数列通项公式前n项和求法总结全
数列求前N项和方法总结(方法大全

数列求前N项和方法总结(方法大全数列是一组按照一定规律排列的数。
在数列中,常常需要求出数列的前N项和,以便进一步分析和运用。
下面将对常见的数列的前N项和求解方法进行总结。
1.等差数列:等差数列是相邻两项之差相等的数列。
记数列首项为a,公差为d,第n项为an。
a.求前N项和公式:Sn = (a + an) * n / 2b.证明:首先将等差数列分为两部分:第一部分是首项a和末项an,共有n 项,它们的和为 (a + an) * n / 2;第二部分是每一项与对应的倒数项的和,它们的和恰好也是 (a + an) * n / 2、将两部分的和相加即得 Sn = (a + an) * n / 22.等比数列:等比数列是相邻两项之比相等的数列。
记数列首项为a,公比为r,第n项为an。
a.公比不为1的情况:求前N项和公式:Sn=a*(1-r^n)/(1-r)b.公比为1的情况:求前N项和公式:Sn=a*nc.证明:利用等比数列的性质,将等比数列的前N项和与它的下一项相乘,两者相减可得到Sn=a*(1-r^n)/(1-r)。
3.平方数列:平方数列是由平方数组成的数列,例如1,4,9,16,25,...。
a.求前N项和公式:Sn=n*(n+1)*(2n+1)/6b.证明:利用平方数的性质,可以得到平方数列的前N项和的通项公式为Sn=n*(n+1)*(2n+1)/64.立方数列:立方数列是由立方数组成的数列,例如1,8,27,64,125,...。
a.求前N项和公式:Sn=(n*(n+1)/2)^2b.证明:利用立方数的性质,可以得到立方数列的前N项和的通项公式为Sn=(n*(n+1)/2)^25.斐波那契数列:斐波那契数列是指从0和1开始,后一项等于前两项之和的数列,例如0,1,1,2,3,5,...。
a.求前N项和公式:Sn=F(n+2)-1其中F(n)是斐波那契数列的第n项。
b.证明:通过归纳法可以证明斐波那契数列的前N项和等于第N+2项减去1除了上述常见的数列,还有很多其他的数列以及求前N项和的方法。
求数列通项公式+求数列前 N项和的常用方法

的前n项和Sn 解:
点拨:这道题只要经过简单整理,就可以很明显 的看出:这个数列可以分解成两个数列,一个等差 数列,一个等比数列,再分别运用公式求和,最后 把两个数列的和再求和。 三.用裂项相消法求数列的前n项和
裂项相消法是将数列的一项拆成两项或多项,使 得前后项相抵消,留下有限项,从而求出数列的前 n项和。
例题3:求数列
(n∈N*)的和 解:
点拨:此题先通过求数列的通项找到可以裂项的 规律,再把数列的每一项拆开之后,中间部分的项 相互抵消,再把剩下的项整理成最后的结果即可。
四.用错位相减法求数列的前n项和 错位相减法是一种常用的数列求和方法,应用于
等比数列与等差数列相乘的形式。即若在数列 {an·bn}中,{an}成等差数列,{bn}成等比数列,在 和式的两边同乘以公比,再与原式错位相减整理后 即可以求出前n项和。
例题4:求数列{nan}(n∈N*)的和 解:设 Sn = a + 2a2 + 3a3 + … + nan①
则:aSn = a2 + 2a3 + … + (n-1)an + nan+1② ①-②得:(1-a)Sn = a + a2 + a3 + … + an nan+1③ 若a = 1则:Sn = 1 + 2 + 3 + … + n =
求数列 前N项和的常用方法 核心提示:求数列的前n项和要借助于通项公式,即先有通项公式, 再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为 基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律, 找到适合的方法解题。
一.用倒序相加法求数列的前n项和
求数列前n项和8种的方法(史上最全)

求数列前n 项和8种的方法一.公式法(定义法): 1.等差数列求和公式:11()(1)22n n n a a n n S na d ++==+特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =时,1n S na =; (2)()1111nn a q q S q-≠=-,,特别要注意对公比的讨论;3.可转化为等差、等比数列的数列;4.常用公式:(1)1nk k ==∑12123(1)n n n ++++=+;(2)21nk k ==∑222216123(1)(21)n n n n ++++=++;(3)31nk k ==∑33332(1)2123[]n n n +++++=;(4)1(21)n k k =-=∑2n 1)-(2n ...531=++++.例1 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32=xx x n--1)1(=211)211(21--n =1-n 21例2 设123n s n =++++,*n N ∈,求1)32()(++=n nS n S n f 的最大值.解:易知 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n nS n S n f =64342++n n n=n n 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f .二.倒序相加法:如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。
求前N项和方法技巧及公式

求前N项和方法技巧及公式前N项和是指将一个数列的前N项相加得到的和。
计算前N项和可以使用不同的方法和技巧,包括数学公式、推导公式和逐项相加等。
一、数学公式法对于一些特定的数列,存在求前N项和的数学公式,可以直接使用这些公式计算前N项和,而无需逐项相加。
1.等差数列的前N项和公式对于等差数列,其通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
前N项和公式如下:Sn = (a1 + an) * N / 2 = N * (a1 + a1 + (N-1)d) / 2 = N *(2a1 + (N-1)d) / 22.等比数列的前N项和公式对于等比数列,其通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比。
前N项和公式如下:Sn=a1*(1-r^N)/(1-r)3.平方数序列的前N项和公式对于平方数序列,其通项公式为an = n^2,其中n为正整数。
前N项和公式如下:Sn=n*(n+1)*(2n+1)/6二、推导公式法对于一些特殊的数列,我们可以通过推导得到求前N项和的公式。
推导过程中可以使用数学归纳法、代数运算等方法。
1.等差数列的前N项和公式的推导设等差数列的首项为a,公差为d,第N项为an,则有:an = a + (N-1)dSn=a+(a+d)+(a+2d)+...+(a+(N-1)d)根据等差数列的性质,可以将Sn分为两部分:Sn=(a+(N-1)d)+(a+(N-2)d)+...+(a+d)+a将两式相加,可得:2Sn=(N*a)+(N*a+(N-1)*d)+...+((N-1)d+a)+(Nd)化简后得到等差数列的前N项和公式。
2.等比数列的前N项和公式的推导设等比数列的首项为a,公比为r,第N项为an,则有:an = a * r^(N-1)Sn=a+a*r+a*r^2+...+a*r^(N-1)Sn*r=a*r+a*r^2+...+a*r^N将两式相减Sn*(1-r)=a*(1-r^N)化简后得到等比数列的前N项和公式。
数列的前n项和方法总结

数列的前n项和方法总结
数列是数学中常见的一种数值序列,求解数列的前n项和在许多数学和实际问题中都具有重要意义。
下面是关于数列的前n项和的几种常见方法总结:
1. 等差数列的前n项和:
若数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,那么数列的前n项和Sn = (n/2)(a1 + an)。
2. 等比数列的前n项和:
若数列的通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比(r ≠ 0),那么数列的前n项和Sn = a1 * (1-r^n)/(1-r)。
3. 斐波那契数列的前n项和:
斐波那契数列是一种特殊的数列,前两项为1,后续项为前两项之和。
若n 为正整数,那么斐波那契数列的前n项和为Sn = F(n+2) - 1,其中F(n)表示第n项斐波那契数。
4. 平方数列的前n项和:
平方数列是一种特殊的数列,每一项都是某个正整数的平方。
若数列的通项公式为an = n^2,那么数列的前n项和Sn = (n(n+1)(2n+1))/6。
5. 等差子数列的前n项和:
若一个数列是等差数列的子数列,其公差与等差数列相同,那么子数列的前n项和等于原等差数列的前n项和减去首项之前的和。
以上是几种常见数列的前n项和的求解方法。
在实际应用中,根据数列的特点和通项公式选择适当的方法来计算数列的前n项和会更加高效和方便。
数列通项公式和前n项和常见求法

数列通项公式的常见求法一.公式法1、等差数列公式 例1、(2011辽宁理)已知等差数列{a n }满足a 2=0,a 6+a 8=-10 (I )求数列{a n }的通项公式;2、等比数列公式例2.(2011重庆理)设{}n a 是公比为正数的等比数列,12a =,324a a =+。
(Ⅰ)求{}n a 的通项公式3、通用公式若已知数列的前n 项和n S 的表达式,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥-==-211n S S n S a n n n n ΛΛΛΛΛ 求解。
一般先求出a1=S1,若计算出的an 中当n=1适合时可以合并为一个关系式,若不适合则分段表达通项公式。
例3、已知数列}{n a 的前n 项和12-=n s n ,求}{n a 的通项公式。
二.当题中告诉了数列任何前一项和后一项的递推关系即:n a 和a n-1的关系时我们可以根据具体情况采用下列方法 1、叠加法一般地,对于型如)(1n f a a n n +=+类的通项公式,且)()2()1(n f f f +++Λ的和比较好求,我们可以采用此方法来求n a 。
即:11221()()()n n n n n a a a a a a a ---=-+-++-L 1a +(2)n ≥; 例4、(2011四川理8)数列{}n a 的首项为3,{}n b 为等差数列且1(*)n n n b a a n N +=-∈.若则32b =-,1012b =,则8a =A .0B .3C .8D .112、叠乘法一般地对于形如“已知a 1,且n1n a a +=f (n )(f (n )为可求积的数列)”的形式可通过叠乘法求数列的通项公式。
即:121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅L (2)n ≥; 例6、在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。
数列通项公式和前n项和求解方法(全)

数列通项公式和前n项和求解方法(全)数列通项公式的求法详解n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式:(1)9,99,999,9999,…(2) ,17164,1093,542,211(3) ,52,21,32,1(4) ,54,43,32,21-- 答案:(1)110-=nna (2);122++=n n n a n (3);12+=n a n(4)1)1(1+⋅-=+n na n n .公式法1:特殊数列例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),求数列{ a n }和{ b n }的通项公式。
答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1例3. 等差数列{}na 是递减数列,且432a a a⋅⋅=48,432a a a++=12,则数列的通项公式是( )(A) 122-=n an(B) 42+=n an(C) 122+-=n an(D)102+-=n a n 答案:(D)例4. 已知等比数列{}na 的首项11=a ,公比10<<q ,设数列{}nb 的通项为21+++=n n na a b,求数列{}nb 的通项公式.简析:由题意,321++++=n n n a a b,又{}na 是等比数列,公比为q ∴q a a a a b b n n n n n n =++=+++++21321,故数列{}nb 是等比数列,易得)1()1(1+=⋅+=-q q q q q bn n n.点评:当数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求首项及公差公比. 公式法2: 知ns 利用公式 ⎩⎨⎧≥-==-2,1,11n S S n s an n n.例5:已知下列两数列}{na 的前n 项和s n 的公式,求}{na 的通项公式.(1)13-+=n n Sn. (2)12-=n sn答案:(1)na =3232+-n n,(2)⎩⎨⎧≥-==)2(12)1(0n n n an点评:先分n=1和2≥n 两种情况,然后验证能否统一.【型如)(1n f a a nn +=+的地退关系递推关系】 简析:已知a a =1,)(1n f a a nn =-+,其中f(n)可以是关于n 的一次、二次函数、指数函数、分式函数,求通项na .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ② 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n 的二次函数,累加后可分组求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和各式相加得例5:已知数列6,9,14,21,30,…求此数列的一个通项. 答案:)(52N n n a n∈+=例 6. 若在数列{}na 中,31=a,nn n a a21+=+,求通项na .答案:na =12+n例7.已知数列}{na 满足31=a,)2()1(11≥-+=-n n n a an n,求此数列的通项公式. 答案:nan12-=【 形如1+n a =f (n)·n a 型】(1)当f(n)为常数,即:qaa nn =+1(其中q 是不为0的常数),此时数列为等比数列,na =11-⋅n q a.(2)当f(n)为n 的函数时,用累乘法.例8:在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式. 例9: 已知数列{}na 中,311=a ,前n 项和n S 与na 的关系是 nn a n n S )12(-= ,试求通项公式na . .答案:.)12(12(1-+=n n a n 思考题1:已知1,111->-+=+a n na an n ,求数列{a n }的通项公式.分析:原式化为 ),1(11+=++nn a n a 若令1+=n na b,则问题进一步转化为nn nb b =+1形式,累积得解.构造1:【形如0(,1≠+=+c d ca an n ,其中aa=1)型】 (1)若c=1时,数列{na }为等差数列; (2)若d=0时,数列{na }为等比数列;(3)若01≠≠且d c 时,数列{na }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法如下:设)(1λλ+=++n n a c a,得λ)1(1-+=+c ca an n ,与题设,1d ca an n +=+比较系数得)0(,1≠-=c c d λ, 所以:)1(11-+=-+-c d a c c d an n,即⎭⎬⎫⎩⎨⎧-+1c d an 构成以11-+c d a为首项,以c 为公比的等比数列.例10:已知数}{na 的递推关系为121+=+n n a a ,且11=a求通项na .答案:12-=n na构造2:相邻项的差为特殊数列 例11:在数列{}na 中,11=a,22=a,n n n a a a313212+=++,求na .提示:变为)(31112n n n n a a a a--=-+++.构造3:倒数为特殊数列【形如sra pa a n n n+=--11】例12: 已知数列{na }中11=a且11+=+n n n a a a(N n ∈),,求数列的通项公式. 答案 nb a n n11==例13:设数列}{nc 的各项是一个等差数列与一个等比数列对应项的和,若c 1=2,c 2=4,c 3=7,c 4=12,求通项公式c n解析:设1)1(-+-+=n nbq d n a c建立方程组,解得. 点评:用待定系数法解题时,常先假定通项公式或前n 项和公式为某一多项式,一般地,若数列}{na 为等差数列:则cbn an+=,cnbn s n +=2(b 、c为常数),若数列}{na 为等比数列,则1-=n nAq a,)1,0(≠≠-=q Aq A Aq sn n.例14:(1)数列{na }满足01=a,且)1(2121-=++++-n a a a an n ,求数列{a n }的通项公式. 解析:由题得)1(2121-=++++-n a a a a n n ①2≥n 时,)2(2121-=+++-n a a a n ②由①、②得⎩⎨⎧≥==2,21,0n n an.(2)数列{na }满足11=a,且2121n a a a a n n =⋅⋅- ,求数列{a n }的通项公式(3)已知数列}{na 中,,2121,211+==+n n a a a求通项na .八、【讨论法-了解】(1)若da an n =++1(d 为常数),则数列{na }为“等和数列”,它是一个周期数列,周期为2,其通项分为奇数项和偶数项来讨论.(2)形如)(1n f a an n =⋅+型①若pa an n =⋅+1(p 为常数),则数列{na }为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;②若f(n)为n 的函数(非常数)时,可通过逐差法得)1(1-=⋅-n f a an n,两式相除后,分奇偶项来分求通项.例15: 数列{na }满足01=a,21=++n n a a,求数列{a n }的通项公式.专题二:数列求和方法详解(六种方法)1、等差数列求和公式:d n n na a a n n 2)1(2)(123-+==+=-2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a q q a q na S n n n[例1] 已知3log 1log23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x xx 32的前n 项和.答案xx x s n n --=1)1([例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nSn Sn f 的最大值. 答案n =8时,501)(max =n f方法简介:此法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n nx n x x x S ………………………①(1≠x )解析:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积:设nnx n x x x x xS)12(7531432-+⋅⋅⋅++++=…②①-②得 nn nx n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:nn n x n xx x S x )12(1121)1(1----⋅+=--.∴21)1()1()12()12(x x x n x n S n n n -+++--=+.试一试1:求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和.答案: 1224-+-=n nn S方法简介:这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1na a +,然后再除以2得解.[例4] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值 .答案S =44.5方法简介:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公式②由通项公式确定如何分组;[例5] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a aa n ,…答案2)13(11nn a a a s n n -+--=-.试一试 1 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.简析:由于与nkk k a =-=⋅⋅⋅⨯=⋅⋅⋅)110(91999991111111 个个、分别求和.方法简介:这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项及分母有理化)如:(1))()1(n f n f an-+= ;(2)11++=n n a n =nn -+1;(3)nn n n tan )1tan()1cos(cos 1sin -+=+;4)111)1(1+-=+=n n n n a n (5))121121(211)12)(12()2(2+--+=+-=n n n n n a n .[例6] 求数列⋅⋅⋅++⋅⋅⋅++,21,,421,311n n 的前n 项和.[例7] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n,又12+⋅=n n na a b,求数列{b n }的前n 项的和.试一试1:已知数列{a n }:)3)(1(8++=n n a n,求前n 项和. 试一试2:1003211321121111+++++++++++ ..方法简介:针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例8] 求cos1°+ cos2°+ cos3°+···+ cos178°+cos179°的值.答案 0[例9] 数列{a n }:nn n a a a a a a-====++12321,2,3,1,求S 2002.(周期数列)[例10] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值; 答案 10。
(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结数列是数学中一个重要的概念,也是数学中常见的题型之一。
数列题目通常会给出一定的条件和规律,要求我们找出数列的通项公式、前n项和等相关内容。
下面对数列题型及解题方法进行归纳总结。
一、数列的基本概念1. 数列的定义:数列是按照一定规律排列的一列数,用通项公式a_n表示。
2. 首项和公差:对于等差数列,首项是指数列的第一个数,公差是指相邻两项之间的差值。
通常用a1表示首项,d表示公差。
3. 首项和公比:对于等比数列,首项是指数列的第一个数,公比是指相邻两项之间的比值。
通常用a1表示首项,r表示公比。
二、等差数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公差,求第n项的值。
使用通项公式a_n = a1 + (n-1)d。
(2)已知相邻两项的值,求公差。
根据 a_(n+1) - a_n = d,解方程即可。
(3)已知首项和第n项的值,求公差。
根据 a_n = a1 + (n-1)d,解方程即可。
2. 找前n项和:(1)已知首项、公差和项数,求前n项和。
使用公式S_n= (n/2)(a1 + a_n)。
(2)已知首项、末项和项数,求公差。
由于S_n =(n/2)(a1 + a_n),可以列方程求解。
(3)已知首项、公差和前n项和,求项数。
可以列方程并解出项数。
3. 找满足条件的项数:(1)已知首项、公差和条件,求满足条件的项数。
可以列方程,并解出项数。
三、等比数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公比,求第n项的值。
使用通项公式a_n = a1 * r^(n-1)。
(2)已知相邻两项的值,求公比。
根据 a_n / a_(n-1) = r,解方程即可。
(3)已知首项和第n项的值,求公比。
根据 a_n = a1 * r^(n-1),解方程即可。
2. 找前n项和:(1)已知首项、公比和项数,求前n项和。
使用公式S_n = (a1 * (1 - r^n)) / (1 - r)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.数列通项公式求法总结:1.定义法 —— 直接利用等差或等比数列的定义求通项。
特征:适应于已知数列类型(等差或者等比).例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.变式练习:1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式2. 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和.2.公式法求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 求解。
特征:已知数列的前n 项和n S 与n a 的关系例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。
(1)13-+=n n S n 。
(2)12-=n s n 变式练习:1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2+n ,n ∈N ﹡,数列{b }n 满足n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。
2. 已知数列{}n a 的前n 项和212n S n kn =-+(*k N ∈),且S n 的最大值为8,试确定常数k并求n a 。
3. 已知数列{}n a 的前n 项和*∈+=N n nn S n ,22.求数列{}n a 的通项公式。
3.由递推式求数列通项法类型1 特征:递推公式为)(1n f a a n n +=+对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。
例3. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
变式练习:1. 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
2.已知数列: 求通项公式类型2 特征:递推公式为 n n a n f a )(1=+对策:把原递推公式转化为)(1n f a a nn =+,利用累乘法求解。
例4. 已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。
变式练习:1.已知数列{}n a 中,12a =,13n n n a a +=,求通项公式n a 。
2.设{}n a 是首项为1的正项数列,且()221110n n n n n a na a a +++-+=(n =1,2, 3,…),求数列的通项公式是n a类型3 特征:递推公式为q pa a n n +=+1(其中p ,q 均为常数)对策:(利用构造法消去q )把原递推公式转化为由q pa a n n +=+1得1(2)n n a pa q n -=+≥两式相减并整理得11,n nn n a a p a a +--=-构成数列{}1n n a a +-以21a a -为首项,以p 为公比的等比数列.求出{}1n n a a +-的通项再转化为类型1(累加法)便可求出.n a例5. 已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .变式练习:1. 数列{a n }满足a 1=1,0731=-++n n a a ,求数列{a n }的通项公式。
2. 已知数列{}n a 满足1a =1,131n n a a +=+.证明{}12n a +是等比数列,并求{}n a 的通项公式。
类型4特征:递推公式为1()n n a pa f n +=+(其中p 为常数)对策:(利用构造法消去p )两边同时除以1n p +可得到111()n n n n n a a f n p p p +++=+,令nn n a b p =,则11()n n n f n b b p++=+,再转化为类型1(累加法),求出n b 之后得nn n a p b = 例6.已知数列{}n a 满足1112431n n n a a a -+=+⋅=,,求数列{}n a 的通项公式。
变式练习:已知数列{}n a 满足11=a ,123-+=n n n a a )2(≥n ,求n a .二.数列的前n 项和的求法总结1.公式法(1)等差数列前n 项和:11()(1)22n n n a a n n S na d ++==+ (2)等比数列前n 项和:q=1时,1n S na =例1. 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 变式练习:1.设等比数列{}n a 的前n 项和为n S .已知26,a =13630,a a +=求n a 和n S .2.设{}n a 是等差数列,{}n b 是各项均为正数的等比数列,且111a b ==,3521a b +=,5313a b +=。
(1)求n a ,n b ;(2)求数列{}n nba 的前n 项和n S 。
2.错位相减法①若数列{}n a 为等差数列,数列{}n b 为等比数列,则数列{}n n a b ⋅的求和就要采用此法. ②将数列{}n n a b ⋅的每一项分别乘以{}n b 的公比,然后在错位相减,进而可得到数列{}n n a b ⋅的前n 项和.例2.求2311234n x x x nx -+++++……的和变式练习:1. 已知数列{}n a 的前n 项和为n S ,且n S =22n n +,n∈N﹡,数列{}n b 满足24log 3nb n a =+n∈N﹡.(1)求n a ,n b ;(2)求数列{}n n a b ⋅的前n 项和n T .2.若公比为c 的等比数列{}n a 的首项为11a =,且满足12(3,4,...)2n n n a a a n --+==。
(1)求c 的值;(2)求数列{}n na 的前n 项和n S3.倒序相加法如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,则可用把正着写与倒着写的两个和式相加,就得到了一个常数列的和,这种求和方法称为倒序相加法。
特征:121...n n a a a a -+=+=把数列的各项顺序倒写,再与原来顺序的数列相加。
例3.已知,则f x x xf f f f f f f ()()()()()=+++⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪=2211212313414变式练习:1. 求222222222222123101102938101++++++++的和.2. 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值。
4.裂项相消法一般地,当数列的通项12()()n ca anb an b =++ 12(,,,a b b c 为常数)时,往往可将n a 变成两项的差,采用裂项相消法求和.可用待定系数法进行裂项:设12n a an b an b λλ=-++,通分整理后与原式相比较,根据对应项系数相等得21c b b λ=-,从而可得12211211=().()()()c c an b an b b b an b an b -++-++ 常用裂项形式有:①111(1)1n n n n =-++; ② 1111()()n n k k n n k=-++;③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k -=<<=-++--; ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤=<<=例4.求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和S.变式练习:1. 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 2. 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (I)求数列{}n a 的通项公式.(II)设 31323log log log ,n n b a a a =++⋅⋅⋅+求数列1n b ⎧⎫⎨⎬⎩⎭的前项和.5.分组求和法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公式②由通项公式确定如何分组.例5.求数列11111246248162n n ++,,,,,的前n 项和n S .变式练习:1.求数列11111,2,3,4,392781的前n 项和2.若数列{}n a 的通项公式231(0)n n a a na a =+-≠,求{}n a 的前n 项和6.记住常见数列的前n 项和:①(1)123...;2n n n +++++=②2135...(21);n n ++++-=③22221123...(1)(21).6n n n n ++++=++例6.求22222222235721()11212312n n n*+++++∈++++++N 的和. 变式练习:求数列{(1)(21)}n n n ++的前n 项和.。