低电压带隙基准电压源的设计解析
低功耗带隙基准电压源电路设计

低功耗带隙基准电压源电路设计蒋本福【摘要】文章提出一种三层self-cascode管子工作在亚阈值区的低功耗带隙基准电压源电路.该电路具有电路结构简单、功耗低、温度系数小、线性度小和面积小等特点.采用CSMC 0.18μm的标准CMOS工艺,华大九天Aether软件验证平台进行仿真.仿真结果表明,在tt工艺角下电路的启动时间为6.64μs,稳定输出的基准电压Vref为567 mV;当温度在-40℃~125℃范围内时,tt工艺角下基准电压Vref的温度系数TC为18.8 ppm/℃;电源电压在1.2 V~1.8 V范围内时,tt工艺角下基准电压Vref的线性度为2620 ppm/V;在10 Hz~1 kHz带宽范围内,tt工艺角下基准电压Vref的电源抑制比(PSRR)为51 dB;版图核心面积为0.00195 mm2.【期刊名称】《微型机与应用》【年(卷),期】2017(036)003【总页数】3页(P39-41)【关键词】Aether软件;功耗;温度系数;线性度;面积【作者】蒋本福【作者单位】吉林大学珠海学院,广东珠海519000【正文语种】中文【中图分类】TN432在模拟IC和混合IC中,带隙基准电压是不可缺少的电路模块。
传统的低压、低功耗带隙基准电路是基于垂直双极晶体管,在文献[1-2]中分别提出了多种设计方法。
然而,这些方法都需要几百兆欧姆的电阻实现低功耗运行,占用较大芯片面积,浪费资源。
参考文献[3]也提出了由几个工作在亚阈值区的MOS管组成的电路,虽然保证了低功耗,但是也出现了温度补偿不够等问题。
为了实现低温漂带隙基准电压电路,高阶温度补偿技术[5]必须得到广泛应用,以减小带隙电压的温度系数。
因此本文提出在低功耗的带隙基准基础上增加高阶温度补偿电路来实现低温漂基准电压电路。
电路原理图如图1所示,主要由启动电路[4]、电流产生电路[5]和self-cascode[4-5]自偏置电路三部分组成。
带隙基准电压源设计解析

0 引言基准电压是集成电路设计中的一个重要部分,特别是在高精度电压比较器、数据采集系统以及A/D和 D/A转换器等中,基准电压随温度和电源电压波动而产生的变化将直接影响到整个系统的性能。
因此,在高精度的应用场合,拥有一个具有低温度系数、高电源电压抑制的基准电压是整个系统设计的前提。
传统带隙基准由于仅对晶体管基一射极电压进行一阶的温度补偿,忽略了曲率系数的影响,产生的基准电压和温度仍然有较大的相干性,所以输出电压温度特性一般在20 ppm/℃以上,无法满足高精度的需要。
基于以上的要求,在此设计一种适合高精度应用场合的基准电压源。
在传统带隙基准的基础上利用工作在亚阈值区MOS管电流的指数特性,提出一种新型二阶曲率补偿方法。
同时,为了尽可能减少电源电压波动对基准电压的影响,在设计中除了对带隙电路的镜相电流源采用cascode结构外还增加了高增益反馈回路。
在此,对电路原理进行了详细的阐述,并针对版图设计中应该的注意问题进行了说明,最后给出了后仿真结果。
l 电路设计1.1 传统带隙基准分析通常带隙基准电压是通过PTAT电压和CTAT电压相加来获得的。
由于双极型晶体管的基一射极电压Vbe呈负温度系数,而偏置在相同电流下不同面积的双极型晶体管的基一射极电压之差呈正温度系数,在两者温度系数相同的情况下将二者相加就得到一个与温度无关的基准电压。
传统带隙电路结构如图1所示,其中Q2的发射极面积为Q1和Q3的m倍,流过Q1~Q3的电流相等,运算放大器工作在反馈状态,以A,B两点为输入,驱动Q1和Q2的电流源,使A,B两点稳定在近似相等的电压上。
假设流过Q1的电流为J,有:由于式(5)中的第一项具有负温度系数,第二项具有正温度系数,通过调整m值使两项具有大小相同而方向相反的温度系数,从而得到一个与温度无关的电压。
理想情况下,输出电压与电源无关。
然而,标准工艺下晶体管基一射极电压Vbe随温度的变化并非是纯线性的,而且由于器件的非理想性,输出电压也会受到电源电压波动的影响。
带隙基准源原理简介

带隙基准源原理简介带隙基准源原理简介1.1基准电压源的⼏项主要性能指标产⽣基准的⽬的是建⽴⼀个与电源和⼯艺⽆关、具有确定温度特性的直流电压。
因此,基准的设计就是要解决以下两个问题:与电源⽆关的偏置和温度关系的确定。
利⽤正温度系数电压和负温度系数电压,我们可以可以设计出⼀个令⼈满意的零温度系数的基准,这就是带隙基准电压源。
下⾯我们来介绍基准电压源的⼏项主要性能指标。
1.1.1温度系数温度系数(Temperature Coefficient,单位ppm/oC)是基准电压源在整个扫描的⼯作温度范围内,输出电压的最⼤值和最⼩值的差值,相对于正常输出电压的变化。
温度系数表征基准电压源电路受温度变化影响的⼤⼩,性能优异的基准源电路设计具有⾮常⼩的温度系数。
温度的变化⽽引起输出电压的变化,其单位表⽰为ppm/oC,计算公式如下所⽰:(2-1)1.1.2电源抑制⽐电源抑制⽐(PSRR:Power supply Rejeetion Ratio,单位:分贝或dB)在⼩信号情况下,基准电压源的输出变化量与电源电压的变化量之⽐。
基准电压源电路的输出电压,既要受到环境温度的影响,⽽且还要受到电源电压噪声的影响。
所以性能优良的基准电压源电路,能够很好的抑制电源电压对于电路的影响。
1.1.3线性调整率在直流状态下,电源电压的波动对于基准源的影响程度。
其公式为:(2-2)1.1.4建⽴时间从电源上电到基准源输出达到正常输出电压的那段时间。
1.2传统带隙基准源的基本原理和结构1.1.1 概述基准源在集成电路设计中是极其重要的基本单元电路,然后在不同的应⽤电路中经常需要设计不同的基准源。
⽐如传统的带隙基准源电路,具有较低的温度系数、较低的电源电压以及可以与标准CMOS⼯艺兼容等等特点,成为⼀种⼴泛使⽤的典型基准源电路模块。
设计基准电路的⽬的是为了建⽴⼀个与电源和⼯艺都⽆关,⽽且具有确定温度特性的电流或电压。
由于许多⼯艺参数要随温度的改变⽽改变,所以如果所设计的基准源与温度没有关系的话,那么它与⼯艺也是没有关系的。
一阶和二阶温度补偿低压带隙基准电路设计

一阶和二阶温度补偿低压带隙基准电路设计好吧,咱们今天聊聊一阶和二阶温度补偿低压带隙基准电路设计。
你知道吗?这个话题听起来挺复杂的,但其实也没那么可怕。
就像调味料一样,适量就好,弄得太复杂反而没意思。
你说这低压带隙基准电路,听名字就觉得高大上,像是个科技高手,其实它的作用就是提供一个稳定的电压。
就好比我们喝水的时候,水温太高或太低都不合适,电路也要稳定,才能正常运作。
说到温度补偿,大家都知道,天气一变,温度一上升,电子元件就像受了刺激,表现也会跟着波动。
想象一下,夏天外面热得像蒸笼,电路里也热得不行,那可真是个大麻烦。
因此,我们需要一阶和二阶温度补偿来对付这些温度变化,像是在夏天给电路穿上清凉衣,让它舒舒服服的。
一阶补偿呢,简单点说就是用一些简单的技术手段来让电压不受温度影响。
就像你喝冰水的时候,嘴里清凉,心里爽快,但过一会儿杯子里的冰就开始融化了,水温也跟着升高。
一阶补偿就像加了冰块的水,刚开始清凉,但时间一长效果就慢慢减弱了,到了后面可能还是会受到影响。
再来说说二阶补偿。
这可有点意思,二阶补偿可以理解为是一种更高级的玩法。
它就像是给电路安装了空调,温度一变,它就能自动调节,保证你始终保持在舒适的状态。
二阶补偿使用了一些更复杂的电路设计,能够在更大范围内抵消温度变化带来的影响,让电路的输出电压更加稳定,真是聪明绝顶。
在设计这些电路的时候,工程师们就像厨师调味,要把各种元件和参数搭配得当。
电阻、电容、甚至是运算放大器,都要在合适的位置,不然就会出大乱子。
比如说,电阻选得太小,电流就会暴涨,电路就会热得像火炉;选得太大,电流又会流不动,整个电路就像懒虫一样不愿意动弹。
带隙基准电路的设计需要精确的计算,简直是大考验。
要保证电压输出在特定的范围内,就必须在设计阶段做好功课。
就像考试前的复习一样,越认真越能提高分数。
不同的材料也会影响电路的表现,像是在不同的环境里,植物的生长情况大相径庭。
哦,对了,温度补偿还要考虑到整个电路的功耗。
一种0.8V低电源电压带隙基准电路的设计

本文通过仿真和分析带隙基准电路在低压下失
引 言
带隙基准电路为片上系统的其他模块提供一个 不 随温 度 和 电源 电压 波 动 而 变 化 的 稳 定 基 准 电 压
( 电流) 或 。它在 很 多 场 合 都 有 重 要 的应 用 , 动 态 如 随 机存储 器 D RAM 、 D、 A 转 换 器 等 。传 统 的 A/ D/
vl g a d a e. 1 s ute rvda di nmu s p l otg mi t no . 5V i o ecme ot ebn g pi R fF ]i frh ri o e n smi m u pyvl el t i f 9 vro . a n mp t i a i ao 0 s
20 年 6 07 月
微 电 子 学
M Zr e e to i s c o lcrn c
Vo 7 L 3 。No .3
Jn 20 u.07
一
种 0 8V低 电源 电压 带 隙基 准 电路 的设 计 .
韩 若楠 ,周 杨 ,洪 志 良
Hs iesmuain b sd o M I S0 1 a r c s n iae h tt ep o o e ein i c p beo p rt g a pc i lto a e n S C’ . 8t n p o e sidc tst a h r p s d d s s a a l fo eai t g n s p l otg o O0 8V t ny 4 W fp we ,a daPS R f6 . B h sb e c iv d frtecr ut u py v l ed wn t . wi o l 0 a h o o r n R o 9 5d a e na he e o h ic i.
一种高精度低电源电压带隙基准源的设计

关键词 带隙基准 ;温度 系数 ;低 电源电压 中图分类号 T 4 N7 文献标识码 A 文章编号 10 7 2 (0 0 l — 4 0 07— 8 0 2 1 ) 1 0 1— 4
De i n o n a la e Re e e e wih Hi h Ac u a y sg fa Ba dg p Vo t g f r nc t g c r c a w we l g nd Lo Po r Vo t e a
输 出不随 温度 、电源 电压 变化 的基 准电压 源 ,在
模 拟和混 合集 成 电路 中应 用广 泛 , 别是 在 高精 度 的 特 场 合 ,基 准 电压源是 整个 系统设 计 的前 提 。 由于带隙基 准 电压源具 有较 低 的温度 系数 和高 电 源 电压抑 制 比 ,以及 能与标 准 C S工艺 相兼容 等 优 MO 点 ,因而成 为 常用 的基 准 电压 源 实现 方式 。文献 [ ] 1 设计 了具有 温度补偿 的传统带 隙基 准 电路 ,但 其 电源 电压 和温 度 系 数 过 高 ,且 输 出 电压 约 在 12 .5V,难 以满 足低压 的要求 。文 献 [ ] 2 设计 了低 电源 电压 带 隙 基准 电路 ,但输 出基 准 电 压 过 高 。文 献 [ 3~4 提 出 ] 了解 决 方 法 ,设 计 了 低 压 带 隙 基 准 源 , 电路 结 构
e u p y c n r d c o 1 1 V. a d t etmp rt r o f ce ti . rs p l a e u e t . n h e eau e c ef in s8 1×1 / . i 0 ℃
Ke wo d fiin ; lw o rv l g y r a d a ee e c e e aue c ef e t o p we ot e c a
带隙电压基准的设计设计

摘要基准电压源是模拟电路设计中广泛采用的一个关键的基本模块。
所谓基准电压源就是能提供高稳定度基准量的电源,这种基准源与电源、工艺参数和温度的关系很小,但是它的温度稳定性以及抗噪性能影响着整个电路系统的精度和性能。
本文的目的便是设计一种基于CMOS带隙基准电压源。
本文首先介绍了基准电压源的国内外发展现状及趋势。
然后详细介绍了MOS器件的基本原理、基准电压源电路原理,并对不同的带隙基准源结构进行了比较。
在带隙基准电压基准电路设计中,首先对所采用的h05mixddst02v13库中的阈值电压、沟道长度调制系数、跨导参数进行提取,对衬底pnp管的温度特性进行分析,再对电路中的各个管子的宽长比、电容、电阻值进行手动计算,最后通过Hspice软件对电路进行仿真验证。
模拟和仿真结果表明,电路实现了良好的温度特性,0℃~100℃温度范围内,基准电压温度系数大约为0.25mV/℃,输出电压为1.0V。
关键词:MOS器件;带隙基准电压源;参数提取;温度系数;输出电压;AbstractThe reference voltage source is a vital basic module is widely used in analog circuit design. The reference voltage source is able to provide high stability reference amount of power, the reference source and power supply, process parameters and the temperature is very small, but its temperature stability and anti-noise performance affects the precision and performance of the whole system. The purpose of this paper is the design of a CMOS bandgap voltage reference based on.This paper first introduces the present situation and development trend of voltage reference at home and abroad. And then introduces the basic principle of MOS device, reference voltage source circuit principle, and the bandgap structure were compared with different. In the bandgap voltage reference circuit design, first on the threshold voltage, the h05mixddst02v13 Library of the channel length modulation coefficient, transconductance parameter extraction, analysis of temperature characteristics of a substrate of PNP pipe, the pipe of each circuit in the ratio of width to length, capacitance, resistance value for manual calculation, finally the circuit was simulated by Hspice software.Simulation results show that, circuit has good temperature performance, 0 ℃ ~ 100 ℃temperature range, the temperature coefficient of the reference voltage is about 0.25mV/ ℃, the output voltage is 1.0V.Keywords: MOS device; bandgap voltage reference; extraction; output voltage temperature coefficient;目录0 前言 (1)1 MOS器件原理 (3)1.1基本概念 (3)1.1.1 MOSFET的结构 (3)1.2 MOS的I/V特性 (4)1.2.1 阈值电压 (4)1.3 二级效应 (5)1.3.1 体效应 (5)1.3.2 沟道长度调制 (6)1.3.3 亚阈值导电性 (6)1.3.4 电压限制 (7)2 基准电压源电路原理 (8)2.1基准电压源的结构 (8)2.1.1直接采用电阻和管分压的基准电压源 (8)2.1.2有源器件与电阻串联组成的基准电压源 (9)2.1.3带隙基准电压源 (11)2.2带隙基准电压源的基本原理 (11)2.2.1与绝对温度成正比的电压 (12)2.2.2负温度系数电压VBE (13)2.3带隙基准源的几种结构 (14)2.3.1 widlar带隙基准源 (14)2.3.2 Brokaw带隙基准源 (15)2.3.3使用横向BJT的CMOS带隙基准源 (15)3 基准电压源电路设计 (17)3.1基准源的整体结构 (17)3.2参数提取 (18)3.2.1 MOS管阈值电压的提取 (18)3.2.2 MOS管的跨导参数 (19)3.2.3 MOS管的沟道长度调制效应系数 (21)3.3运算放大器电路结构以及尺寸计算 (22)3.3.1运算放大器结构及指标 (22)3.3.2根据运放手动计算 (23)3.4带隙电压基准电路结构以及计算 (30)3.4.1带隙电压基准核心电路 (30)3.4.2 Vbe结的温度系数及结电压的计算 (30)3.4.3 Vbe的温度系数计算 (31)3.4.4带隙电路零温度系数的计算 (32)4 电路仿真 (33)4.1仿真工具介绍 (33)4.2失调电压仿真验证 (33)4.3输入共模范围 (34)4.4幅频相频特性 (35)4.5带隙电压基准核心电路仿真 (35)5 结论 (36)致谢 (37)参考文献 (38)附录A: (39)附录B: (45)附录C: (54)辽宁工程技术大学毕业设计(论文)0 前言基准电压源(Reference V oltage)是指在模拟电路或混合信号电路中用作电压基准的具有相对较高精度和稳定度的参考电压源。
带隙基准电压源设计

基于BiCMOS工艺的带隙基准电压源设计叶鹏1,2,文光俊1,2,蔡竟业1, 王永平2(1.电子科技大学 通信与信息工程学院,四川 成都 610054)(2.广州润芯信息技术有限公司,广东 广州 510663 )摘要:电压基准是模拟集成电路的重要单元模块,本文在0.35um BiCMOS工艺下设计了一个带隙基准电压源。
仿真结果表明,该基准源电路在典型情况下输出电压为1.16302V,在-45℃~105℃范围内,其温度系数为3.6ppm/℃,在在电源电压为3V~3.6V范围内,参考电压从.16295V~1.16308V,变化了130uV,电源电压调整率为0.0186%/V。
关键字:带隙基准电压源;温度系数;电源电压调整率;BiCMOS中图分类号 TN782 文献标识码 AA Veference Voltage Circuit Design on BiCMOSTechnologyYE Peng1,2,WEN Guang-jun1,2,CAI Jing-ye1,WANG Yong-ping2(1 School of Communication and Information Engineering, University of Electronic Scienceand Technology of China, Chengdu Sichuan 610054)(2 Guangzhou Runxin Information Technology Co. LTD, Guangzhou Guangdong 510663)Abstract:voltage reference is a critical module in analog integrated circuit.this paper design a bandgap voltage reference,the simulation result demonstrate that the output voltage is 1.16302V in typical,the temperature coefficience is 3.6ppm/℃when temperature from -45℃ to 105℃,the reference voltage is from 1.16295V to 1.16308V when power voltage 3V~3.6V,the vary Is 130uV,Keywords: bandgap voltage source;temperature coefficience;Line Sensitivity;BiCMOS1引言设计基准电路的目的就是建立一个与电源和工艺无关,具有确定温度特性的直流电压或电流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低电压带隙基准电压源的设计
随着CMOS工艺尺寸的下降,数字电路的功耗和面积会显著下降,但电源电压的下降对模拟电路的设计提出新的挑战。
传统的带隙基准电压源结构不再适应电源电压的要求,所以,新的低电压设计方案应运而生。
本文采用一种低电压带隙基准结构。
0 引言
基准电压是数模混合电路设计中一个不可缺少的参数,而带隙基准电压源又是产生这个电压的最广泛的解决方案。
在大量手持设备应用的今天,低功耗的设计已成为现今电路设计的一大趋势。
随着C MOS工艺尺寸的下降,数字电路的功耗和面积会显著下降,但电源电压的下降对模拟电路的设计提出新的挑战。
传统的带隙基准电压源结构不再适应电源电压的要求,所以,新的低电压设计方案应运而生。
本文采用一种低电压带隙基准结构。
在TSMC0.13μm CMOS 工艺条件下完成,包括核心电路、运算放大器、偏置及启动电路的设计,并用Cadence Spectre对电路进行了仿真验证。
1 传统带隙基准电压源的工作原理
传统带隙基准电压源的工作原理是利用两个温度系数相抵消来产生一个零温度系数的直流电压。
图1所示是传统的带隙基准电压源的核心部分的结构。
其中双极型晶体管Q2的面积是Q1的n倍。
假设运算放大器的增益足够高,在忽略电路失调的情况下,其输入端的电平近似相等,则有:
VBE1=VBE2+IR1 (1)
调节n和R2/R1,就可以使Vref得到一个零温度系数的值。
一般在室温下,有:
但在0.13μm的CMOS工艺下,低电压MOS管的供电电压在1.2 V左右,因此,传统的带隙基准电压源结构已不再适用。