催化燃烧式气体传感器

合集下载

催化燃烧式和半导体式气体传感器简介

催化燃烧式和半导体式气体传感器简介

催化燃烧式和半导体式气体传感器简介
催化燃烧式传感器是白金电阻表面制备耐高温催化剂层,一定温度下,可燃性气体其表面催化燃烧,燃烧是白金电阻温度升高,电阻变化,变化值是可燃性气体浓度函数。

催化燃烧式气体传感器选择性检测可燃性气体:凡是可以燃烧,都能够检测;凡是不能燃烧,传感器都没有任何响应。

当然,凡是可以燃烧,都能够检测这一句有很多例外,总来讲,上述选择性是成立。

催化燃烧式气体传感器计量准确,响应快速,寿命较长。

传感器输出与环境爆炸危险直接相关,安全检测领域是一类主导位传感器。

缺点:可燃性气体范围内,无选择性。

暗火工作,有引燃爆炸危险。

大部分元素有机蒸汽对传感器都有中毒作用。

目前这种传感器主要供应商中国、日本、英国(发明国)!目前中国是这种传感器最大用户,也拥有最佳传感器生产技术,尽管不断有各种各样代理商宣传上干扰社会对这种传感器认识,毕竟,催化燃烧式气体传感器主流制造商国内。

半导体式气体传感器是利用一些金属氧化物半导体材料,一定温度下,电导率环境气体成份变化而变化原理制造。

比如,酒精传感器,就是利用二氧化锡高温下遇到酒精气体时,电阻会急剧减小原理制备。

半导体式气体传感器可以有效用于:甲烷、乙烷、丙烷、丁烷、酒精、甲醛、一氧化碳、二氧化碳、乙烯、乙炔、氯乙烯、苯乙烯、丙烯酸等很多气体检测。

尤其是,这种传感器成本低廉,适宜于民用气体检测需求。

下列几种半导体式气体传感器是成功:甲烷(天然气、沼气)、酒精、一氧
化碳(城市煤气)、硫化氢、氨气(包括胺类,肼类)。

高质量传感器可以满足。

催化燃烧式传感器原理

催化燃烧式传感器原理

催化燃烧式传感器原理传感器工作时,可燃气体与空气混合进入触媒床内,在触媒的作用下发生氧化反应,释放出热量。

触媒床上设置的温度传感器可以测量到因反应产生的温度增加。

同时,另一个温度传感器用于检测周围环境的温度。

当可燃气体的浓度超过了传感器的上限时,即超过了其灵敏度范围,反应会失控并产生火焰。

这时,温度传感器会测量到显著的温度上升,电子控制器会通过分析温度变化来判断可燃气体的浓度。

标准的催化燃烧式传感器通常是基于电桥设计的。

电子控制器会测量触媒床上的温度变化,并将其转化为电阻值的变化。

这些电阻值通过电桥电路来测量,电桥的输出信号与可燃气体的浓度成正比。

电子控制器会将传感器的输出信号转化为相应的电压或电流输出,然后可以通过显示器或其他设备进行读取和处理。

催化燃烧式传感器的优点之一是其响应速度快。

由于催化反应可以产生大量的热量,所以传感器可以在短时间内迅速响应可燃气体的浓度变化。

此外,催化燃烧式传感器对多种可燃气体都具有较好的检测能力,因为大部分可燃气体都是经过催化反应燃烧的。

然而,催化燃烧式传感器也存在一些缺点。

首先,其灵敏度受到温度影响较大。

传感器的精度和灵敏度会随着温度的变化而变化。

其次,催化剂受到污染或中毒物质的影响,会导致传感器的响应性能下降甚至失效。

而且,催化燃烧式传感器在测量过程中会消耗氧气,需要保证周围氧气的充足供应。

综上所述,催化燃烧式传感器利用催化剂促使可燃气体与氧气燃烧的原理来检测可燃气体的浓度。

通过测量触媒床的温度变化,并转换为电阻值的变化,可以测量到可燃气体的浓度。

然而,催化燃烧式传感器的性能受到温度和催化剂污染的影响,需要进行有效的维护和保养。

催化燃烧传感器工作原理

催化燃烧传感器工作原理

催化燃烧传感器工作原理
催化燃烧传感器是一种常用于气体检测和监测的传感器,通过感知气
体中的可燃物质来判断是否存在可燃气体,并发出相应的信号进行报警或
其他处理。

其工作原理基于催化燃烧反应。

以下将详细介绍催化燃烧传感
器的工作原理。

催化剂是催化燃烧传感器的核心部件。

它通常由铂、钯、铑等高活性
金属制成,被涂覆在高表面积的陶瓷或尼龙载体上。

催化剂在氧气的存在下,能够促使可燃气体发生氧化反应,产生燃烧的热量。

检测元件则是用于感知气体中可燃物质浓度的元件。

它通常采用双电
极或四电极结构,其中两个电极与催化剂直接接触。

当可燃气体通过催化
剂时,催化剂将引发氧化反应,产生热量。

这种热量将加热检测元件,使
其电阻发生变化。

传感器的电子部分会测量这种电阻变化,并将其转化为与可燃气体浓
度成正比的电信号。

当可燃气体的浓度增加时,电子部分会输出更高的电
信号,反之亦然。

这样可以通过测量电信号的大小来判断气体中可燃物质
的浓度。

需要注意的是,催化燃烧传感器只对可燃气体敏感。

对于不可燃气体,传感器无法产生反应。

此外,孕妇和心脏病患者等对空气中的一氧化碳等
可燃气体比较敏感的人群,传感器检测不到这种敏感程度,可能对身体构
成威胁。

总结起来,催化燃烧传感器的工作原理是利用催化剂引发氧化反应,
燃烧所产生的热量使得检测元件的电阻发生变化,进而测量出气体中可燃
物质的浓度。

它广泛应用于各种气体检测和监测领域,如石油化工、环境保护、燃气安全等,对于预防事故和保护人员生命具有重要意义。

催化燃烧式传感器原理

催化燃烧式传感器原理

催化燃烧式传感器原理催化燃烧式传感器是一种常用的气体检测传感器,可用于监测空气中的各种有害气体。

其原理是通过在传感器表面上镀有一层催化剂,使得待测气体在催化剂的作用下发生氧化反应,产生热量。

通过测量催化剂表面的温度变化,可以间接判断待测气体的浓度。

催化燃烧式传感器由催化剂层、加热元件和温度传感器组成。

催化剂层通常由铂、铑、钯等贵金属制成,这些金属对很多有害气体都具有良好的催化作用。

加热元件通常是一根纳米材料制成的细丝,通过通电加热,使得传感器表面的温度保持在催化剂的活性温度范围内。

温度传感器则用于测量催化剂层表面的温度。

当待测气体进入传感器时,其与催化剂发生氧化反应,产生热量。

这些反应的特点是燃烧速度与气体浓度成正比。

由于传感器表面的加热元件保持在活性温度范围内,待测气体与催化剂接触后会开始燃烧,进而造成传感器表面温度的升高。

这时,温度传感器会测量到传感器表面温度的变化。

根据燃烧速度与气体浓度的关系,可以通过测量到的温度变化推断待测气体的浓度。

催化燃烧式传感器的优点是简单可靠,并且对多种有害气体都有较好的响应。

它广泛应用于供暖系统、工业过程监测、环境监测等领域。

然而,催化燃烧式传感器也存在一些局限性。

首先,传感器的响应速度较慢,需要一定时间才能达到稳定状态。

其次,由于催化剂活性的影响,传感器对某些气体的响应不够灵敏。

此外,催化燃烧式传感器对氧气浓度的变化也非常敏感,因此要求测量环境中氧气浓度保持稳定。

总之,催化燃烧式传感器通过催化剂的作用使待测气体发生氧化反应,通过测量催化剂表面温度的变化间接推断气体浓度。

该传感器具有简单可靠、对多种有害气体响应良好的特点,广泛应用于气体检测领域。

然而,它的响应速度较慢,对氧气浓度较为敏感,且对某些气体的响应不够灵敏。

催化燃烧气体传感器工作原理

催化燃烧气体传感器工作原理

催化燃烧气体传感器工作原理催化燃烧气体传感器工作原理简介催化燃烧气体传感器是一种常见的气体传感器,广泛应用于工业和生活中的气体检测与监控。

其工作原理基于催化剂催化燃烧的过程,能够检测到许多常见的可燃气体。

催化燃烧原理催化燃烧是指通过催化剂的作用,将可燃气体与空气中的氧气在一定温度下催化反应,释放大量的热能,并产生CO2和H2O。

这个过程是一个自持续的反应,只要有可燃气体存在,会不断释放热能。

传感器结构催化燃烧气体传感器由以下几部分组成: - 催化剂:通常由贵金属如铂、钯构成,能够促进气体的催化燃烧反应。

- 检测元件:一般为两个热电偶,一个被称为测量电偶,另一个被称为参比电偶。

它们通过连接到电路中,能够测量温度差异。

- 加热丝:位于催化剂附近,通过外部电源加热,使其达到催化燃烧的温度。

工作原理1.加热:当传感器启动时,加热丝开始加热。

加热丝的温度要高于催化燃烧的温度,以确保可燃气体能够被催化剂催化燃烧。

2.反应:当空气中有可燃气体进入传感器时,可燃气体与空气中的氧气在催化剂的作用下发生催化燃烧反应,产生热能。

3.温度差异:由于催化燃烧反应产生了热能,测量电偶和参比电偶之间会产生温度差异。

4.电信号:测量电偶和参比电偶的温度差异将转化为电信号,通过电路输出,供仪表或控制系统读取和处理。

检测原理通过测量电信号的大小,可以判断可燃气体浓度的高低。

在没有可燃气体存在时,由于没有反应产生的热能,测量电偶和参比电偶之间的温度差异很小,电信号较低。

而当可燃气体浓度增加时,催化燃烧反应产生的热能增加,温度差异增大,电信号也会相应增加。

优缺点•优点:催化燃烧气体传感器具有响应速度快、稳定性好、灵敏度高等优点。

适用于检测各种可燃气体。

•缺点:受到催化剂的寿命和稳定性的影响,需要定期更换催化剂,且对一些氧化性气体的检测不适用。

同时,由于催化燃烧产生的热能,传感器需要外部加热,需要一定的能源消耗。

应用领域催化燃烧气体传感器广泛应用于以下领域: - 工业领域:用于检测可燃气体的泄漏,确保工作环境的安全。

炜盛 催化燃烧式气体传感器 MC107 使用说明书

炜盛 催化燃烧式气体传感器 MC107 使用说明书

催化燃烧式气体传感器(型号:MC107)使用说明书版本号:1.3B实施日期:2021-07-16郑州炜盛电子科技有限公司Zhengzhou Winsen Electronic Technology Co.,Ltd声明本说明书版权属郑州炜盛电子科技有限公司(以下称本公司)所有,未经书面许可,本说明书任何部分不得复制、翻译、存储于数据库或检索系统内,也不可以电子、翻拍、录音等任何手段进行传播。

感谢您使用本公司的系列产品。

为使您更好地使用本公司产品,减少因使用不当造成的产品故障,使用前请务必仔细阅读本说明书并按照所建议的使用方法进行使用。

如果您没有依照本说明书使用或擅自去除、拆解、更换传感器内部组件,本公司不承担由此造成的任何损失。

您所购买产品的颜色、款式及尺寸以实物为准。

本公司秉承科技进步的理念,不断致力于产品改进和技术创新。

因此,本公司保留任何产品改进而不预先通知的权力。

使用本说明书时,请确认其属于有效版本。

同时,本公司鼓励使用者根据其使用情况,探讨本产品更优化的使用方法。

请妥善保管本说明书,以便在您日后需要时能及时查阅并获得帮助。

郑州炜盛电子科技有限公司MC107催化燃烧式气体传感器产品描述MC107催化燃烧式气体传感器根据催化燃烧效应的原理工作,由检测元件和补偿元件配对组成电桥的一个臂,遇可燃性气体时检测元件电阻升高,桥路输出电压变化,该电压变化量随气体浓度增大而成正比例增大,补偿元件起参比及温湿度补偿作用。

传感器特点桥路输出电压呈线性、响应速度快,具有良好的重复性和选择性,元件工作稳定可靠,抗硫化氢和有机硅干扰性能优异。

主要应用可用于家庭天然气、液化气、煤气等可燃性气体的泄露报警或浓度检测。

技术指标产品型号MC107产品类型催化燃烧式气体传感器标准封装塑料座金属封装工作电压(V) 2.5±0.1工作电流(mA)150±10灵敏度(mV)1%甲烷15~45线性度≤5%测量范围(%LEL)0~100响应时间(90%)≤10s 恢复时间(90%)≤30s使用环境-40~+70℃,低于95%RH 储存环境-20~+70℃,低于95%RH寿命5年图2:基本测试电路图1:传感器外形结构电桥输出测试电压:2.5V —+灵敏度、响应恢复特性输出信号随环境温度的变化输出信号随环境湿度的变化图3:灵敏度曲线图5:零点温度特性曲线图6:灵敏度温度特性曲线图8:灵敏度湿度特性曲线图4:响应恢复曲线图7:零点湿度特性曲线输出信号随工作电压的变化长期稳定性在洁净空气中,零点每年漂移量的绝对值小于2mV,灵敏度(1%CH 4)每年漂移量的绝对值小于2mV。

催化燃烧式气体传感器工作原理

催化燃烧式气体传感器工作原理

催化燃烧式气体传感器工作原理催化燃烧式气体传感器,听起来是不是有点复杂?其实说白了,就是一种用来探测气体的神器。

想象一下,家里有个小助手,专门在那儿监测空气的变化,确保你生活得安全又舒适。

这个传感器最牛的地方在于它的工作原理,听我慢慢给你道来。

这种传感器内里有个催化剂,像是隐形的卫士。

它的工作原理其实就是借助这个催化剂,把空气中的某些气体变成无害的物质。

比如说,假设有点儿天然气泄漏,传感器可不会坐视不管。

它立刻就会发挥作用,将这些气体转化掉,保障你的安全。

你可以把它想象成一个会“变魔术”的小玩意儿,瞬间让危险化为乌有。

催化剂的作用就像是大厨在厨房里忙碌,抓紧每一个细节。

这些催化剂通常是贵金属,比如铂或钯,平时它们就静静地躺在传感器里,一旦有气体进来,它们就会激活。

这种反应就像是在派对上,大家都来劲儿了,气氛瞬间热烈起来。

催化剂可不是闹着玩的,它们能迅速提高反应速度,让气体在高温下分解,释放出热量,真是个“热心肠”的家伙。

为什么要加热呢?这就涉及到一个大问题:气体的燃烧。

我们都知道,燃烧是需要一定温度的,这个传感器就像是把气体放在火堆上,啪的一声就燃烧了。

温度一升高,催化剂开始狂欢,气体就被“吃掉”了,剩下的都是些安全无害的成分,简直就像变魔术一样,让你大吃一惊。

催化燃烧式气体传感器不仅仅局限于天然气。

它也能检测到很多其他的有害气体,像是一氧化碳、甲烷等等。

这些气体都是隐藏的危险,稍不留神就可能酿成大祸。

这个传感器的出现就像是给你装上了一双“火眼金睛”,让你随时随地掌握空气质量。

就算是你在厨房炒菜,油烟再怎么浓重,它也能迅速识别出是否有异常,真是贴心得不行。

此外,它的使用寿命也很长,这让人倍感安心。

一般来说,催化燃烧式气体传感器能持续工作多年,像个老朋友一样,时刻守护在你身边。

偶尔也得给它点关爱,定期检查一下,保持它的“年轻”状态。

只要定期维护,这位小助手就能继续陪伴你,守护你和家人的安全。

这种传感器的反应速度非常快,简直就像一只机灵的小狐狸,发现问题立马就通知你。

催化燃烧式气体传感器

催化燃烧式气体传感器

催化燃烧式气体传感器催化燃烧式传感器属于高温气体传感器,是利用催化燃烧产生的热效应原理。

它的内部结构是检测元件和补偿元件配对组成测量电桥,当达到一定温度,可燃气体在检测元件载体表面和催化剂的共同作用下发生无焰燃烧,载体温度就相应升高,从而通过它内部的铂电阻阻值也会发生相应改变,平衡电桥就失去了平衡,输出一个与可燃气体浓度成正比的电信号。

所以,只要能测量铂电阻阻值大小,就可以知道待测气体的浓度。

它主要用来做气体报警探测器使用,它的优缺点体现如下:一、催化燃烧式气体传感器的优点1 催化燃烧式传感器结构很简单、生产制造成本很低2 催化燃烧式气体传感器可检测大部分可燃性气体,对于不能燃烧的气体,传感器都没有任何响应;3 在空气中可对可燃气体在爆炸下限浓度(%LEL)以下的含量报警;4 输出信号接近线性--尤其是百分之六十LEL以下线性度更好;5 传感器输出基本不受水蒸气的影响,对环境的温湿度影响不敏感;二、催化燃烧式气体传感器的缺点:1 工作温度高,检测元件的表面温度一般在200到300℃,内部温度最高可达到700到800℃,因此催化燃烧式传感器不能做成本安防爆型结构,只能做成隔离防爆型结构;2 元件易受硫化物、卤素化合物等的影响,降低使用寿命;3 在缺氧环境下用可燃气体报警器检测时指示值误差较大。

4 不同可燃气体的燃烧值不同,传感器测量的是燃烧引起的电阻变化而不是浓度的变化,因此不同可燃气体即使在相同的浓度下读数也可能不同使用催化燃烧式气体传感器测量可燃气体浓度时,氧气浓度是一个必须注意的问题。

催化燃烧式传感器要求至少在8-10%的氧气浓度下才能进行准确测量。

而在100%可燃气浓度下,这种仪器的读数将是0%LEL!因此在使用过程中,要求测量可燃气体的%LEL之前必须首先测量氧气浓度。

另外,催化燃烧式气体传感器,不适合于检测“较重的”或者长链的烷烃,特别是高闪点的物质,此时比较好的方法是使用光离子化检测器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4
催化燃烧式气体传感器
(型号:MC115)
使用说明书
版本号:1.3
实施日期:2014-05-01
郑州炜盛电子科技有限公司
Zhengzhou Winsen Electronic Technology Co.,
Ltd
声明
本说明书版权属郑州炜盛电子科技有限公司(以下称本公司)所有,未经书面许可,本说明书任何部分不得复制、翻译、存储于数据库或检索系统内,也不可以电子、翻拍、录音等任何手段进行传播。

感谢您使用本公司的系列产品。

为使您更好地使用本公司产品,减少因使用不当造成的产品故障,使用前请务必仔细阅读本说明书并按照所建议的使用方法进行使用。

如果您没有依照本说明书使用或擅自去除、拆解、更换传感器内部组件,本公司不承担由此造成的任何损失。

您所购买产品的颜色、款式及尺寸以实物为准。

本公司秉承科技进步的理念,不断致力于产品改进和技术创新。

因此,本公司保留任何产品改进而不预先通知的权力。

使用本说明书时,请确认其属于有效版本。

同时,本公司鼓励使用者根据其使用情况,探讨本产品更优化的使用方法。

请妥善保管本说明书,以便在您日后需要时能及时查阅并获得帮助。

郑州炜盛电子科技有限公司
MC115催化燃烧式气体传感器
产品描述
MC115催化燃烧式气体传感器根据催化燃烧效
应的原理工作,由检测元件和补偿元件配对组成电
桥的一个臂,遇可燃性气体时检测元件电阻升高,
桥路输出电压变化,该电压变量随气体浓度增大而
成正比例增大,补偿元件起参比及温湿度补偿作用。

传感器特点
桥路输出电压呈线性、响应速度快,具有良好
的重复性和选择性,元件工作稳定可靠,抗硫化氢
和有机硅干扰性能好。

主要应用
工业现场的天然气、液化气、煤气、烷类等
可燃性气体的浓度检测,可燃性气体泄漏报警器,
可燃性气体探测器,气体浓度计。

技术指标产品型号MC115
产品类型催化燃烧式气体传感器标准封装金属封装
工作电压(V) 3.0±0.1工作电流(mA)105±10
灵敏度(mV/1%CH 4)20~40
线性度≤5%
测量范围(%LEL)0~100
响应时间(90%)≤10s
恢复时间(90%)≤30s
使用环境-40~+70℃低于95%RH
储存环境-20~+70℃低于95%RH
外形尺寸(mm)Φ6×6.5
防爆标志ExdibⅠ图2:基本测试电路
图1:传感器外观结构图
灵敏度、响应恢复特性
输出信号随环境温度的变化
图3:灵敏度曲线图4:响应恢复曲线
图5:零点温度特性曲线图6:灵敏度温度特性曲线
输出信号随环境湿度的变化
输出信号随工作电压的变化
长期稳定性
在空气中每年漂移量的绝对值小于2mV,在1%甲烷中每年漂移量的绝对值小于2mV。

短期储存(两周内)8小时即可稳定,如长期储存(一年),则需老化48小时才可稳定。

图8:灵敏度湿度特性曲线
图9:零点电源波动特性图10:灵敏度电源波动特性
图7:零点湿度特性曲线
使用注意事项
1、必须避免的情况
1.1暴露于可挥发性硅化合物蒸气中
如果传感器的表面吸附了可挥发性硅化合物蒸气,传感器的敏感材料会被包裹住,抑制传感器的敏感性,并且不可恢复。

传感器要避免暴露在硅粘接剂、发胶、硅橡胶、腻子或其它含硅塑料添加剂可能存在的地方。

1.2高腐蚀性的环境
传感器暴露在高浓度的腐蚀性气体(如H 2S,SO X ,Cl 2,HCl 等)中,不仅会引起传感器引线的
腐蚀或破坏,还会引起敏感材料性能发生不可逆的改变。

1.3碱、碱金属盐、卤素的污染
传感器被碱金属尤其是盐水喷雾污染后,若暴露在卤素,如氟利昂中,也会引起性能劣变。

1.4接触到水
溅上水或浸到水中会造成敏感特性下降。

1.5结冰
水在敏感元件表面结冰会导致敏感材料碎裂而丧失敏感特性。

1.6施加电压过高
如果给传感器施加的电压高于规定值,即使传感器没有受到物理损坏或破坏,也会造成引线损坏,并引起传感器敏感特性下降。

1.7接入电路
传感器接入电路时检测元件和补偿元件的各一管脚连接在一起作为信号输出端,检测元件的另一管脚接负极,补偿元件的另一管脚接正极;传感器上管帽孔径较大者为检测元件,另一个管帽孔径较小者为补偿元件。

2、尽可能避免的情况
图11:零点、灵敏度稳定性曲线
2.1凝结水
在室内使用条件下,轻微凝结水会对传感器性能产生轻微影响。

但是,如果水凝结在敏感材料表面并保持一段时间,传感器特性则会下降。

2.2处于高浓度气体中
无论传感器是否通电,在高浓度气体中长期放置,都会影响传感器特性。

如用打火机气直接喷向传感器,会对传感器造成极大损害。

2.3长期贮存
传感器在不通电情况下长时间贮存,其敏感材料会产生可逆性变化,这种变化与贮存环境有关。

传感器应贮存在有清洁空气且不含硅胶的密封袋中。

经长期不通电贮存的传感器,在使用前需要更长时间通电以使其达到稳定。

如果不通电贮存储存时间超过半年,使用前建议老化一天。

2.4长期暴露在极端环境中
无论传感器是否通电,长时间暴露在极端条件下,如高湿、高温或高污染等极端条件,传感器性能将受到严重影响。

2.5振动
频繁、过度振动会导致传感器引线产生共振而断裂。

在运输途中及组装线上使用气动改锥/超声波焊接机会产生这种振动。

2.6冲击
如果传感器受到强烈冲击或跌落会导致其引线断线。

2.7使用
2.7.1对传感器来说手工焊接是最理想的焊接方式,建议焊接条件如下:
●助焊剂:含氯最少的松香助焊剂
●恒温烙铁
●温度:250℃
●时间:不大于3秒
2.7.2使用波峰焊时应满足以下条件:
●助焊剂:含氯最少的松香助焊剂
●速度:(1-2)米/分钟
●预热温度:(100±20)℃
●焊接温度:(250±10)℃
●1次通过波峰焊机
违反以上使用条件将使传感器特性下降。

相关文档
最新文档