已知数列{}n a 满足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式。
解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++ ⑧ 将212345n n a a n n +=+++代入⑧式,得2222345(1)(1)2()n n a n n x n y n z a xn yn z ++++++++=+++,则 222(3)(24)(5)2222n n a x n x y n x y z a xn yn z +++++++++=+++等式两边消去2n a ,得22(3)(24)(5)222x n x y n x y z xn yn z ++++++++=++,解方程组3224252x xx y y x y z z+=⎧⎪++=⎨⎪+++=⎩,则31018x y z =⎧⎪=⎨⎪=⎩,代入⑧式,得2213(1)10(1)182(31018)n n a n n a n n ++++++=+++ ⑨由213110118131320a +⨯+⨯+=+=≠及⑨式,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为以21311011813132a +⨯+⨯+=+=为首项,以2为公比的等比数列,因此2131018322n n a n n -+++=⨯,则42231018n n a n n +=---。