数列通项公式方法大全很经典
数列求通项公式方法大全

数列求通项公式方法大全1.等差数列求通项公式等差数列是指数列中相邻两项之间的差值相同的数列。
设等差数列的首项为a1,公差为d,则其通项公式为an=a1+(n-1)d。
其中,n为该数列的第n项。
2.等比数列求通项公式等比数列是指数列中相邻两项之间的比值相同的数列。
设等比数列的首项为a1,公比为q,则其通项公式为an=a1*q^(n-1)。
其中,n为该数列的第n项。
3.斐波那契数列求通项公式斐波那契数列是指数列中每一项都是前两项之和的数列。
设斐波那契数列的首项为a1,第二项为a2,则其通项公式为an=a1*f1+n*f2,其中,f1和f2分别为斐波那契数列的第一项和第二项。
4.调和数列求通项公式调和数列是指数列中每一项都是它前一项加上一个固定常数的倒数。
设调和数列的首项为a1,差值为d,则其通项公式为an=1/(a1+(n-1)d)。
5.等差几何数列求通项公式等差几何数列是指数列中相邻两项之间既有等差关系又有等比关系的数列。
设等差几何数列的首项为a1,公差为d,公比为q,则其通项公式为an=a1*q^(n-1)+d*(q^(n-1)-1)/(q-1)。
6.垂直数列求通项公式垂直数列是指数列中每一项之间的垂直差别相等,且相邻两项之间的垂直和恒定的数列。
设垂直数列的首项为a1,公差为d,垂直和为S,则其通项公式为an=(2a1+(n-1)d)*S/(2+S(n-1))。
7.几何平均数列求通项公式几何平均数列是指数列中每一项为前一项与下一项的几何平均数的数列。
设几何平均数列的首项为a1,公比为q,则其通项公式为an=a1*q^((n-1)/2)。
8.调和平均数列求通项公式调和平均数列是指数列中每一项为前一项与下一项的调和平均数的数列。
设调和平均数列的首项为a1,公差为d,则其通项公式为an=2/(1/a1+(n-1)d)。
9.阿贝尔数列求通项公式阿贝尔数列是指数列中,对于任意正整数k,从第k项开始,其连续k项的和为常数的数列。
数列通项公式方法大全很经典

⑥若 为正项等差自然数列,则 为等比数列.
⑦ 为等比数列.
⑧ ,n>2m,m、n , .
⑨ .
⑩若
则 .
重要性质
①若 p、q ,且 ,
则 .
②若 且 ,则 p、q .
①
= .
②若|q|<1,则 .
求数列{an}通项公式的方法
1. = + 型
累加法:
=( - )+( - )+…+( - )+
[解] = · … ·
=(n-1)·(n-2)…1·1=(n-1)!
∴ =(n-1)!(n∈N+)
4. =p + 型(p为常数)
方法:变形得 = + ,
则{ }可用累加法求出,由此求 .
例4.已知{ }满足 =2, =2 + .求 .
[解] = +1
∴{ }为等差数列.
=
∴ =n·
5. =p +q 型(p、q为常数)
评注:本题解题的关键是把递推关系式 转化为 ,从而可知数列 是等比数列,进而求出数列 的通项公式,最后再求出数列 的通项公式。
变式:
已知数列 满足 ,求数列 的通项公式。
已知数列 满足 ,求数列 的通项公式。
(5)对数变换法
例5已知数列 满足 , ,求数列 的通项公式。
解:因为 ,所以 。在 式两边取常用对数得 ⑩
设
将⑩式代入 式,得 ,两边消去 并整理,得 ,则
,故
代入 式,得
由 及 式,
得 ,
则 ,
所以数列 是以 为首项,以5为公比的等比数列,则 ,因此
则 。
求数列通项公式的十种常用方法

求数列通项公式的十种常用方法一、构造法构造法是最常见的求解数列通项公式的方法,是根据已知的数列的前几项逐步构造出数列的通项公式的过程,主要包括归纳法、设数据项法、递推法等。
1.归纳法归纳法是根据已知数列中前几项,把同一个数列中的每一项视为全体项的一部分,由以已知项为特例,讨论出全体项的总体规律。
2.设数据项法设数据项法是根据数列的某项与它的前面几项的关系来建立通项公式的方法。
设数据项始终指代着形式未知却已给出它跟前几项关系的某一项,而根据设数据项得出的数列形式叫做设数据项形式,其通项公式就是设数据项形式的通项公式。
3.递推法递推法是根据数列中任一项与它的后面几项的关系,从已知项不断向前推出未知项,从而推出数列的通项公式的方法。
二、方程法方程法是利用数列的某一项与此数列的其它项的关系式组成的线性方程组或者非线性方程组,求解通项公式的概念,虽然它给出的通项公式也不易求解,但是它与构造法相比,可能会在某些情况下得到更简洁的通项公式,所以它也成为了求解数列通项公式常用的方法之一。
三、数学归纳法数学归纳法是一种利用一般性原理来更加正规地寻求数列通项公式的方法,它具有比构造法更多的优点,比如说,它可以处理更加复杂的情形(例如次通项不是已知项的一个常数倍)。
四、分析法分析法是指用分析几何和代数几何方法,通过考察数列中某几个项的构成方式,来推导出整个数列的通项公式的抽象方法。
五、导数比导数比是指根据数列的前几项来推算下一项的一种技巧,以项数为横坐标,相邻两项的比值为纵坐标构成一幅函数图象,然后根据曲线图象分析可以推出数列的某种规律,从而推出数列的通项公式。
六、逆序法逆序法是反其道而行之,以数列的最后一项为起点,根据已知的数列的前几项和最后一项的运算关系,得出最后一项的前一项,以此类推,一直到起始项,从而得出数列的通项公式的一种方法。
七、特殊函数解特殊函数解法是指利用特殊函数及其组合函数构成的数列通项公式的解法,在实际问题中,特殊函数有对数函数、指数函数、三角函数等,使用这些函数可以构成一种数列,从而求出数列的通项公式。
数列求通项公式的9种方法

例
9:已知数列{an} 满足 a1
1 , an1
an an
2
,求{an} 的通项公式.
例 10(拓展).设由 a1
1, an
an1
2n 1an1
n
1
2,3,定义数列an ,试将 an 用 n 来表示
变式训练 11
已知数列 {an }
满足
a1
1 , an1
变式训练 14
已知数列{an} 满足 a1
2 , an1
1 2 an
2n ,求{an} 的通项公式.
变式训练 15 已知数列{an} 满足 a1 1 , an1 2an 3 2n1 ,求{an} 的通项公式.
七、型如 an1 pan A0n B0 的数列
四、加法构造
型如 an1 kan b ( k、b 为常数)的数列构造{an } 为等比数列
例 7 已知数列{an} 满足 a1 2 , an1 2an 3 ,求{an} 的通项公式.
变式训练 9 已知数列{an} 满足 a1 1 , an1 3an 2 ,求{an} 的通项公式.
数列求通项公式常见的9种方法
知识复习
1、等差数列通项公式: an=a1+ (n-1)d an=am+(n-m)d
2、等比数列通项公式: an= a1·qn-1 am= a1·qn-m
一、利用 an 与 Sn 关系求 an
an=SS1n,-Sn-1,
n=1, n≥2.
例1 已知数列{an}的前n项和Sn,求数列{an}的通项公式.(1)Sn=2n-1;(2)Sn=2n2+ n+3.
变式训练 10
求数列的通项公式的八种方法(强烈推荐)

怎样由递推关系式求通项公式一、基本型:(1)a n =pa n-1+q (其中pq ≠0 ,p ≠1,p 、q 为常数)型:——运用代数方法变形,转化为基本数列求解.利用待定系数法,可在两边同时加上同一个数x ,即a 1+n + x = pa n + q + x ⇒a 1+n + x = p(a n +p x q +), 令x =px q + ∴x =1-p q时,有a 1+n + x = p(a n + x ),从而转化为等比数列 {a n +1-p q} 求解. 例1. 已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.-1练1.已知数列{a n }中,a 1=1,a n =21a 1-n + 1,n ∈ N +,求通项a n .a n = 2 -2n-1 ,n ∈N + 练2.已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.21nn a ∴=- 二、可化为基本型的数列通项求法: (一)指数型:a n=ca n-1+f(n)型 1、a 1=2,a n =4a n-1+2n (n ≥2),求a n .2、a 1=-1,a n =2a n-1+4〃3n-1(n ≥2),求a n .3、已知数列{}n a 中,1a =92,113232+-+=n n n a a (n ≥2),求n a .∴ n a =13)21(2+--n n(二)指数(倒数)型 1、a 1=1,2a n -3a n-1=(n ≥2),求a n .2、a 1=,a n+1=a n +()n+1,求a n . (三)可取倒数型:将递推数列1nn n ca a a d+=+(0,0)c d ≠≠,1、(2008陕西卷理22)(本小题满分14分)已知数列{a n }的首项135a =,1321n n n a a a +=+,12n = ,,. (Ⅰ)求{a n }的通项公式; 332nn n a ∴=+2、已知数列{}n a *()n N ∈中, 11a =,121nn n a a a +=+,求数列{}n a 的通项公式.∴121n a n =-. 3、若数列{a n }中,a 1=1,a 1+n =22+n na a n ∈N +,求通项a n . a n =4、 若数列{n a }中,1a =1,n S 是数列{n a }的前n 项之和,且nnn S S S 431+=+(n 1≥),求数列{n a }的通项公式是n a . 131-=n n S ⎪⎩⎪⎨⎧+⋅-⋅-=123833212n n n n a )2()1(≥=n n 三、叠加法:a n=a n-1+f(n)型:1.已知数列{a n }中, 11a =,1n-13n n a a -=+(2)n ≥。
求数列通项公式的十种办法

求数列通项公式的十种办法求数列的通项公式是数学中的一项重要工作。
下面列举了十种常用的求解数列通项公式的方法:1.递推法:这是最常见的一种方法。
通过观察数列中的规律,找出前一项与后一项之间的关系,并将其表达成递推公式,从而求得数列的通项。
例如斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(n)表示第n项,F(n-1)表示第n-1项,F(n-2)表示第n-2项。
2.数列差法:如果数列的前后两项之间的差值有规律可循,可以通过观察差的变化规律来得到通项公式。
例如等差数列:a(n)=a(1)+(n-1)d,其中a(n)表示第n项,a(1)表示首项,d表示公差。
3.数列比法:如果数列的前后两项之间的比值有规律可循,可以通过观察比的变化规律来得到通项公式。
例如等比数列:a(n)=a(1)*r^(n-1),其中a(n)表示第n项,a(1)表示首项,r表示公比。
4.代数方程法:数列中的数可以看作方程中的未知数,通过列方程组求解,得到方程的解即为数列的通项公式。
例如斐波那契数列可以通过矩阵的特征值和特征向量求得。
5.数列求和法:如果数列是由一个个项的和组成的,可以通过数列的求和公式求得通项公式。
例如等差数列的前n项和:S(n)=[n/2]*[2a(1)+(n-1)d],其中[n/2]表示n除以2的整数部分,a(1)表示首项,d表示公差。
6.数列积法:如果数列可以表达为一系列项的连乘积的形式,可以通过求取连乘积的对数,再利用对数运算得到通项公式。
例如等比数列的前n项积:P(n)=a(1)^n*(r^n-1)/(r-1),其中a(1)表示首项,r表示公比。
7.查表法:如果数列的部分项已知,可以通过列出表格的方式观察规律,推测出通项公式。
例如自然数列:1,2,3,...,通过观察可得到通项公式:a(n)=n。
8.数学归纳法:数学归纳法是一种证明方法,但也可以用来求数列的通项公式。
首先证明数列的通项公式对n=1成立,然后假设对n=k也成立,通过数学归纳法证明对n=k+1也成立,从而得到通项公式。
数列通项公式方法大全很经典
1,数列通项公式的十种求法:(1)公式法(构造公式法)例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
(2)累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。
数列通项公式方法大全很
数列通项公式方法大全很1.等差数列通项公式:等差数列是指数列中每一项与它前一项的差固定的数列。
设等差数列为{an},首项为a1,公差为d,第n项为an,则等差数列通项公式为:an = a1 + (n - 1)d。
2.等比数列通项公式:等比数列是指数列中每一项与它前一项的比值固定的数列。
设等比数列为{an},首项为a1,公比为r,第n项为an,则等比数列通项公式为:an = a1 * r^(n - 1)。
3.斐波那契数列通项公式:斐波那契数列是指数列中每一项等于前两项之和的数列。
设斐波那契数列为{an},首项为a1,第二项为a2,则斐波那契数列的通项公式为:an = a1 * f1 + a2 * f2,其中f1和f2分别为斐波那契数列中的两个常数,通常取f1 = (1 + sqrt(5)) / 2,f2 = (1 - sqrt(5)) / 24.等差中项公式:等差中项是指等差数列中任意两项之和的一半。
设等差数列为{an},第k项为ak,第m项为am,则等差中项公式为:ak+m = ak + am = 2 *a(k + m)/25.等比中项公式:等比中项是指等比数列中任意两项之积的平方根。
设等比数列为{an},第k项为ak,第m项为am,则等比中项公式为:ak * am = sqrt(ak * am) = sqrt(a(k + m)/2)。
6.递推关系求通项公式:有些数列没有明确的公差或公比,但可以通过递推关系来求出通项公式。
例如,Fibonacci数列的递推关系是an = an-1 + an-2,其中a1 = 1,a2 = 1,可以通过递推关系求出Fibonacci数列的通项公式。
以上是常见的数列通项公式方法的介绍。
根据数列中的特点和已知条件,选择适合的方法可以更快地求解出任意一项的值。
求数列通项公式的十种方法
求数列通项公式的十种方法求解数列通项公式是数学中的一个重要问题,对于一些特殊的数列,我们可以通过观察规律来找到通项公式,但对于一般的数列来说,我们需要使用一些数学工具和技巧来解决这个问题。
在下面,我将介绍十种常用的方法来求解数列的通项公式。
方法一:递推法递推法是一种常见的求解数列的方法,通过观察数列中相邻项之间的关系,可以找到递推公式。
常见的递推公式有线性递推和非线性递推两种形式。
方法二:列元法列元法是一种将数列元素列出来,然后通过观察数列元素之间的关系,找到通项公式的方法。
常见的列元法包括列出常数项和差项、连加项、平方项和立方项等。
方法三:指数递推法指数递推法是一种将数列元素进行指数递推,然后通过观察递推结果找到通项公式的方法。
常见的指数递推法包括指数增长、指数递减和二阶指数递增等。
方法四:利用级数对于一些复杂的数列,可以使用级数的方法来求解通项公式。
通过构造级数和求导积分等操作,可以得到数列的通项公式。
方法五:利用生成函数生成函数是一种将数列转化为多项式的方法,通过多项式的操作,可以得到数列的通项公式。
常见的生成函数包括普通生成函数和指数型生成函数。
方法六:利用逼近方法逼近方法是通过找到数列与一些函数逼近的关系,然后通过求解该函数的表达式来求解数列的通项公式。
常见的逼近方法包括泰勒级数逼近和拉格朗日插值等。
方法七:利用矩阵运算对于一些特殊的数列,可以使用矩阵运算的方法来求解通项公式。
通过构造矩阵和矩阵的运算,可以得到数列的通项公式。
方法八:利用线性代数利用线性代数的方法,可以将数列看作向量空间中的向量,通过线性变换和线性方程组的解来求解数列的通项公式。
方法九:利用特殊函数对于一些特殊的数列,可以使用特殊函数的方法来求解通项公式。
常见的特殊函数有二次函数、指数函数、对数函数、三角函数和双曲函数等。
方法十:利用离散数学离散数学是一种研究离散结构和离散规律的数学分支,通过利用离散数学的方法,可以求解数列的通项公式。
(完整版)求数列通项公式的十种方法
求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则 21321(1)(2)()n n a a f a a f a a f n +-=-=-=L L两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1,数列通项公式的十种求法:(1)公式法(构造公式法)例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nn a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。
评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n na a ++-=,说明数列{}2nn a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
(2)累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。
变式:已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
(3)累乘法例3已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+⨯转化为12(1)5n n na n a +=+,进而求出13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅,即得数列{}n a 的通项公式。
变式:已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式。
(4)待定系数法例4已知数列{}n a 满足112356n n n a a a +=+⨯=,,求数列{}n a 的通项公式。
解:设1152(5)n n n n a x a x +++⨯=+⨯④将1235n n n a a +=+⨯代入④式,得12355225n n n n n a x a x ++⨯+⨯=+⨯,等式两边消去2n a ,得135525n n n x x +⋅+⋅=⋅,两边除以5n ,得352,1,x x x +==-则代入④式得1152(5)n n n n a a ++-=- ⑤由1156510a -=-=≠及⑤式得50nn a -≠,则11525n n nn a a ++-=-,则数列{5}n n a -是以1151a -=为首项,以2为公比的等比数列,则152n n n a --=,故125n n n a -=+。
评注:本题解题的关键是把递推关系式1235n n n a a +=+⨯转化为1152(5)n n n n a a ++-=-,从而可知数列{5}n n a -是等比数列,进而求出数列{5}n n a -的通项公式,最后再求出数列{}n a 的通项公式。
变式:①已知数列{}n a 满足1135241n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
②已知数列{}n a 满足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式。
(5)对数变换法例5已知数列{}n a 满足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式。
解:因为511237n n n a a a +=⨯⨯=,,所以100n n a a +>>,。
在5123n n n a a +=⨯⨯式两边取常用对数得1lg 5lg lg3lg 2n n a a n +=++⑩设1lg (1)5(lg )n n a x n y a xn y ++++=++ ○11 将⑩式代入○11式,得5lg lg3lg 2(1)5(lg )n n a n x n y a xn y +++++=++,两边消去5lg n a 并整理,得(lg3)lg 255x n x y xn y ++++=+,则lg35lg 25x x x y y +=⎧⎨++=⎩,故lg34lg3lg 2164x y ⎧=⎪⎪⎨⎪=+⎪⎩ 代入○11式,得1lg3lg3lg 2lg3lg3lg 2lg (1)5(lg )41644164n n a n a n +++++=+++ ○12 由1lg3lg3lg 2lg3lg3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠及○12式,得lg3lg3lg 2lg 04164n a n +++≠, 则1lg3lg3lg 2lg (1)41645lg3lg3lg 2lg 4164n n a n a n +++++=+++, 所以数列lg3lg3lg 2{lg }4164n a n +++是以lg3lg3lg 2lg 74164+++为首项,以5为公比的等比数列,则1lg3lg3lg 2lg3lg3lg 2lg (lg 7)541644164n n a n -+++=+++,因此1111111116164444111111161644441111111616444455514lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464(lg 7lg 3lg 3lg 2)5lg 3lg 3lg 2[lg(7332)]5lg(332)lg(7332)5lg(332)lg(733n n n n n n n n n n n n a n ---------=+++---=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅1115116454151511642)lg(732)n n n n n -------⋅=⋅⋅则11541515164732n n n n n a -----=⨯⨯。
评注:本题解题的关键是通过对数变换把递推关系式5123n n n a a +=⨯⨯转化为1lg3lg3lg 2lg3lg3lg 2lg (1)5(lg )41644164n n a n a n +++++=+++,从而可知数列lg3lg3lg 2{lg }4164n a n +++是等比数列,进而求出数列lg3lg3lg 2{lg }4164n a n +++的通项公式,最后再求出数列{}n a 的通项公式。
(6)数学归纳法例6已知数列{}n a 满足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式。
解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得 由此可猜测22(21)1(21)n n a n +-=+,往下用数学归纳法证明这个结论。
(1)当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立。
(2)假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时,由此可知,当1n k =+时等式也成立。
根据(1),(2)可知,等式对任何*n N ∈都成立。
评注:本题解题的关键是通过首项和递推关系式先求出数列的前n 项,进而猜出数列的通项公式,最后再用数学归纳法加以证明。
(7)换元法例7已知数列{}n a 满足111(14116n n a a a +=++=,,求数列{}n a 的通项公式。
解:令n b =21(1)24n n a b =-故2111(1)24n n a b ++=-,代入11(1416n n a a +=++得 即2214(3)n n b b +=+因为0n b =≥,故10n b +=则123n n b b +=+,即11322n n b b +=+,可化为113(3)2n n b b +-=-,所以{3}n b -是以13332b -===为首项,以21为公比的等比数列,因此121132()()22n n n b ---==,则21()32n n b -=+21()32n -=+,得2111()()3423n n n a =++。
n b ,使得所给递推关系式转化11322n n b b +=+形式,从而可知数列{3}n b -为等比数列,进而求出数列{3}n b -的通项公式,最后再求出数列{}n a 的通项公式。
(8)不动点法例8已知数列{}n a 满足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式。
解:令212441x x x -=+,得2420240x x -+=,则1223x x ==,是函数2124()41x f x x -=+的两个不动点。
因为112124224121242(41)13262132124321243(41)92793341n n n n n n n n n n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+。
所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭是以112422343a a --==--为首项,以913为公比的等比数列,故12132()39n nn a a --=-,则113132()19n n a -=+-。
评注:本题解题的关键是先求出函数2124()41x f x x -=+的不动点,即方程212441x x x -=+的两个根1223x x ==,,进而可推出112213393n n n n a a a a ++--=⋅--,从而可知数列23n n a a ⎧⎫-⎨⎬-⎩⎭为等比数列,再求出数列23n n a a ⎧⎫-⎨⎬-⎩⎭的通项公式,最后求出数列{}n a 的通项公式。