高考数学导数切线专题

合集下载

导数专题复习1切线问题课件高三数学二轮专题复习

导数专题复习1切线问题课件高三数学二轮专题复习

1.已知函数 f x 是偶函数,定义域为,0 0, ,且x 0 时,
11
f
x
x ex
1
,则曲
线 y f x 在点1,f 1 处的切线方程为
y x ee

思考 : 思考1.切点知道了吗,怎么求切点?
思考2.怎么求在切点处切线的斜率?
2.设 P 是函数 y x x 1 图象上异于原点的动点,且该图象在点P 处的切线的倾斜角为
(这个定值k 就是切线PT 的斜率
k
lim
Pn P
k
PPn
lim
x0
f
(x0
x) x
f
(x0 )
f '(x0)
知识点归纳:
1.命题分析:本题型在高考解答题主要是在第(1)问中出现,也有可能在选择题或填空题中 出现,若为解答题,主要考点为: (1)导数的几何意义; (2)直线与函数图象相切的条件。
解:f (x) ln x 1
设切点为T (x0, x0 ln x0 ) 则切线方程为 y x0 ln x0 (ln x0 1)(x x0 )
点(e2, 0) 落在切线上
e2x0 ln x0 1 0
h(x) 是单调递增
令h(x) e2x ln x 1 则h(x) e2 1 (x 0)
6.已知 S x a2 ln x a2 aR ,则S 的最小值为( B )
A. 2 2
B. 1 2
C. 2
D. 2
思考 : 思考1.你能观察出本题的几何意义吗?
思考2.怎样借用导数的方法解决此题?
7.若曲线C1:y
x2 与曲线 C2
:
y
ex a
(a
0 )存在公共切线,则a

高三数学高考导数专题1:切线问题

高三数学高考导数专题1:切线问题

第 1 页 共 12 页专题1:切线问题1.若函数()ln f x x =与函数2()2(0)g x x x a x =++<有公切线,则实数a 的取值范围是( ) A .1(ln ,)2e+∞ B .(1,)-+∞ C .(1,)+∞ D .(ln 2,)-+∞1.A【解析】设公切线与函数()ln f x x =切于点111(ln )(0)A x x x >,,则切线方程为1111ln ()-=-y x x x x ;设公切线与函数2()2g x x x a =++切于点22222(2)(0)B x x x a x ,++<,则切线方程为22222(2)2(1)()y x x a x x x -++=+-,所以有2121212(1){ln 1x x x x a =+-=-+,.∵210x x <<,∴1102x <<.又2211111111ln 11ln 2124a x x x x ⎛⎫⎛⎫=+--=-+-- ⎪ ⎪⎝⎭⎝⎭,令11t x =,∴2102ln 4t a t t t ,<<=--.设21()ln (02)4h t t t t t =--<<,则211(1)3()1022t h t t t t--=--'=<,∴()h t 在(0,2)上为减函数,则1()(2)ln 21ln2h t h e >=--=,∴1ln 2a e ⎛⎫∈+∞ ⎪⎝⎭,,故选A . 2.已知直线2y x =与曲线()()ln f x ax b =+相切,则ab 的最大值为( ) A .4e B .2eC .eD .2e2.C【解析】设切点()()00,ln x ax b +,则由()002a f x ax b '==+得()0102ax b a a +=>,又由()00ln 2ax b x +=,得()0011ln ln 222a x ax b =+=,则0ln 2222a a a ab ax =-=-, 有()2211ln 0222a ab a a a =->,令()2211ln 222a g a a a =-,则()1ln 22a g a a ⎛⎫'=- ⎪⎝⎭,故当0a <<()0g a '>;当a >()0g a '<,故当a =()g a 取得极大值也即最大值(g e =. 故选:C.3.已知P 是曲线1C :x y e =上任意一点,点Q 是曲线2C :ln xy x=上任意一点,则PQ 的最小值是( ) A .ln 212- B .ln 212+C .2 D3.D【解析】(1)曲线1C :e x y =,求导得e x y '=,易知1C 在点()0,1A 处切线方程为1y x =+.下面证明e 1x x ≥+恒成立:构造函数()e 1x f x x =--,求导得()e 1x f x '=-,则(),0x ∈-∞时,0f x,()f x 单调递减;()0,x ∈+∞时,0fx,()f x 单调递增.故函数()()00f x f ≥=,即e 1x x ≥+恒成立,有1C 为下凸曲线 (2)曲线2C :ln x y x =,求导得21ln xy x-'=,当1x =时,1y '=,且2C 过点()1,0B故2C 在点()1,0处的切线方程为1y x =-. 下面证明ln 1xx x-≥在0,上恒成立:令()2ln F x x x x =--,则()()()221112121x x x x F x x x x x+---'=--==,第 3 页 共 12 页当01x <<时,()0F x '<,()F x 单调递减;当1x >时,()0F x '>,()F x 单调递增,所以()()min 10F x F ==,即()()10F x F ≥=, 则2ln 0--≥x x x ,即ln 1xx x-≥在0,上恒成立,有2C 为上凸曲线(3)由1C 在()0,1A 处切线1y x =+与2C 在B ()1,0处的切线1y x =-,知:它们相互平行又直线AB 的斜率k = -1,即可知:直线AB 与两条切线同时垂直 ∴综上,知:PQ 最小时,A 即为P 点,B 即为Q 点,故min ||||PQ AB = ∴min ||PQ =AB ==故选:D4.若曲线y =ax +2cos x 上存在两条切线相互垂直,则实数a 的取值范围是( )A .[] B .[﹣1,1] C .(﹣∞,1] D .[1]4.A【解析】2sin y a x '=-,要使曲线2cos y ax x =+上存在两条切线相互垂直,只需切线斜率最小时,其负倒数仍在导函数值域内取值,即1max miny y -'',显然0mn y '<, 故只需()()1min maxy y '⨯'-,因为2sin y a x '=-最小值为20a -<,最大值为20a +>, 所以(2)(2)1a a -+-,即23a ,解得33a.故选:A .5.已知关于x 不等式x ae x b ≥+对任意x ∈R 和正数b 恒成立,则a b的最小值为( ) A .12B .1CD .25.B【解析】设()xf x ae =,()g x x b =+,若x ae x b ≥+,对任意x ∈R 和正数b 恒成立, 则()()f x g x ≥,对任意x ∈R 和正数b 恒成立, 如图,0a ≤时,x ae x b ≥+,对任意x ∈R 和正数b 不恒成立;如图,0a >时,()x f x ae =,则()x f x ae '=,设()001x f x ae '==,解得0ln x a =-,且()0ln 01x af x ae ae -===,∴当()x f x ae =的切线斜率为1时,切点坐标为()ln ,1a -,第 5 页 共 12 页由直线的点斜式方程可得切线方程为1ln y x a -=+, 即ln 1y x a =++,若()()f x g x x b ≥=+,对任意x ∈R 和正数b 恒成立,则ln 1a b +≥ ∴ln ln 1ln a b b b -≥--∴1ln b b a e b--≥, 设()1ln h b b b =--,0b >()111b h b b b-'=-=,∴()1,0b h b '==,()1,0b h b '>>,()1,0b h b '<<, ∴()()10h b h ≥=,∴()1ln 01h bb b a e e e b--≥≥≥=故选:B.6.若存在实数,a b ,使不等式212ln 2e x ax b x e ≤+≤+对一切正数x 都成立(其中e 为自然对数的底数),则实数a 的最大值是( ) AB .2e C.D .26.C【解析】存在实数,a b ,使不等式212ln 2e x ax b x e ≤+≤+对一切正数x 都成立,要求a 的最大值,临界条件即为直线y ax b =+恰为函数21()=2ln ,()2f x e xg x x e =+的公切线. 设()=2ln f x e x 的切点为111(,)(0)x y x >,122()=,e e f x a x x '∴=. 设21()2g x x e =+的切点为222(,)(0)x y x >,2()g x x a x '=∴=,,所以21212=,2ea x x x e x =∴=. 由题得21221212112ln 22,2ln 30e x x ee a x x x x x --==∴+-=-.设111212()2ln 3(0)eh x x x x =+->, 所以211331112424()x ee h x x x x -'=-=, 所以函数11212()2ln 3eh x x x =+-在(0,上单调递减,在)+∞单调递增.又22ln 3=1+23=0eh e=+--, 当1x →+∞时,11212()2ln 30eh x x x =+->,所以方程另外一个零点一定大于,所以max a ==故选:C7.若对函数()2sin f x x x =-的图象上任意一点处的切线1l ,函数()()2x g x me m x =+-的图象上总存在一点处的切线2l ,使得12l l ⊥,则m的取值范围是( ) A .,02e ⎛⎫- ⎪⎝⎭B .0,2e ⎛⎫⎪⎝⎭C .()1,0-D .()0,17.D第 7 页 共 12 页【解析】由()2sin f x x x =-,得()[]2cos 1,3f x x '=-∈,所以111,=2cos 3A x ⎡⎤-∈--⎢⎥-⎣⎦,由()()2x g x me m x =+-,得()2xg x me m '=+-.(1)当0m >时,导函数单调递增,()()2,g x m '∈-+∞, 由题意得()()1212211,,()1()x x f x g x g x A B f x '''∀∃=-∴=-∴⊆' 故21m -<-,解得01m <<;(2)当0m <时,导函数单调递减,()(),2g x m '∈-∞-,同理可得123m ->-,与0m <矛盾,舍去; (3)当0m =时,不符合题意. 综上所述:m 的取值范围为()0,1. 故选:D .8.若过点()1,P m 可以作三条直线与曲线:x C y xe =相切,则m 的取值范围是( )A .25,0e ⎛⎫- ⎪⎝⎭B .25,e e ⎛⎫- ⎪⎝⎭C .()0,∞+D .231,ee ⎛⎫-- ⎪⎝⎭8.A【解析】设切点为()00,M x y ,∵e x y x =,∴()1e xy x '=+,∴M 处的切线斜率()001e x k x =+,则过点P 的切线方程为()()000001e e x x y x x x x =+-+,代入点P 的坐标,化简得()02001e x m x x =-++,∵过点()1,P m 可以作三条直线与曲线:e x C y x =相切,∴方程()0201e x m x x =-++有三个不等实根.令()()21e x f x x x =-++,求导得到()()22e xf x x x '=--+,可知()f x 在(),2-∞-上单调递减,在()2,1-上单调递增,在1,上单调递减,如图所示,故()20f m -<<,即250e m -<<.故选:A.9.已知y kx b =+是函数()ln f x x x =+的切线,则2k b +的最小值为______. 9.2ln2+【解析】根据题意,直线y =kx +b 与函数f (x )=lnx +x 相切,设切点为(m ,lnm +m ),函数f (x )=lnx +x ,其导数f ′(x )1x =+1,则f ′(m )1m =+1,则切线的方程为:y ﹣(lnm +m )=(1m+1)(x ﹣m ),变形可得y =(1m+1)x +lnm ﹣1, 又由切线的方程为y =kx +b ,则k 1m=+1,b =lnm ﹣1, 则2k +b 2m =+2+lnm ﹣1=lnm 2m++1, 设g (m )=lnm 2m++1,其导数g ′(m )22122m m m m -=-=,在区间(0,2)上,g ′(m )<0,则g (m )=lnm 2m++1为减函数,第 9 页 共 12 页在(2,+∞)上,g ′(m )>0,则g (m )=lnm 2m++1为增函数, 则g (m )min =g (2)=ln 2+2,即2k +b 的最小值为ln 2+2; 故答案为ln 2+2.10.存在0, 0k b >>使2ln kx k b x -+≥对任意的0x >恒成立,则bk的最小值为________. 10.1【解析】存在0, 0k b >>使2ln kx k b x -+≥对任意的0x >恒成立, 则等价于等价于存在0k >,0b >,()2y k x b =-+在ln y x =的上方. 直线()2y k x b =-+过定点()2,b ,即定点在直线2x =上, 设直线()2y k x b =-+与ln y x =相切于点()00,x y ,()''1ln y x x==,所以01k x =, 由0000ln 22y b x b k x x --==--得1ln12b kk k -=-,化简得21ln b k k =--,故1ln 2b kk k k=--. 构造函数()()1ln 20kg k k k k =-->, 则()'22211ln ln k k g k k k k-=-=, 所以当01k <<时,()'0g k <,函数()g k 递减, 当1k >时,()'0g k >,函数()g k 递增,所以()()min1211g k g ==-=.所以bk的最小值为1. 故答案为:111.若直线y kx b =+是曲线e x y =的切线,也是曲线ln(2)y x =+的切线,则k =_____.11.1或1e【解析】设y kx b =+与e x y =和()ln 2y x =+,分别切于点()11,x x e ,()()22,ln 2x x+,由导数的几何意义可得:1212xk e x ==+,即1212x x e+=,① 则切线方程为111()x x y e e x x -=-,即1111x x xy e x e x e =-+,或2221ln(2)()2y x x x x -+=-+,即2221ln(2)()2y x x x x -+=-+,② 将①代入②得11121x xy e x e x =+--,又直线y kx b =+是曲线e x y =的切线,也是曲线ln(2)y x =+的切线,则111x x e x e -+=1121xe x --,即11(1)(1)0xe x -+=,则11x =-或10x =, 即01k e ==或11k e e-==, 故答案为:1或1e.12.已知直线y kx b =+与函数x y e =的图像相切于点()11,P x y ,与函数ln y x =的图像相切于点()22,Q x y ,若21>x ,且()2,1x n n ∈+,n Z ∈,则n =__________. 12.4【解析】依题意,可得112112221ln x xe k x y e kx b y x kx b⎧==⎪⎪⎪==+⎨⎪==+⎪⎪⎩,整理得2222ln ln 10x x x x ---=令()ln ln 1(1)f x x x x x x =--->,则1()ln f x x x'=-在()1,+∞单调递增第 11 页 共 12 页且(1)(2)0f f ''⋅<,∴存在唯一实数()1,2m ∈,使()0f m '= min ()()(1)0f x f m f =<<,(2)ln 230f =-<,(3)2ln340f =-<, (4)3ln 450f =-<,(5)4ln560f =->,∴2(4,5)x ∈,故4n =. 13.若直线y kx b =+既是曲线ln y x =的切线,又是曲线2x y e -=的切线,则b =______.13.0或1-【解析】令()ln f x x =,()2x g x e -=,则()1'f x x=,()2'x g x e -=. 设切点分别()11,P x y ,()22,Q x y , 则切线方程为()1111ln y x x x x -=-,即111ln 1y x x x =⋅+-; ()22222x x y e e x x ---=-,即()222221x x y e x x e --=⋅+-, ∴()22212121ln 11x x e x x x e --⎧=⎪⎨⎪-=-⎩,即()212212ln 2ln 11x x x x x e -=-⎧⎨-=-⎩, ∴()()222110x x e --⋅-=,∴21x =或22x =. 当21x =时,切线方程为1y x e =,∴0b =;当22x =时,切线方程为1y x =-,∴1b =-.综上所述,0b =或1b =-.故答案为: 0b =或1b =-14.已知实数 a b c d ,,,,满足ln 211a cb d ==- ,那么()()22ac bd -+-的最小值为_________.14.2(2+ln 2)5 【解析】由ln 1a b =可知,点(),A a b 在函数()ln f x x =上,由211c d =-知,点(),B c d 在直线21y x =+上,则()()222=||a c b d AB -+-,所以当点A 处的切线与直线21y x =+平行时,点A 到直线21y x =+的距离的平方就是()()22a c b d -+-的最小值.由()f x '12x ==得,12x =,所以1,ln22A ⎛⎫- ⎪⎝⎭,所以()()()22222+ln25a c b d -+-≥=,所以()22ln 2min 5+=, 故答案为()22ln 25+. 15.若直线y kx b =+与曲线ln 2y x =+相切于点P ,与曲线()ln 1y x =+相切于点Q ,则k =_________.15.2【解析】设直线与ln 2y x =+相切与点(),ln 2m m +,此时斜率为1m ,由点斜式得切线方程为()()1ln 2y m x m m -+=-,即1ln 1y x m m=++.对于曲线()ln 1y x =+,其导数'11y x =+,令111m x =+,得1x m =-,故切点坐标为()1,ln m m -,代入切线方程得1ln 1ln m m m m -++=,解得12m =,故12k m==.。

高考数学导数讲解:函数单调性

高考数学导数讲解:函数单调性

模块一:切线方程知识点一:导数的几何意义。

导数的几何意义:导数值等于原函数在该点处的切线斜率。

知识点二:直线的点斜式方程。

直线的点斜式方程:直线过点),(00y x ,直线的斜率为k ⇒直线的点斜式方程:)(00x x k y y -=-。

题型一:已知切点的横坐标,求解切线方程。

模型:已知:函数)(x f 的解析式。

求解:函数)(x f 在0x x =处的切线方程。

解法设计:第一步:求切点的纵坐标。

把0x x =代入函数)(x f 得到切点的纵坐标⇒)(0x f 切点))(,(00x f x 。

第二步:求导函数。

根据函数)(x f 的解析式计算导函数)('x f 。

第三步:求切线斜率。

根据导数的几何意义得到:把0x x =代入导函数)('x f 得到切线斜率)('0x f 。

第四步:求切线方程。

根据直线的点斜式方程得到:切点))(,(00x f x ,切线斜率为)('0x f ⇒切线方程:))((')(000x x x f x f y -=-。

例题:2020年高考理科数学新课标Ⅰ卷第6题:函数342)(x x x f -=的图像在点))1(,1(f 处的切线方程为()A、12--=x y B、12+-=x y C、32-=x y D、12+=x y 本题解析:第一步:求切点的纵坐标。

把1=x 代入函数342)(x x x f -=得到1121)1(34-=⨯-=f ⇒切点)1,1(-。

第二步:求导函数。

342)(x x x f -=2364)('x x x f -=⇒。

第三步:求切线斜率。

根据导数的几何意义得到切线斜率:21614)1('23-=⨯-⨯=f 。

第四步:求切线方程。

根据直线的点斜式方程得到:切点)1,1(-,切线斜率为2-⇒切线方程:12221)1(2)1(+-=⇒+-=+⇒--=--x y x y x y 。

跟踪训练一:2019年高考数学新课标Ⅰ卷理科第19题文科第19题:曲线xe x x y )(32+=在)0,0(处的切线方程为。

导数19 大题(切线)1-2022年全国一卷新高考数学题型细分汇编

 导数19 大题(切线)1-2022年全国一卷新高考数学题型细分汇编

导数——大题——切线:1.(2022年江苏徐州J53)已知0a >,函数()x f x ax xe =-.(I )求曲线()y f x =在点(0,(0))f 处的切线方程:(II )证明()f x 存在唯一的极值点(①)(III )若存在a ,使得()f x a b ≤+对任意x ∈R 成立,求实数b 的取值范围.(切线,易;第二问,未;)2.(2022年江苏常州J59)已知函数()()ln xxe f x a x x =+-,a R ∈.(1)当1a =时,求曲线()y f x =在1x =处的切线方程;(②)(2)讨论函数()f x 的零点个数.(切线,易;第二问,未;)3.(2022年福建福州联考J01)已知函数()ln(1)ln x f x ae x b =-+-(1)若()f x 在0x =处的切线方程为1y =,(i )求a ,b 的值;(ii )讨论()f x 的单调性.(③)(2)若b a =,证明:()f x 有唯一的极小值点.(切线,中下;单调性,中下;第二问,未;)4.(2022年福建福州J05)设函数()1ex f x x a -=+,曲线()y f x =在1x =-处的切线与y 轴交于点210,e e ⎛⎫- ⎪⎝⎭;(1)求a ;(④)(2)若当[)2,x ∈-+∞时,()()1f x b x ≥-,记符合条件的b 的最大整数值、最小整数值分别为M ,m ,求M m +.注:e 2.71828=⋅⋅⋅为自然对数的底数.(切线,中下;第二问,未;)1.(2022年福建三明一中J39)已知函数()()ln()x f x e x a x a x =-+++,a R ∈.(1)当1a =时,求函数()f x 的图象在0x =处的切线方程;(⑤)(2)若函数()f x 在定义域上为单调增函数.①求a 最大整数值;②证明:23341ln 2(ln (ln )(ln231n n en e +++++<-L .(切线,易;第二问,未;)2.(2022年湖南长沙一中J02)已知函数()()()e xf x x b a =+-.(0b >)在()()1,1f --处的切线l方程为()e 1e e l 0x y -++-=.(1)求a ,b ,并证明函数()y f x =的图象总在切线l 的上方(除切点外);(⑥)(2)若方程()f x m =有两个实数根1x ,2x .且12x x <.证明:()2112e 11em x x --≤+-.(切线,中下;第二问,未;)1.(2022年高考乙卷J04)已知函数()()ln 1exf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(⑦)(2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围.(切线,易;第二问,未;)1.(2022年湖北华师附中J61)已知函数()e ln ()x f x x a x a R =-∈在1x =处的切线方程为2e 1)+y x b =-(.(1)求实数,a b 的值;(⑧)(2)(i )证明:函数()y f x =有且仅有一个极小值点0x x =,且01(,1)2x ∈;(ii )证明:03141()1515f x <<.(切线,中下;第二问,未;)参考数据:ln 20.693≈e 1.648≈,0.55e 1.734≈,11303e 0.69-≈.2.(2022年河北演练一J39)已知函数()ln f x x bx a =++,其中,a b ∈R .(⑨)(1)若1a =,曲线()y f x =在2x =处的切线与直线210x y ++=平行,求()f x 的极值;(2)当1,1b a =≤-时,证明:2()ex f x x-≥.(切线,中下,单调性,极值,中下;第二问,未;)3.(2022年河北联考J42)设函数2()e mx f x x mx t =+-+在(0,(0))f 处的切线经过点(1,1).(1)求t 的值,并且讨论函数()f x 的单调区间;(⑩)(2)当1m =时,,()0x ∈+∞时,不等式(2)(2)4[()()]f x f x b f x f x -->--恒成立,求b 的取值范围.(切线,中下,单调性,中下;第二问,未;)1.(2022年湖北襄阳五中J24)已知函数()e 2xf x ax b =-+在0x =处的切线经过点()1,2.(1)若函数()f x 至多有一个零点,求实数a 的取值范围;(⑪)(2)若函数()f x 有两个不同的零点()1212,x x x x <,且25x >,求证:12211x x a ax >-.(23e 2.7,e 7.4,e 20.1≈≈≈)(切线,中下;零点分析,中档,未;第二问,未;)1.(2022年湖南三湘名校J45)已知函数()x f x e =(其中e 是自然对数的底数).过点(,1)(0)P m m >作曲线()y f x =的两条切线,切点坐标分别为()()()121212,e ,,e x x x x x x <.(1)若21x =,求m 的值;(⑫)(2)证明:12x x +随着m 的增大而增大.(切线,易;第二问,未;)2.(2022年湖北武汉J01)定义在π,2⎛⎫-+∞ ⎪⎝⎭上的函数()()sin f x x k x =-.(⑬)(1)当π6k =时,求曲线()y f x =在点π,06⎛⎫⎪⎝⎭处的切线与两坐标轴所围成的三角形的面积;(2)将()f x 的所有极值点按照从小到大的顺序排列构成数列{}n x ,若()()120f x f x +=,求k 的值.(切线,中下;第二问,未;)3.(2022年湖北四校联考J17)已知函数()()e ln (0),ln x f x a x b x g x x x x=+->=+.(⑭)(1)若曲线()y f x =在1x =处的切线方程为2e 3y x =+-,求,a b ;(2)在(1)的条件下,若()()f m g n =,比较m 与n 的大小并证明.(切线,中下;第二问,未;)①【答案】(I )(1),(0)y a x a =->;(II )证明见解析;(III )[),e -+∞【解析】【分析】(I )求出()f x 在0x =处的导数,即切线斜率,求出()0f ,即可求出切线方程;(II )令()0f x '=,可得(1)x a x e =+,则可化为证明y a =与()y g x =仅有一个交点,利用导数求出()g x 的变化情况,数形结合即可求解;(III )令()2()1,(1)xh x x x e x =-->-,题目等价于存在(1,)x ∈-+∞,使得()h x b ≤,即min ()b h x ≥,利用导数即可求出()h x 的最小值.【详解】(I )()(1)x f x a x e =-+',则(0)1f a '=-,又(0)0f =,则切线方程为(1),(0)y a x a =->;(II )令()(1)0x f x a x e =-+=',则(1)x a x e =+,令()(1)x g x x e =+,则()(2)x g x x e '=+,当(,2)x ∈-∞-时,()0g x '<,()g x 单调递减;当(2,)x ∈-+∞时,()0g x '>,()g x 单调递增,当x →-∞时,()0g x <,()10g -=,当x →+∞时,()0g x >,画出()g x 大致图像如下:所以当0a >时,y a =与()y g x =仅有一个交点,令()g m a =,则1m >-,且()()0f m a g m '=-=,当(,)x m ∈-∞时,()a g x >,则()0f x '>,()f x 单调递增,当(),x m ∈+∞时,()a g x <,则()0f x '<,()f x 单调递减,x m =为()f x 的极大值点,故()f x 存在唯一的极值点;(III )由(II )知max ()()f x f m =,此时)1(1,m a m e m +>-=,所以()2max {()}()1(1),mf x a f m a m m e m -=-=-->-,令()2()1,(1)xh x x x e x =-->-,若存在a ,使得()f x a b ≤+对任意x ∈R 成立,等价于存在(1,)x ∈-+∞,使得()h x b ≤,即min ()b h x ≥,()2()2(1)(2)x x h x x x e x x e =+-=+'-,1x >-,当(1,1)x ∈-时,()0h x '<,()h x 单调递减,当(1,)x ∈+∞时,()0h x '>,()h x 单调递增,所以min ()(1)h x h e ==-,故b e ≥-,所以实数b 的取值范围[),e -+∞.【点睛】关键点睛:第二问解题的关键是转化为证明y a =与()y g x =仅有一个交点;第三问解题的关键是转化为存在(1,)x ∈-+∞,使得()h x b ≤,即min ()b h x ≥.②【答案】(1)11y e=-;(2)答案不唯一,见解析.【解析】【分析】(1)求出导函数()'f x ,得切线斜率(1)f ',从而可得切线方程;(2)定义域是(0,)+∞,在0a ≤时直接由函数()f x 的解析式确定无零点(需用导数证明ln 0x x -<),在1a >时,由导函数()'f x ,得单调性,确定函数的最大值为(1)f ,根据(1)f 的正负分类讨论.在(1)0f >时,通过证明()0f a <和1(0f a<,得零点个数.【详解】(1)当1a =时,()ln x x e f x x x =+-,()111f e=-,()111xe xf x x -'=+-,()10f '=,所以曲线()y f x =在1x =处的切线方程为11y e=-.(2)函数()f x 的定义域为()0,∞+,()()1111111e e e x x x x x x a f x a a x x x x ---⎛⎫⎛⎫'=+-=+⋅=-+ ⎪ ⎪⎝⎭⎝⎭.①当0a =时,()0e xxf x =>,()f x 无零点.②当0a >时,10e x ax+>,令()0f x '>,得01x <<,令()0f x '<,得1x >,所以()f x 在()0,1上单调递增,在()1,+∞上单调递减,所以()f x 有最大值()11ef a =-.当10ea -<,即1e >a 时,()f x 无零点.当10e a -=,即1a e=时,()f x 只有一个零点.当10a e ->,即10a e<<时,()10f >,()()ln a a e f a a a a =+-,令()ln 1g x x x =-+,则()111xg x x x-'=-=,则()g x 在()0,1上单调递增,在()1,+∞上单调递减,所以()()max 10g x g ==,所以()ln 10g x x x =-+≤,因此当10a e <<时,ln 1a a -<-,()()1ln 1a a a a a f a a a a a a e e e ⎛⎫=+-<-=- ⎪⎝⎭.因为0a >,所以1ae >,于是()110af a a e ⎛⎫<-< ⎪⎝⎭.又()f x 在()0,1上单调递增,()10f >,且1a <,所以()f x 在()0,1上有唯一零点.1111111ln ln 1a aa a f a a a a a e a e ⎛⎫⎛⎫=+-=-- ⎪ ⎪⎝⎭⎝⎭,当10a e<<时,1e a >,令()2e x h x x =-,其中x e >,则()2xh x e x '=-,令()2xx e x ϕ=-,x e >,则()20xx e ϕ'=->,所以()h x '在(),e +∞上单调递增,()20eh x e e '>->,所以()h x 在(),e +∞上单调递增,()20eh x e e >->,故当x e >时,2x e x >.因为1e a >,所以211ae a ⎛⎫> ⎪⎝⎭,即11aa e a <,所以111ln 1ln 1aa f a a a a a a e ⎛⎫=--<-- ⎪⎝⎭.由ln 10x x -+≤,得11ln10a a -+<,即1ln 10a a--+<,得ln 10a a a --<,于是10f a ⎛⎫< ⎪⎝⎭.又()10f >,11a>,()f x 在()1,+∞上单调递减,所以()f x 在()1,+∞上有唯一零点.故10ea <<时,()f x 有两个零点.③当0a <时,由ln 10x x -+≤,得ln 10x x -≤-<,则()ln 0a x x ->,又当0x >时,0e xx>,所以()0f x >,()f x 无零点.综上可知,0a ≤或1a e >时,()f x 无零点;1a e =时,()f x 只有一个零点;10a e<<时,()f x 有两个零点.【点睛】关键点点睛:本题考查导数的几何意义,考查用导数研究函数的零点个数.解题关键是求出函数的导数()'f x ,由()'f x 确定单调性和最值,本题在最大值(1)f 0>的情况下,通过证明()f a 0<和10f a ⎛⎫< ⎪⎝⎭,结合零点存在定理得出零点个数.难度较大,对学生的要求较高,属于困难题.③【答案】(1)(i )11a b =⎧⎨=⎩,(ii )答案见解析(2)证明见解析【分析】(1)(i )求出导数,由题可得(0)0(0)1f f =⎧⎨='⎩即可求出;(ii )根据导数的正负即可求出.(2)求出导数,构造函数()(1)1x g x ae x =+-,利用零点存在定理可判断函数的变化情况,得出单调性即可判断.(1)(i )()11xf x ae x =-+',由已知得,(0)0(0)1f f =⎧⎨='⎩,故10ln 1a a b -=⎧⎨-=⎩,解得11a b =⎧⎨=⎩;(ii )1()(1)1xf x e x x '=->-+,显然()'f x 在(1,)-+∞上单调递增,又(0)0f '=,所以10x -<<时,()0f x '<;0x >时,()0f x '>,因此()f x 在(1,0)-上单调递减,在(0,)+∞上单调递增.(2)()ln(1)ln xf x ae x a =-+-,则1(1)1()11x xae x f x ae x x '+-=-=++,令()(1)1x g x ae x =+-,0a >,1x ≥-,显然()g x 在[1,)-+∞上单调递增,又(1)0g -<,10g a ⎛⎫> ⎪⎝⎭,所以存在11,t a ⎛⎫∈- ⎪⎝⎭,使得()0g t =,当1x t -<<时,()0<g x ;x t >时,()0>g x ,所以1x t -<<时,()0f x '<;x t >时,()0f x '>,即()f x 在(1,)t -上单调递减;在(,)t ∞+上单调递增,因此f (x )有唯一极小值点t .④【答案】(1)e(2)8【解析】【分析】(1)求出函数的导数,根据导数的几何意义求出()f x 在1x =-处的切线方程,根据切线与y 轴交于点210,e e ⎛⎫-⎪⎝⎭,即可求得a ;(2)法一:由(1)知()1e e xf x x -=+,则不等式可化为()1e 1e 0x x b x ---+≥,构造函数()()1e1e x g x x b x -=--+,利用导数并讨论导数的正负,从而求得存在()02,x ∈-+∞,()()()01000min e 1e 0x g x g x x b x -==--+≥,分离参数,表示出()0101e x b x -=+,构造新函数,结合导数求得32e e3e 3b --≤≤,进而求得答案;法二:讨论x 的取值范围,从而分离出参数b ,在1x >,21x -£<的情况下,分别构造函数,利用导数判断单调性求的最值,最后确定32e e3e 3b --≤≤,由此可得答案;法三:令2x =-,由()()1f x b x ≥-可解得32e e13b --≥>-,从而取0m =,证明证当0b =时,不等式1e e 0x x -+≥在2x ≥-时恒成立,令2x =,由()()1f x b x ≥-,解得3e b ≤,故取8M =,再证当8b =时,不等式()1e 81e 0x x x ---+≥在2x ≥-时恒成立,由此求得答案.【小问1详解】依题意得:()()11e x f x x -'=+,所以()10f '-=.又因为()211e f a -=-+,所以()f x 在1x =-处的切线方程为21ey a =-+,因为曲线()y f x =在1x =-处的切线与y 轴交于点210,e e ⎛⎫- ⎪⎝⎭,所以2211e e e a -+=-,解得e a =.【小问2详解】解法一:由(1)知()1e e xf x x -=+,则不等式可化为()1e 1e 0x x b x ---+≥,设()()1e1e x g x x b x -=--+,则()()11e x g x x b -='+-,设()()x g x ϕ'=,则()()12e x x x ϕ-=+',因为[)2,x ∈-+∞,所以()0x ϕ'≥,所以()x ϕ在[)2,-+∞单调递增,即()g x '在[)2,-+∞单调递增,所以()()3min 2e g x g b -=-=-'-',①若3e b -≤-,则()()20g x g '-'≥≥,所以()g x 在[)2,-+∞单调递增,所以()()3min 22e3e 0g x g b -=-=-++≥,解得32e e 3b --≥,所以332e e e 3b ---≤≤-;②若3e b ->-,则()()min 20g x g =-'<',因为()g x '在[)2,-+∞单调递增,当3e 0b --<≤时,()100eg b ='->,则存在()2,0x ∈-使得()0g x '=,当0b >时,取{}max 0,ln 1n b =+,则()0g n >,所以存在()12,x n ∈-,使得()10g x '=,综上,当3e b ->-时,存在()02,x ∈-+∞,使得()00g x '=,即()0101e 0x x b -+-=,故当02x x -<<时,()0g x '<,则()g x 在()02,x -单调递减,当0x x >时,()0g x '>,则()g x 在()0,x +∞单调递增,所以()()()01000min e1e 0x g x g x x b x -==--+≥,(*)由()0101e 0x x b -+-=,得()0101e x b x -=+,代入(*)得()()()000111200000e 1e 1e 1e e 0x x x x x x x x ----+-+=-+++≥,设()()211e e x F x x x -=---+,则()()()()2112e 21e x x F x x x x x --=-+---'=+,因为2x ≥-,所以由()0F x '=得1x =,当21x -<<时,()0F x '>,所以()F x 在()2,1-上单调递增,当1x >时,()0F x '<,所以()F x 在()1,+∞单调递减,又因为()32e e 0F -=-+<,()11e 0F =+>,()20F =,所以当2x >时,()0F x <,所以满足()012001ee 0x x x --+++≥的0x 的取值范围是022x -<≤,又因为()0101ex b x -=+,设()()11e x H x x -=+,则()()12e 0x H x x -+'=≥,所以()H x 在()2,-+∞单调递增,所以3e 3e b --<≤,综上所述32e e 3e 3b --≤≤,又因为32e e 103---<<,83e 9<<所以0m =,8M =,所以8M m +=.解法二:由(1)知:()1e e x f x x -=+,则()1e 1e 0x x b x ---+≥,①当1x =时,左边等于1e 0+≥恒成立,此时b ∈R ;②当1x >时,原不等式可化为1e e 1x x b x -+≤-对任意()1,x ∈+∞恒成立.设()1e e 1x x h x x -+=-,则()()()2121e e1x x x h x x --'--=设()()211e e x k x x x -=---,则()()()()2112e 21e x x k x x x x x --=+-'=+-.因为1x >,所以()0k x '>,所以()k x 在()1,+∞上单调递增.又因为()()220h k '==,所以2x =是()h x '在()1,+∞上的唯一零点,所以当12x <<时,()0h x '<,()h x 在()1,2上单调递减,当2x >时,()0h x '>,()h x 在()2,+∞上单调递增,所以()()min 23e h x h ==,所以3e b ≤.③当21x -£<时,原不等式可化为1e e 1x x b x -+≥-,此时对于②中函数()k x 的导函数,()()()()2112e 21e x x k x x x x x --=+-'=+-,可知当21x -£<时,()0k x '<,所以()k x 在21x -£<单调递减,且()325ee 0k --=-<,所以当21x -£<时,()()20k x k <-<,所以当21x -£<时,()0h x '<,所以()h x 在[)2,1-上单调递减,所以()3max 2e e (2)3h x h --=-=,所以32e e 3b --≥,综上所述32e e 3e 3b --≤≤,又因为32e e 103---<<,83e 9<<所以0m =,8M =,所以8M m +=.解法三:令2x =-,由()()1f x b x ≥-得()32e 3e b --≥--,解得32e e 13b --≥>-,取0m =,下证当0b =时,不等式1e e 0x x -+≥在2x ≥-时恒成立,设()1e e x g x x -=+,则()()11e x g x x -=+',由()0g x '=可得1x =-,当21x -<<-时,()0g x '<,所以()g x 单调递减,当1x >-时,()0g x '>,所以()g x 单调递增,所以()()2min 11e 0e g x g =-=-+≥,所以0m =符合题意;令2x =,由()()1f x b x ≥-得2e 20b -+≥,解得3e b ≤,取8M =,下证当8b =时,不等式()1e81e 0x x x ---+≥在2x ≥-时恒成立,设()1e e x h x x -=+,则()()11e x h x x -=+',令()0h x '=,则1x =-,所以当21x -<<-时,()0h x '<,则()h x 在()2,1-上单调递减,当1x >-时,()0h x '>,则()h x 在()1,+∞上单调递增,所以()()211e 0e h x h ≥-=->,所以当21x -≤≤时,()1e81e 0x x x ---+≥恒成立.当1x >时,10x ->,所以()()813e 1x x -<-,所以()()11e 81e e 3e 1e x x x x x x ----+>--+,设()()1e 3e 1e x k x x x -=--+,则()()11e 3e x k x x -'=+-,设()()x k x ϕ'=,则()()12e 0x x x ϕ-+'=≥,所以()k x '在()1,+∞单调递增,且()20k '=,所以当12x <<时,()0k x '<,则()k x 在()1,2单调递减,当2x >时,()0k x '>,则()k x 在()2,+∞单调递增,所以()()min 20k x k ==,所以()0k x ≥,所以()1e 81e 0x x x ---+≥,综上当8M =时,不等式()1e81e 0x x x ---+≥在2x ≥-时恒成立,所以8M m +=.【点睛】本小题主要考查函数的单调性、导数、导数的几何意义及其应用、不等式等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查分类与整合思想、数形结合思想、一般与特殊思想,涉及的核心素养有直观想象、数学抽象、数学运算、逻辑推理等,体现综合性与创新性.⑤【答案】(1)10x y -+=(2)①2②见解析【解析】【详解】试题分析:(1)将1a =代入到函数()f x ,再对()f x 求导,分别求出()0f 和()'0f ,即可求出切线方程;(2)①若函数()f x 在定义域上为单调增函数,则()'0f x ≥恒成立,则先证明1x e x ≥+,构造新函数,求出单调性,再同理可证ln 1x x ≤-,即可求出a 的最大整数值;②由①得()ln 2x e x ≥+,令1t x t -+=,可得11ln tt t e t -++⎛⎫≥ ⎪⎝⎭,累加后利用等比数列求和公式及放缩法即可得证.试题解析:(1)当1a =时,()()()1ln 1xf x e x x x =-+++∴()01f =,又()()'ln 1xf x e x =-+,∴()'01f =,则所求切线方程为1y x -=,即10x y -+=.(2)由题意知,()()'ln xf x e x a =-+,若函数()f x 在定义域上为单调增函数,则()'0f x ≥恒成立.①先证明1x e x ≥+.设()1x g x e x =--,则()'1xg x e =-,则函数()g x 在(),0-∞上单调递减,在()0,+∞上单调递增,∴()()00g x g ≥=,即1x e x ≥+.同理可证ln 1x x ≤-∴()ln 21x x +≤+,∴()1ln 2xe x x ≥+≥+.当2a ≤时,()'0f x >恒成立.当3a ≥时,()'01ln 0f a =-<,即()()'ln 0xf x e x a =-+≥不恒成立.综上所述,a 的最大整数值为2.②由①知,()ln 2x e x ≥+,令1t x t-+=,∴111ln 2ln t t t t e t t -+-++⎛⎫⎛⎫≥+= ⎪ ⎪⎝⎭⎝⎭∴11ln t t t e t -++⎛⎫≥ ⎪⎝⎭.由此可知,当1t =时,0ln2e >.当2t =时,213ln 2e -⎛⎫> ⎪⎝⎭,当3t =时,324ln 3e -⎛⎫> ⎪⎝⎭, ,当t n =时,11ln nn n e n -++⎛⎫≥ ⎪⎝⎭.累加得0121n e e e e ---+++++> 23341ln2ln ln ln 23n n n +⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .又0121n e e e e ---+++++= 11111111n e e e e e⎛⎫- ⎪⎝⎭<=---,∴2334ln2ln ln 23⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭1ln 1nn e n e +⎛⎫++< ⎪-⎝⎭ .点睛:(1)导数综合题中对于含有字母参数的问题,一般用到分类讨论的方法,解题时要注意分类要不重不漏;(2)对于恒成立的问题,直接转化为求函数的最值即可;(3)对于导数中,数列不等式的证明,解题时常常用到前面的结论,需要根据题目的特点构造合适的不等式,然后转化成数列的问题解决,解题时往往用到数列的求和及放缩法.⑥【答案】(1)1,1a b ==;证明见解析(2)证明见解析【解析】【分析】(1)求出函数的导函数,依题意可得()10f -=,()111ef -=-+',即可解得a 、b ,从而得到()()()1e 1x f x x =+-,设()f x 在()1,0-处的切线l 方程为()y h x =,令()()()F x f x h x =-,利用导数说明函数的单调性,即可得证;(2)由(1)知()()11f x h x ≥,设()h x m =的根为1x ',则1e 11em x '=-+-,即可得到11x x '≤,在设()y f x =在()0,0处的切线方程为()y t x =,令()()()T x f x t x =-,利用导数说明函数的单调性,即可得到()()22f x t x ≥.设()t x m =的根为2x ',则2x m '=,再说明22x x '≥,即可得证;【小问1详解】解:将1x =-代入切线方程()e 1e e l 0x y -++-=,有0y =,所以()10f -=,所以()()1110e f b a ⎛⎫-=-+-= ⎪⎝⎭,又()()1e x f x x b a +'=+-,所以()111e e b f a -=-=-+',若1ea =,则2e 0b =-<,与0b >予盾,故1a =,1b =.∴()()()1e 1x f x x =+-,()00f =,()10f -=,设()f x 在()1,0-处的切线l 方程为()()111e y h x x ⎛⎫==-+⎪⎝⎭,令()()()F x f x h x =-,即()()()()11e 111e x F x x x ⎛⎫=+---+ ⎪⎝⎭,所以()()12e e x F x x =+-',当2x -≤时,()()112e 0e ex F x x =+-≤-<',当2x >-时,设()()()12e ex G x F x x =+-'=,()()3e 0x G x x =+>',故函数()F x '在()2,-+∞上单调递增,又()10F '-=,所以当()2,1x ∈--时,()0F x '<,当()1,x ∈-+∞时,()0F x '>,综合得函数()F x 在区间(),1-∞-上单调递减,在区间()1,-+∞上单调递增,故()()10F x F ≥-=,即函数()y f x =的图象总在切线l 的上方(除切点外).【小问2详解】解:由(1)知()()11f x h x ≥,设()h x m =的根为1x ',则1e 11em x '=-+-,又函数()h x 单调递减,故()()()111f x h h x x =≥',故11x x '≤,设()y f x =在()0,0处的切线方程为()y t x =,因为()00f =,()()2e 1xf x x '=+-,所以()01f '=,所以()t x x =.令()()()()()1e 1x T x f x t x x x =-=+--,()()2e 2xT x x =+-',当2x -≤时,()()2e 220xT x x =+-≤-<',当2x >-时,设()()()2e 2x H x T x x ==+-',则()()3e 0xH x x =+>',故函数()T x '在()2,-+∞上单调递增,又()00T '=,所以当()2,0x ∈-时,()0T x '<,当()0,x ∈+∞时,()0T x '>,综合得函数()T x 在区间(),0∞-上单调递减,在区间()0,∞+上单调递增,所以()()00T x T ≥=,即()()22f x t x ≥.设()t x m =的根为2x ',则2x m '=,又函数()t x 单调递增,故()()()222f x t t x x =≥',故22x x '≥,又11x x '≤,所以()221112e e 111e 1em m x x x x m -⎛⎫''-≤-=--+=+ ⎪--⎝⎭.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.⑦【答案】(1)2y x=(2)(,1)-∞-【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究【小问1详解】()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0ex x f x x f =++=,所以切点为(0,0)11(),(0)21ex x f x f x ''-=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x=【小问2详解】()ln(1)e xaxf x x =++()2e 11(1)()1e (1)e x x x a x a x f x x x '+--=+=++设()2()e 1x g x a x =+-1︒若0a >,当()2(1,0),()e 10x x g x a x ∈-=+->,即()0f x '>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意2︒若10a - ,当,()0x ∈+∞,则()e 20x g x ax '=->所以()g x 在(0,)+∞上单调递增所以()(0)10g x g a >=+ ,即()0f x '>所以()f x 在(0,)+∞上单调递增,()(0)0f x f >=故()f x 在(0,)+∞上没有零点,不合题意3︒若1a <-(1)当,()0x ∈+∞,则()e 20x g x ax '=->,所以()g x 在(0,)+∞上单调递增(0)10,(1)e 0g a g =+<=>所以存在(0,1)m ∈,使得()0g m =,即()0'=f m 当(0,),()0,()x m f x f x '∈<单调递减当(,),()0,()x m f x f x '∈+∞>单调递增所以当(0,),()(0)0x m f x f ∈<=当,()x f x →+∞→+∞所以()f x 在(,)m +∞上有唯一零点又(0,)m 没有零点,即()f x 在(0,)+∞上有唯一零点(2)当()2(1,0),()e 1x x g x a x∈-=+-设()()e 2x h x g x ax '==-()e 20x h x a '=->所以()g x '在(1,0)-单调递增1(1)20,(0)10eg a g ''-=+<=>所以存在(1,0)n ∈-,使得()0g n '=当(1,),()0,()x n g x g x '∈-<单调递减当(,0),()0,()x n g x g x '∈>单调递增,()(0)10g x g a <=+<又1(1)0eg -=>所以存在(1,)t n ∈-,使得()0g t =,即()0f t '=当(1,),()x t f x ∈-单调递增,当(,0),()x t f x ∈单调递减有1,()x f x →-→-∞而(0)0f =,所以当(,0),()0x t f x ∈>所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点即()f x 在(1,0)-上有唯一零点所以1a <-,符合题意所以若()f x 在区间(1,0),(0,)-+∞各恰有一个零点,求a 的取值范围为(,1)-∞-【点睛】方法点睛:本题的关键是对a 的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.⑧【答案】(1)2,2ea b ==-(2)(i )证明见解析;(ii )证明见解析【解析】【分析】(1)直接利用导数的意义列方程组()()()'1211f e f e ⎧=-⎪⎨=⎪⎩,即可解得;(2)(i )求出导函数2()(1)e x f x x x '=+-.利用导数和零点存在对立即可证明;(ii )求出0000001()e 2ln 2(ln )1x f x x x x x =-=-+,令11()2(ln )(1)12x x x x ϕ=-<<+,利用导数判断出()y x ϕ=在(,1)2上单调递减,即可证明122741()(2(ln 2)2(2331015x ϕϕ<=+<+=;要证031()15f x >,即证0320312ln 15x x x x+>.令()x F x x =1(1)2x <<,利用导数证明出1()( 2.332F x F >≈;令32312ln 115()(1)2x G x x x+=<<,利用导数证明出1130max()(e ) 2.312G x G -=≈,得到()()G x F x <,即可证明.【小问1详解】定义域为(0,)+∞,'((e )1)xa f x x x=+-由题意知()()()()'1221121f e a e f e b e ⎧=-=-⎪⎨=-+=⎪⎩,解得2,2e a b ==-.【小问2详解】(i )由(1)知()e 2ln x f x x x =-,2()(1)e xf x x x'=+-令()()h x f x '=,则22()(2)e 0xh x x x'=++>,从而()y h x =即()y f x '=单调递增又13e 8(1)2e 20,()022f f -''=->=<,故存在唯一的01(,1)2x ∈使得0()0f x '=x 0(0,)x 0x 0(,)x +∞()'f x -0+()f x极小值从而()y f x =有且仅有一个极小值点0x x =,且01(,1)2x ∈(ii )00002()(1)e 0x f x x x '=+-=,()y f x =的极小值000000()e 2ln 2(ln )1x f x x x x x =-=-+令11()2(ln )(1)12x x x x ϕ=-<<+,则222'()0(1)x x x ϕ=--<+,从而()y x ϕ=在1(,1)2上单调递减,122741()(2(ln 2)2(2331015x ϕϕ<=+<+=,故041()15f x <下证031()15f x >0320312ln e15x x x x+>一方面令e ()xF x x =1(1)2x <<,则32e (21)()02x x F x x -'=>,则()F x 在1(,1)2上单调递增,从而1()()2e 2.332F x F >=≈另一方面,令32312ln 115()(1)2x G x x x +=<<,52113ln 10'()x G x x --=令()0'=G x 有1130e x -=x 11301(,e )2-1130e-1130(e,1)-()G x '+0-()G x极大值从而110.5530max 44()(e)e 1.734 2.31233G x G -==≈⨯≈从而()()G x F x <32312ln e15xx xx+>成立,故031()15f x >.【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值);(3)利用导数求参数的取值范围;(4)利用导数证明不等式.⑨【答案】(1)极大值为(1)0f =,无极小值.(2)证明见解析.【解析】【分析】(1)根据导数的几何意义得1b =-,进而得'11()10xf x x x-=-==,再列表求解即可;(2)根据题意,只需证明2e ln e e xx x x a ≥+,由于函数e ,0x y x x >=在()0,∞+上单调递增,e 0x y x =>,故转化为证明2ln e t t a ≥+,再令()2ln ,0et t g t a t -->=,再求函数最值即可证明.【小问1详解】解:1a =,()ln 1f x x bx =++,'1()f x b x=+,因为曲线()y f x =在2x =处的切线与直线210x y ++=平行,所以,'11(2)22f b =+=-,解得1b =-,所以,()ln 1f x x x =-+,'11()10xf x x x-=-==,解得1x =,所以,x ,'()f x ,()f x 的变化情况如下表,x ()0,11()1,+∞'()f x ++()f x 单调递增极大值单调递减所以,当1x =时,()f x 有极大值(1)0f =,无极小值.【小问2详解】解:当1,1b a =≤-,()ln f x x x a =++,因为222()e ee ln ln e ex x x x f x x x x x a x a x --≥⇔≥++⇔≥+,所以只需证明2e ln e exx x x a ≥+成立即可.令e ,0x y x x >=,则()'1e 0,0xy x x =+>>,所以,函数e ,0x y x x >=在()0,∞+上单调递增,即e 0x y x =>.令e ,0xx t t =>,则22e ln e ln e ex x x tx a t a ≥+⇔≥+,令()2ln ,0e t t g t a t -->=,则()2'2211e e e t t t t g --==,所以,当()20,et ∈时,()'0g t <,()g t 单调递减,当()2e ,t ∈+∞时,()'0g t >,()g t 单调递增,所以,()()22e1ln e1a a g g t ≥=--=--,因为1a ≤-,所以10a --≥,即()0g t ≥,所以2ln ett a ≥+成立,所以2()ex f x x-≥成立,证毕.⑩【答案】(1)0=t ;()f x 的单调递减区间为(,0)-∞,单调递增区间为(0,)+∞.(2)b 的取值范围为(,2]-∞.【分析】(1)、先求出切线方程,根据切线经过点(1,1)即可求出t 的值;求出()f x ',分0m ≥,0m <两种情况讨论函数的单调区间即可;(2)、将原不等式转化为函数值在,()0x ∈+∞时恒大于零问题,分类讨论即可得到b 的取值范围.(1)2()e mx f x x mx t =+-+ ,()e 2mxf x m x m '∴=+-,(0)0f '∴=,又()01f t =+ ,∴切线方程为1y t =+,又 切线经过点(1,1),11t ∴+=,0t ∴=,故2()e mx f x x mx =+-,()()1e 2e 2mx mx f x m x m m x '=-=+-+.①、若0m ≥,则当(,0)x ∈-∞时,e 10mx -≤,()0f x '<;当,()0x ∈+∞时,e 10mx -≥,()0f x '>.所以()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增.②、若0m <,则当(,0)x ∈-∞时,e 10mx ->,()0f x '<;当,()0x ∈+∞时,e 10mx -<,()0f x '>.所以()f x 在(,0)-∞上单调区间递减,在(0,)+∞上单调区间递增.综上所述:()f x 的单调递减为(,0)-∞,单调递增(0,)+∞.(2)当1m =时,2()e x f x x x =+-,22(2)(2)e 4e x x x f x f x -∴----=,()()e e 2x x x f x f x -----=,(2)(2)4[()()]f x f x b f x f x -->-- ,()22e e 4e e 42x x x x x b x --∴----≥,()22e e 4e e (84)0x x x x b b x --∴---+-≥在,()0x ∈+∞上恒成立.设()22()e e 4e e (84)x x x xg x b b x --=---+-,,()0x ∈+∞()()()()22()2e e 2e e 422e e 2e e 22x x x xx x x x g x b b b ----⎡⎤'∴=+-++-=+-+-+⎣⎦,且e e2xx-+>.①、当2b ≤时,e e 20,e e 220x x x x b --+->+-+>,()0g x '∴≥,当且仅当0x =时等号成立,所以()g x 在,()0x ∈+∞上单调递增,而()00g =,所以对0x >时,()0>g x .符合题意②、当2b >时,若x 满足2e e 22x x b -<+<-,即(20ln 12x b b b <<--时,()0g x '<,而(0)0g =,因此(20ln 12x b b b <<-+-时,()0<g x ,不符合题意.综上:b 的取值范围为(,2]-∞.⑪【答案】(1)2e 2a ≤(2)证明见解析【解析】【分析】(1)根据切线过点()1,2可得2b a =,参变分离后研究()e 1xg x x =-的单调性,得到极值,数形结合得到答案;(2)在第一问基础上,得到22e a >,对不等式变形,结合放缩,转化为只需证22212e 20(4)t t t +->>,二次求导后得到证明.【小问1详解】()e 2x f x a =-',∴()012f a '=-,∴0x =处的切线方程为()121y a x b =-++,切线过点()1,2,所以2b a =,∴()e 22x f x ax a =-+.∵()()1e 0,f f x =≠∴的零点不为1,∴e 21xa x =-在()(),11,-∞+∞ 上至多一个解.设1t x =-,则1e 2()t a g t t+==在()(),00,∞-+∞U 上至多一个解.1122111()()e e t t t g t t t t++-'=-=,令()0g t '>得:1t >,令()0g t '<得:01t <<或0t <,∴()g t 在(),0∞-和(]0,1上单调递减,[)1,+∞上单调递增,当0t <时,()0g t <恒成立,当0t >时,()g t 在1t =处取得极小值,且2(1)e g =,画出函数图象如图所示:所以22(1)e a g ≤=时,()f x 至多有一个零点,∴2e 2a ≤【小问2详解】由(1)知,要想有两个不同零点,则22e a >且12(0,1),(1,)t t ∈+∈∞,即()()121,2,2,x x ∈∈+∞,故要证12211x x a ax >-,只需证121ax x >-,由(1)知()()11110,1,1,2t x x =-∈∴∈,故只需证221x t a -=<,∵21222e (14)2t t x t a +==->.只需证:21222e (4)2t t t t +><,即22212e 20(4)t t t +->>,令()()()121e 24,e 4t t h t t t h t t ++=->'=-,15()e 4e 40t h t +''=->->,∴()h t '在()4,+∞上递增,∴()5416)e 0(h t h '>'=->,∴()h t 在()4,+∞上递增,∴()()54e 320h t h >=->,∴2122e 2t t +>,∴12211x x a ax >-【点睛】导函数研究函数零点问题,参变分离是一种重要方法,把零点问题转化为函数交点问题,通过构造函数,研究构造函数的单调性,极值和最值,数形结合得到答案.⑫【答案】(1)1em =(2)证明见解析【分析】(1)由导数的几何意义求切线方程,由点P 在切线上列方程求m 的值;(2)由导数的几何意义可得1x ,2x 是方程11e x m x =+-的两根,设21(0)x x t t -=>由此可得()1222e 1e e tx x tt +-=,证明t 随着m 的增大而增大,12e x x +随着t 的增大而增大,由此证明12x x +随着m 的增大而增大.(1)因为21x =,所以切点为(1,)e ,又()e x f x '=,则(1)e f '=,所以切线方程为e(1)e e y x x =-+=,因为切线过点(,1)P m ,所以1e m =,解得1em =;(2)设切点为()00,e x x ,因为()()000 e x f x f x '==,则切线方程为()000e e x x y x x =-+,因为切线过点(,1)P m ,所以()0001e e xxm x =-+,整理得0011(0)e x m x m =+->,所以1x ,2x 是方程11e xm x =+-的两根,设1()1e xg x x =+-,则1()1e x g x '=-,令()0g x '=,解得0x =,当0x <时,()0g x '<,()g x 在(,0)-∞上单调递减,当0x >时,()0g x '>,()g x 在(0,)+∞上单调递增,所以120x x <<,设1()g x m =的两根为()1212,0x x x x ''''<<,其中10m m >>,则由()g x 单调性可知,11220x x x x ''<<<<,所以2121x x x x ''->-,设21(0)x x t t -=>,即t 随着m 的增大而增大,因为12121111e e x x m x x =+-=+-,所以111111e e x x t x x t ++=++,整理得1e 1e e t x tt -=,所以21e 1e et x x tt +-==,所以()1222e 1e (0)e t x x t t t +-=>,设()22e 1()(0)et t h t t t -=>,则()()()()()2222322e e 1e 2e e 1e 1(2)e 2()e e t t t t t tttt t t t t t h t t t '⎡⎤-⋅-+⋅---++⎣⎦==,设()(2)e 2t t t t ϕ=-++,则()(1)e 1t t t ϕ'=-+,()(1)e 1t m t t =-+,则'()e 0t m t t =>所以()t ϕ'单调递增,所以()(0)0t ϕϕ''>=,所以()t ϕ单调递增,所以()(0)0t ϕϕ>=,即()0,()h t h t '>单调递增,所以12e x x +随着t 的增大而增大,又t 随着m 的增大而增大,所以12x x +随着m 的增大而增大.【点睛】本题解决的关键在于根据函数方程的思想确定1x ,2x 是方程11e xm x =+-的两根和构造函数证明12e x x +随着21x x -的增大而增大.⑬【答案】(1)2π144(2)π2【解析】【分析】(1)根据导数的几何意义及点斜式,再结合三角形的面积公式即可求解;(2)根据已知条件及正切函数的性质,利用导数法求函数的极值及函数存在性定理,再根据零点范围及三角函数相等的角的关系即可求解.【小问1详解】当π6k =时,()()ππsin ,sin cos 66f x x x f x x x x ⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎝⎭'⎭,故ππ1sin 662f ⎛⎫== ⎪'⎝⎭.曲线()y f x =在点π,06⎛⎫⎪⎝⎭处的切线的斜率为π162k f ⎛⎫== ⎪⎝⎭',曲线()y f x =在点π,06⎛⎫⎪⎝⎭处的切线方程为1π26y x ⎛⎫=- ⎪⎝⎭,令π0,12x y ==-.所以切线与y 轴的交点π0,12⎛⎫- ⎪⎝⎭.此时所求三角形的面积为21πππ2126144⨯-⨯=.【小问2详解】()()sin cos f x x x k x=+-'当ππ22x -<<时,()()cos tan f x x x x k =⋅+-'.由函数tan y x x =+在区间ππ,22⎛⎫- ⎪⎝⎭上递增,且值域为R ,故存在唯一0ππ,22x ⎛⎫∈- ⎪⎝⎭,使得00tan x x k +=.此时当0π2x x -<<时,()()0,f x f x '<单调递减;当0π2x x <<时,()()0,f x f x '>单调递增,因此10x x =.同理,存在唯一'0π3π,22x ⎛⎫∈ ⎪⎝⎭,使得''00tan x x k +=.此时当'0π2x x <<时,()()0,f x f x '>单调递增;当'03π2x x <<时,()()0,f x f x '<单调递减,因此'20x x =.由()()211111111sin 10,tan ,cos cos cos x f x x k x f x x x x =-=-=-=-'.同理:()222222sin 1cos cos cos x f x x x x =-=-.由()()120f x f x +=,整理得:()12121cos cos 10cos cos x x x x ⎛⎫+-=⎪⎝⎭.又12ππ3π222x x -<<<<,故12cos cos 1x x ≠,则有()122cos cos cos πx x x =-=-由2πππ22x -<-<,故12πx x =-或()12πx x =--.又1122tan tan k x x x x =+=+,当12πx x =-时,不满足,舍去.所以()12πx x =--,即12πx x +=,则1122tan tan π22x x x x k +++==.综上所述,π2k =.【点睛】解决此题的关键,第一问根据导数的几何意义及三角形的面积公式即可;第二问利用导数法求函数的极值的步骤,但此时无法解决导数函数的零点,只能通过函数零点存在性定理得出,再结合已知条件及零点范围及三角函数相等角的关系即可.⑭【答案】(1)2,1a b ==(2)m n ≤,证明见解析【解析】【分析】(1)求导得()'f x ,再求(1)f '的值即得切线的斜率,求出切点,利用点斜式求出切线方程,对比系数即可得答案;(2)先证明e 1x x ≥+,再令()()()h x f x g x =-,利用前面的结论说明()0h x ≥,最后根据()g x 的单调性证明即可.【小问1详解】解:()()()()2e 1(0),1e ,1x x af x x f b f a x x-=+>'=-=',所以()y f x =在1x =处的切线方程为e y ax b a =+--,比较系数可得2,1a b ==.【小问2详解】m n ≤.证明:设()=e 1xx x ϕ--,则()=e -1xx ϕ',令()>0x ϕ',则0x >;令()0ϕ'<x ,则0x <则0x =是()ϕx 的极小值点同时也是最小值点,故()()00x ϕϕ≥=即e 1x x ≥+(当且仅当0x =时等号成立).令()()()h x f x g x =-,则()()ln e ln 1e ln 10xx x h x x x x x x-=+--=---≥,当且仅当ln 0=x x -=“”取“”,所以()(),f x g x ≥则有()(),f m g m ≥而()(),()()f m g n g m g n =∴≤,又()11,()g x g x x'=+∴ 单调递增,所以m n ≤.。

高中数学导数的几何意义求切线方程专题-解析版

高中数学导数的几何意义求切线方程专题-解析版

导数的几何意义求切线方程专题题型一:切点已知求切线方程【例1】.函数f(x)=xe x的图象在点(1,f(1))处的切线方程是________.【答案】y=2ex−e【解析】因为f(x)=xe x,所以f(1)=e,f′(x)=e x+xe x,所以f′(1)=2e,所以f(x)的图象在点(1,f(1))处的切线方程为y−e=2e(x−1),即y=2ex−e.变式1.已知函数f(x)=x+aln⁡x.当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;【答案】2x−y−1=0【解析】当a=1时,f(x)=x+ln⁡x,f′(x)=1+1x(x>0).所以f(1)=1,f′(1)=2,所以切线方程为2x−y−1=0.【备注】考查导数的几何意义,先由导数得到斜率,再根据点斜式得到切线方程.变式2.已知函数f(x)=(x+1)ln⁡x−a(x−1).当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;【答案】y=−2x+2.【解析】当a=4时,f(1)=0,函数f(x)的导函数f′(x)=ln⁡x+1−3,因此f′(1)=−2,从而所求的切线方程为y=−2(x−1),也即y=−2x+2.【备注】本小题是常规的利用导函数求函数的切线方程问题.题型二:切点未知求切线方程【例2】.【2018年浙江宁波高二下学期周测】过原点作曲线y=e x的切线,则切线方程为________【答案】y=ex【解析】y′=e x设切点的坐标为(x0,e x0),切线的斜率为k,则k=e x0,故切线方程为y−e x0=e x0(x−x0)又切线过原点,∴−e x0=e x0(−x0),∴x0=1,y0=e,k=e.则切线方程为y=ex故答案为y=ex.变式.已知函数f(x)=x3−3x,过点P(2,−6)作曲线y=f(x)的切线,则切线方程是 ________【答案】3x+y=0或24x−y−54=0【解析】由f(x)=x3−3x,得f′(x)=3x2−3,设切点为(x0,x03−3x0),则斜率k=3x02−3,∴切线方程为y−(x03−3x0)=(3x02−3)(x−x0),即y=(3x02−3)x−2x03.∵切线过点P(2,−6),则−6=2(3x02−3)−2x03,解得:x0=0或x0=3.∴所求切线方程是y=−3x或y=24x−54.故答案为:3x+y=0或24x−y−54=0.题型三:已知切线方程求参数【例3】.若抛物线y=x2与直线2x+y+m=0相切,则m= ________【答案】1【解析】设切点为P(x0,y0).易知y′|x=x=2x0.由{2x0=−2,y0=x02,得{x0=−1,y0=1,所以P(−1,1).又P(−1,1)在直线2x+y+m=0上,所以2×(−1)+1+m=0,解得m=1.变式1.【2016年辽宁大连单元测试】设函数f(x)=x2-ln⁡(x+a)+b,g(x)=x3.若函数f(x)在点(0,f(0))处的切线方程为x+y=0,求实数a,b的值;【答案】a=1,b=0【解析】f′(x)=2x−1x+a依题意{f′(0)=−1a=−1 f(0)=−ln⁡a+b=0变式2.【2015年浙江舟山高二下学期月考】在同一坐标系中,直线l是函数f(x)=√1−x2在(0,1)处的切线,若直线l与g(x)=−x2+mx相切于x=1处,则m=________【答案】2【解析】函数y=f(x)=2即为上半圆x2+y2=1,(0,1)为与y轴的交点,即有在(0,1)处的切线为y=1,由题意可得直线l:y=1也是g(x)=−x2+mx的切线,所以g(x)在x=0处的导函数值为0,g′(0)=−2∗0+m=0且g(1)=1,所以m=2题型四:公切线求参数问题【例4】.若直线y=kx+t是曲线y=e x+2的切线,也是曲线y=e x+1的切线,则t=________ .【答案】4−2ln⁡2【解析】设y=kx+t与y=e x+2和y=e x+1的切点分别为(x1,kx1+t)、(x2,kx2+t).由导数的几何意义可得k=e x1=e x2+1,得x1=x2+1.再由切点也在各自的曲线上,可得kx1+t=e x1+2,kx2+t=e x2+1.联立上述式子{k=e x1x1=x2+1 kx1+t=e x1+2 kx2+t=e x2+1解得k=2,x1=ln⁡2,t=4−2ln⁡2.故答案为4−2ln⁡2.【备注】本题考查了导数的几何意义,体现了方程思想,对学生综合计算能力有一定要求,中档题.先设切点,然后利用切点来寻找切线斜率的联系,以及对应的函数值,综合联立求解即可变式:函数f(x)=ln⁡x+mxx+1与g(x)=x2+1有公切线y=ax(a>0),则实数m的值为________ .【答案】4【解析】设公切线y=ax与g(x)=x2+1的切点为(x0,x02+1),g"(x)=2x,故切线斜率为2x0,则切线为y−(x02+1)=2x0(x−x0),因为切线过原点(0,0),所以−x 02−1=−2x 02,解答x 0=1或x 0=−1, 因为切线斜率a =2x 0>0,所以x 0=1,a =2, 设公切线y =2x 与f(x)=ln⁡x +mxx+1相切与点(x 1,ln⁡x 1+mx 1x 1+1),f"(x)=1x +m (x+1)2,故斜率1x 1+m(x1+1)2=2①切线方程为y −(ln⁡x 1+mx 1x1+1)=(1x 1+m(x 1+1)2)(x −x 1),因为过(0,0),所以−ln⁡x 1−mx 1x1+1=−1−mx 1(x 1+1)2②联立①②解得x 1=1,m =4. 故答案为4.【备注】本题考查利用导数研究函数在某一点处的切线方程,根据条件设出切点,利用切线过原点且和两函数图象相切即可求出m 的值.针对训练1.曲线f(x)=x 3+11在点P(1,12)处的切线与y 轴交点的纵坐标是( ) A .−9 B .−3 C .9 D .15【答案】C【解析】因为y ′=3x 2,切点为(1,12),所以切线的斜率为3,故切线方程为3x −y +9=0,令x =0,得y =9【备注】求在某点处切线2.【2018年浙江杭州下城区浙江省杭州高级中学高二下学期期中考试数学试卷】已知直线y =−2x −23与曲线2f(x)=13x 3−bx 相切,则b =________. 【答案】3【解析】f(x)=13x 3−bx ,f ′(x)=x 2−b =−2,{x 2−b =−213x 3−bx =−2x −23,x =1,b =3.3.已知函数f(x)=ax2+(2a−1)x−ln⁡x,a∈R.若曲线y=f(x)在点(1,f(1))处的切线经过点(2,11),求实数a的值;【答案】a=2【解析】由题意得f′(x)=2ax+(2a−1)−1 x=2ax2+(2a−1)x−1x=(2ax−1)(x+1)x∴f′(1)=2(2a−1)∵f(1)=3a−1∴曲线y=f(x)在点(1,f(1))处的切线方程为y=2(2a−1)(x−1)+3a−1代入点(2,11),得a=2【备注】根据题意,对函数f(x)求导,由导数的几何意义分析可得曲线y=f(x)在点(1,f(1))处的切线方程,代入点(2,11),计算可得答案4.【2013年山西太原单元测试】设函数f(x)=x3−3ax+b,a≠0在点(2,f(2))处与直线y=8相切求实数a,b的值;【答案】a=4,b=24;【解析】f′(x)=3x2−3a,f′(2)=0,f(2)=8即12−3a=0,8−6a+b=8解得a=4,b= 245.函数f(x)=x2−2ax+ln⁡x(a∈R).函数y=f(x)在点(1,f(1))处的切线与直线x−2y+ 1=0垂直,求a的值;【答案】a=52【解析】函数f(x)的定义域为(0,+∞),f′(x)=2x−2a+1x,f′(1)=3−2a,由题意f′(1)⋅12=(3−2a)⋅12=−1,解得a=52.6.已知函数f(x)=aln⁡x−bx2图像上一点P(2,f(2))处的切线方程为y=−3x+2ln⁡2+2,求a,b 的值【答案】a=2,b=1【解析】f′(x)=ax−2bx{k=f′(2)=a2−4b=−3y0=f(2)=aln⁡2−4b=−6+2ln⁡2+2解得:a=2,b=1【备注】若想解得参数a,b需要注意两点:1、切点是个很特殊的点,既在曲线上,又在切线上。

导数20 大题(切线)2-2022年全国一卷新高考数学题型细分汇编

 导数20 大题(切线)2-2022年全国一卷新高考数学题型细分汇编

导数——大题——切线:1.(2022年河南益阳J37)已知函数()ln x f x x =,()()()21(0)2x g x axf x a x a =--->,()g x '为()g x 的导函数.(1)若直线y x b =+是曲线()y f x =的切线,求实数b 的值;(2)求()g x 的最大值;(①)(3)设()()1122,,,A x y B x y 是函数()y g x =图象上任意不同的两点,线段AB 的中点为()00,C x y ,记直线AB 的斜率为k ,证明:()'0k g x >.(切线,易;第二问,未;)1.(2022年广东启光卓越J21)已知函数()()3ln f x x ax ax a =+-∈R .(1)若1a =,求曲线()y f x =在1x =处的切线方程;(②)(2)若()0f x ≤在[)1,x ∞∈+上恒成立,求实数a 的取值范围.(切线,易;第二问,未;)2.(2022年广东惠州三模J17)已知函数ln ()xa xf x e a x=--(e 为自然对数的底数)有两个零点.(1)若1a =,求()f x 在1x =处的切线方程;(③)(2)若()f x 的两个零点分别为2,x x ,证明:12212x x e x x e+>.(切线,易;第二问,未;)3.(2022年广东六校联考J34)若()e x f x k =,且直线e y x =与曲线()y f x =相切.(1)求k 的值;(④)(切线,中下;第二问,未;)(2)证明:当[1,2]a ∈,不等式22()sin 23f x a x x x +-≥+对于[0,)x ∀∈+∞恒成立.1.(2022年江苏苏州J19)已知函数21()e cos 2=++xf x a b x x (其中a ,b 为实数)的图象在点(0,(0))f 处的切线方程为y x =.(1)求实数a ,b 的值;(⑤)(切线,中下;第二问,未;)(2)证明:方程()|ln sin |f x x x =+有且只有一个实根.2.(2022年江苏南京宁海中学J13)已知0a >且1a ≠,函数21()log 2a f x x ax =+.(1)若e a =,求函数()f x 在1x =处的切线方程;(⑥)(2)若函数()f x 有两个零点,求实数a 的取值范围.(切线,易;第二问,未;)3.(2022年江苏南京五中J12)已知a R ∈,函数()()214ln 12f x x ax x =-++.(1)当0a =时,求曲线()f x 在点()()0,0f 处的切线方程;(2)若()f x 在区间),0(+∞上存在两个不同的极值点.①求a 的取值范围;(⑦)②若当0x ≥时恒有()f x t >成立,求实数t 的取值范围.(参考数据:ln 20.69≈,ln 3 1.10≈)(切线,易;零点分析,中档;第三问,未;)4.(2022年山东百师联盟J56)已知函数()()()211ln 2f x ax a x x a R =+--∈.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(⑧)(2)若方程()0f x =有两个不等实数根,求实数a 的取值范围.(切线,易;第二问,未;)1.(2022年山东淄博三模J20)已知,2m m ∈≥N ,,a b 为函数()()e xx f x m m=-的两个零点,a b <,曲线()y f x =在点(,0)a 处的切线方程为()y g x =,其中e 2.71828= 为自然对数的底数.(1)当0x >时,比较()f x 与()g x 的大小;(⑨)(切线,中下;第二问,未;)(2)若120x x <<,且12()()f x f x n ==,证明:212ln ln nx x m m-<+.导数——大题——切线(中档、中上、未):4.(2022年广东佛山J11)已知函数1()e 1xf x x a=-+,其中a ∈R 且0a ≠.(⑩)(1)设0a >,过点11,2A ⎛⎫--⎪⎝⎭作曲线:()C y f x =的切线(斜率存在),求切线的斜率;(2)证明:当1a =或20e a <≤时,1()(1)2f x ax x ≥≥-.(切线,中档;第二问,未;)①【答案】(1)1b =-(2)最大值为2ln 2a a a a+-(3)证明见解析【解析】【分析】(1)由()'1fx =,结合切点坐标求得b 的值.(2)由()'g x 求得()g x 的最大值.(3)将()'0k g x >转化为21221121ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+,利用换元法,结合导数来证得不等式成立.【小问1详解】()f x 的定义域为()0,∞+,令()'21ln 1xfx x-==,2ln 10x x +-=,令()()()2'1ln 10,20h x x x x h x x x=+->=+>,()h x 在()0,∞+上递增,()10h =,所以()h x 有唯一零点1.所以方程2ln 10x x +-=有唯一解1x =.()10f =,即切点为()1,0,将()1,0代入y x b =+得01,1b b =+=-.【小问2详解】()()()()()22211ln 122ln 2x x x x x g x axf x a x ax a x a x a x =---=⋅---=--,其中0,0x a >>,()()2'11x a x a ag x x a x x-+-+=-+-=()()1x x a x -+-=,所以()g x 在区间()()()'0,,0,a g x g x >递增;在区间()()()',,0,a g x g x +∞<递减.所以()()()22maxln 1ln 22a a g x g a a a a a a a a ==---=+.【小问3详解】由(2)得()()2ln 12x g x a x a x =---,()'1a g x x a x =-+-,依题意1202x x x +=,要证明()'0k g x >,即证明'2112212y y x x g x x -+⎛⎫> ⎪-⎝⎭,即证明()()21'12212g x g x x x g x x -+⎛⎫> ⎪-⎝⎭,即证明()()22212212122111ln 1ln 121222x x a x a x a x a x x x a a x x x x +>-⎡⎤-------⎢⎦-⎣+-+⎥,整理得212121ln ln 2x x x x x x ->-+,不妨设120x x <<,即证()2121212ln ln x x x x x x -->+,即证21221121ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+,令211x t x =>,即证()2144ln 2,ln 20111t t t t t t ->=-+->+++,构造函数()()4ln 211m t t t t =+->+,()()()()2'22114011t m t t t t t -=-=>++,()m t 在()1,+∞上递增,()()10m t m >=,所以4ln 201t t +->+成立.得证()'0k g x >成立.【点睛】证明不等式的方法有分析法和综合法,本题采用的是分析法.即从结论()'0k g x >出发,化简得到21221121ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+,然后利用换元法,结合导数即可证得不等式成立.②【答案】(1)330x y --=(2)1,2⎛⎤-∞- ⎥⎝⎦【解析】【分析】(1)当1a =时,求出()1f 、()1f '的值,利用点斜式可得出所求切线的方程;(2)分析可知,不等式()()1f x f ≤在[)1,+∞上恒成立,对实数a 的取值进行分类讨论,利用导数分析函数()f x 在[)1,+∞上的单调性,验证()()1f x f ≤能否恒成立,综合可得出实数a 的取值范围.【小问1详解】解:当1a =时,()3ln f x x x x =+-,则()2131f x x x'=+-,所以,()10f =,()13f '=,此时,曲线()y f x =在1x =处的切线方程为()31y x =-,即330x y --=.【小问2详解】解:()0f x ≤在[)1,x ∞∈+上恒成立,且()10f =,所以,()()1f x f ≤,因为()3ln f x x ax ax =+-,所以,()213f x ax a x'=+-.①当0a =时,()10f x x'=>,此时函数()f x 在[)1,+∞上单调递增,则()()10f x f ≥=,不合乎题意;②当0a <时,令()()g x f x '=,则()2130g x a x '=-<,此时函数()f x '在[)1,+∞上单调递减.若()1210f a '=+≤,即当12a ≤-时,对任意的1≥x ,()()10f x f ''≤≤且()f x '不恒为零,此时,函数()f x 在[)1,+∞上单调递减,则()()10f x f ≤=,合乎题意;若()1210f a '=+>,即当102a -<<时,取0113a x a-=>,则2011311a x a a -->-=-,则()200131x x a ->-,此时()2311110ax x -+<-+=,所以,()()20020000311130ax x f x ax a x x -+'=+-=<,所以,存在()101,x x ∈,使得()10fx '=,当11x x <<时,()0f x '>,此时函数()f x 单调递增,则()()110f x f >=,不合乎题意;③当0a >时,因为()2ln 260f a =+>,与题设矛盾,不合乎题意.综上所述,实数a 的取值范围是1,2⎛⎤-∞- ⎥⎝⎦.【点睛】关键点点睛:本题考查利用函数不等式恒成立求参数,解题的关键在于计算得出()10f =,结合端点效应将问题转化为()()1f x f ≤恒成立,然后借助导数分析函数()f x 在[)1,+∞上的单调性求解即可.③【答案】(1)(1)y e x =-;(2)证明见解析.【解析】【分析】(1)利用切点和斜率求得切线方程.(2)由()0f x =化简得到ln()xxa xe xe =,利用换元法,将要证12212x x e x x e +>转化为证明1ln 21t t t ->+,结合导数证得结论成立.【详解】(1)当1a =时,ln ()1xx f x e x=--,21ln ()x xf x e x -'=-.又(1)1f e =-,所以切点坐标为(1,1)e -,切线的斜率为(1)1k f e '==-,所以切线的方程为(1)(1)(1)y e e x --=--,即(1)y e x =-.(2)由己知得.(ln )()0x xe a x x f x x-+==有两个不等的正实根,所以方程(ln )0x xe a x x -+=有两个不等的正实根,即ln()0x x xe a xe -=有两个不等的正实根,ln()x x a xe xe =①.要证12212x x e x x e +>,只需证12212()()x x x e x e e ⋅>,即证1212()()2x xln x e ln x e +>,-令111x t x e =,222xt x e =,所以只需证12ln ln 2t t +>.由①得11ln a t t =,22ln a t t =,所以2121(ln ln )a t t t t -=-,2121(ln ln )a t t t t +=+,消去a 得221121212122111ln ln ln (ln ln )1t t t t t t t t t t t t t t ⎛⎫+ ⎪+⎝⎭+=-=--,只需证2211211ln 21t t t t t t ⎛⎫+ ⎪⎝⎭>-.设120t t <<,令21t t t =,则1t >,所以只需证1ln 21t t t ->+.令1()ln 21t h t t t -=-+,1t >,则22214(1)()0(1)(1)t h t t t t t '-=-=>++,所以()(1)0h t h >=,即当1t >时,4ln 201t t +->+成立.所以12ln ln 2t t +>,即12212()()x x x e x e e ⋅>,即12212x x e x x e+>.【点睛】证明不等式恒成立问题,可利用构造函数法,结合导数求最值来进行求解.④【答案】(1)1k =(2)证明见解析【解析】【分析】(1)设切点为00(,)x y ,则有000()e ()ef x x f x '=⎧⎨=⎩,解之即可的解;(2)要证当[1,2]a ∈,不等式22()sin 23f x a x x x +-≥+对于[0,)x ∀∈+∞恒成立,只需证当[1,2]a ∈时,不等式22e sin 23x a x x x +-≥+对于[0,)x ∀∈+∞恒成立,令2()2e sin 23,[0,)x h x a x x x x =+---∈+∞,只需证明()min 0h x ≥即可,利用导数求出函数()h x 的最小值,即可得证.【小问1详解】解:设切点为00(,)x y ,()e x f x k ¢=,则000000()e e e ()e e e x x f x x k x f x k =⎧⎧=⇒⎨⎨==⎩'⎩,解得:01,1x k ==,1k ∴=;【小问2详解】证明:要证当[1,2]a ∈,不等式22()sin 23f x a x x x +-≥+对于[0,)x ∀∈+∞恒成立,只需证当[1,2]a ∈时,不等式22e sin 23x a x x x +-≥+对于[0,)x ∀∈+∞恒成立,令2()2e sin 23,[0,)x h x a x x x x =+---∈+∞,令()()2e cos 23,[0,)xg x h x a x x x ==+-'-∈+∞,()2e sin 2,[0,)x g x a x x '=--∈+∞,令()sin ,[0,)m x x x x =-∈+∞,则o 0(c )1s x m x =-≥',所以函数()m x 在()0,∞+上递增,所以()(0)0m x m ≥=,所以sin ,[0,)x x x ≤∈+∞,故()()2e sin 22e 22e 222e 1xxxxg x a x ax x x '=--≥--≥--=--,()[)()e 1,0,x x x x ϕ=--∈+∞令,则()e 10,(0)x x x ϕ'=-≥≥,所以函数()x ϕ在()0,∞+上递增,所以()(0)0x ϕϕ≥=,所以()()2e 10xg x x '≥--≥,所以函数()g x 在()0,∞+上递增,即函数()h x '在()0,∞+上递增,又(0)230h a +-'=≥,所以()0h x '≥,所以()h x 在()0,∞+上递增,又因为(0)0h =,故()0,[0,)h x x ≥∀∈+∞恒成立,即当[1,2]a ∈,不等式22()sin 23f x a x x x +-≥+对于[0,)x ∀∈+∞恒成立.【点睛】本题考查了导数的几何意义,还考查了利用导数证明不等式问题,考查了放缩及转换思想,考查了学生的数据分析能力、计算能力及逻辑推理能力,难度很大.⑤【答案】(1)1,1.a b =⎧⎨=-⎩(2)证明见解析【解析】【分析】(1)求导,得()e sin '=-+x f x a b x x ,由题知(0)0(0)1f a b f a =+=⎧⎨=='⎩,解方程得解.(2)令()ln sin g x x x =+,分三种情况讨论:当[,)x π∈+∞,[1,)x π∈,(0,1)x ∈时()g x 的零点情况;令()()|ln sin |x f x x x ϕ=-+,分两种情况讨论:当()00,x x ∈,()0,x x ∈+∞时,对()ϕx 求导,借助()ϕx 单调性及零点存在性定理,判断()ϕx 的零点情况,进而得证.【小问1详解】因为21()e cos 2=++xf x a b x x ,所以()e sin '=-+x f x a b x x .因为()y f x =的图象在(0,(0))f 处的切线为y x =,所以(0)0(0)1f a b f a =+=⎧⎨=='⎩解得1,1.a b =⎧⎨=-⎩【小问2详解】令函数()ln sin g x x x =+,定义域为(0,)+∞.当[,)x π∈+∞时,ln 1,sin 1x x >≥-,所以()ln sin 0g x x x =+>;当[1,)x π∈时,ln 0,sin 0x x ≥>,所以()ln sin 0g x x x =+>;当(0,1)x ∈时,由1()cos 0g x x x+'=>知()g x 在(0,1)上单调递增,又11(1)sin10,1sin0e e⎛⎫=>=-+< ⎪⎝⎭g g 且函数连续不间断,所以0(0,1)x ∃∈,有()000ln sin 0g x x x =+=.综上所述,函数()g x 在(0,)+∞有唯一的零点0(0,1)x ∈,且()g x 在()00,x 上恒小于零,在()0,x +∞上恒大于零.令函数()()|ln sin |x f x x x ϕ=-+,讨论如下:①当()00,x x ∈时,21()()|ln sin |e cos ln sin 2=-+=-+++xx f x x x x x x x ϕ,求导得1()e (sin cos )⎛⎫=++++ ⎪'⎝⎭xx x x x x ϕ.因为12,sin cos 2x x x x +≥+≥-,所以1()e (sin cos )0⎛⎫=++++> ⎪⎝⎭'x x x x x x ϕ,即函数()ϕx 在()00,x 单调递增.又因为()()0022000000011e cos ln sin e cos 022=-+++=-+>xx x x x x x x ϕ,()333e 363e 63311e e cos e e 3sin e e e sin e 3cos e 022---------⎛⎫=-+-+=++--< ⎪⎝⎭ϕ,所以函数()ϕx 在()00,x 存在唯一的零点,所以方程()|ln sin |f x x x =+在()00,x 上有唯一的零点.②当()0,x x ∈+∞时,21()()|ln sin |e cos ln sin 2=-+=-+--xx f x x x x x x x ϕ.法一:由(1)易证21e cos 2-+>xx x x 在(0,)+∞上恒成立.事实上,令21()e cos 2=-+-xh x x x x ,则()e sin 1=+'+-x h x x x .因为()e (cos 1)0=++''>x h x x ,所以()h x '在(0,)+∞上单调递增,所以()(0)0h x h ''>=,即()h x 在(0,)+∞上单调递增,所以()(0)0h x h >=,即21e cos 2-+>xx x x 在(0,)+∞上恒成立.从而21()e cos ln sin ln sin ln 102=-+-->--≥--≥xx x x x x x x x x x ϕ,所以方程()|ln sin |f x x x =+在()0,x +∞上无零点.综上所述,方程()|ln sin |f x x x =+有且只有一个实根.法二:因为1ln x x -≥,所以ln(1)x x ≥+,所以e 1x x ≥+,所以e ln (1)(1)2-≥+--=x x x x ,所以2211e cos ln sin (2sin cos )022-+--≥--+>xx x x x x x x ,所以方程()|ln sin |f x x x =+在()0,x +∞上无零点.综上所述,方程()|ln sin |f x x x =+有且只有一个实根.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题第一问考查导数的几何意义,第二问利用导数求函数的单调区间,判断单调性,并借助零点存在性定理研究方程的实根,考查数形结合思想的应用.⑥【答案】(1)()1112y e x e =+--(2)110,,1a e e ⎛⎫⎛⎫∈⋃ ⎪ ⎪⎝⎭⎝⎭【解析】【分析】(1)由a e =时,得到()21ln 2f x x ex =+,求导,进而得到()()1,1f f ',写出切线方程;(2)将函数()f x 有两个零点,转化为函数2ln x y x =与1ln 2y a a =-的图象在()0,x ∈+∞上有两个交点求解.【小问1详解】解:当a e =时,()21ln 2f x x ex =+,则()1f x ex x'=+,故()1111f e e '=+=+,1x =时,()111ln122f e e =+=,故切点为11,2e ⎛⎫ ⎪⎝⎭,所以()f x 在1x =处的切线方程为()()1112y e e x -=+-,即()1112y e x e =+--.【小问2详解】函数()f x 有两个零点,⇔方程21log 02a x ax +=在()0,x ∈+∞上有两个根,⇔方程2ln 1ln 2x a a x =-在()0,x ∈+∞上有两个根,⇔函数2ln xy x=与1ln 2y a a =-的图象在()0,x ∈+∞上有两个交点,设()2ln x g x x =,则()312ln x g x x -'=,()312ln 0x g x x -'=>时,0x e <<;()312ln 0xg x x-'=<时,x e >,所以()2ln xg x x=在(e 上单调递增,在)e +∞上单调递减,由()10g =,12g e e =,当1x >时,()0g x >,当x →+∞时,()0g x →,作图如下:由图得110ln 22a a e <-<,即1ln 0a a e-<<,设()()ln 0h x x x x =>,则()1ln h x x '=+,()1ln 0h x x '=+>时,1x e >,()1ln 0h x x '=+<时,10x e<<;所以()ln h x x x =在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,因为01x <<时ln 0x <,且()10h =,所以当01x <<时,()10h x e-≤<;当1x >时,()0h x >,又因为()min 11h x h e e⎛⎫==- ⎪⎝⎭,所以1ln 0x x e -<<的解集为110,,1e e ⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭综上所述110,,1a e e ⎛⎫⎛⎫∈⋃ ⎪ ⎪⎝⎭⎝⎭.⑦【答案】(1)4y x =;(2)①34a <<;②158ln 22t ≤-.【解析】【分析】(1)利用导数的几何意义,求()()0,0f 处的切线方程即可.(2)①由题意知,()2140x a x a --+-=有两个不相等的正根,即可求a 的取值范围;②由①得到()f x 的单调区间,可知要使0x ≥时,恒有()f x t >成立,只需满足()(){}2min 0,t f f x <,而2212152a a a x -++-=,结合①的结论得()21,3x ∈,则()()3222222222414ln 121x x x f x x x x ++=-+++,构造中间函数并应用导数研究单调性,确定()2f x 的范围,即可比较()()20,f f x 的大小,进而求t 的取值范围.【详解】(1)当0a =时,()()214ln 12f x x x =++,则()41f x x x '=++,∴()00=f ,()04f '=,即所求的切线方程为4y x =.(2)①()()214411x a x a f x x x x a --+-+'=-=++,设()f x 在),0(+∞上的极值点为1x ,()212x x x <,则1x ,2x 是方程()2140x a x a --+-=的两正根,∴()()2401021440a a a a ⎧->⎪-⎪>⎨⎪⎪∆=--->⎩,解得34a <<.②由①知:当10x x ≤<时,()0f x ¢>,所以()f x 单调递增;当12x x x <<时,()0f x ¢<,所以()f x 单调递减;当2x x >时,()0f x ¢>,所以()f x 单调递增.∴要使0x ≥时,恒有()f x t >成立,只需满足()(){}2min 0,t f f x <.由2212152a a a x -++-=,34a <<,则()21,3x ∈,又222241x x a x ++=+,∴()()()322222222222224114ln 14ln 1221x x x f x x ax x x x x ++=-++=-+++,()21,3x ∈.设()()322144ln 121x x x F x x x x ++=-+++,()1,3x ∈,则()()()()2131x x x F x x --+'=+.∴()0F x '<,()F x 在()1,3上单调递减,即()()1538ln 22F x F >=-,从而()2158ln 22f x >-.由ln 20.69≈,得158ln 202-<,又()00=f ,∴()(){}215min 0,8ln 22f f x >-,得158ln 22t ≤-.【点睛】关键点点睛:第二问,①求()f x ¢的解析式,将问题转化为()2140x a x a --+-=有两个不相等的正根求参数范围;②由①判断()f x 的区间单调性,将问题转化为()(){}2min 0,t f f x <,再构造中间函数并应用导数求()2f x 的范围,并比较()()20,f f x 的大小关系.⑧【答案】(1)12y =(2)(2,)+∞【解析】【分析】(1)求导,利用导数的几何意义求出切线斜率,求出切线方程;(2)求定义域,求导,对导数因式分解,由最小值小于0得到2a >,进而证明充分性成立,a 的其他范围均不合要求,得到a 的取值范围.【小问1详解】当1a =时,21()ln 2f x x x =-,所以1()f x x x'=-,又有1(1),(1)02f f ==',所以切线方程为12y =.【小问2详解】()f x 的定义域为(0,)+∞,∵21()(1)ln 2f x ax a x x =---,∴21(1)1(1)(1)()(1)ax a x ax x f x ax a x x x---+-=---==',若方程()0f x =有两个不等实数根,即函数()f x 有两个不同的零点,当0a ≥时,由()0f x '<得:(0,1)x ∈,由()0f x '>得(1,)x ∈+∞,所以函数()f x 在()0,1上单调递减,在(1,)+∞上单调递增,∴若函数()f x 有两个不同的零点则必有1(1)102f a =-+<,即2a >.此时,在(1,)x ∈+∞上有(2)22(1)ln 22ln 20f a a =---=->,在(0,1)x ∈上,2120x x -<-<,∵()21()2ln 2f x a x x x x =-+-,∴()1ln 2f x a x x >-+-,∴111122221e e ln e e 02a a a f a ----⎛⎫⎛⎫>-+-=> ⎪ ⎪⎝⎭⎝⎭∴()f x 在区间()0,1、(1,)+∞上各有一个零点,故2a >满足题意;当1a =-时,∵函数()f x 在(0,)+∞上单调递减,∴函数()f x 至多一个零点,不合题意;当10a -<<时,∵函数()f x 在区间(0,1)上单调递减,在11,a ⎛⎫-⎪⎝⎭上单调递增,在1,a ∞⎛⎫-+ ⎪⎝⎭上单调递减,∴函数()f x 的极小值为1(1)102f a =->,∴函数()f x 至多一个零点,不合题意;当1a <-时.∵函数()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递减,在1,1a ⎛⎫- ⎪⎝⎭上单调递增,在(1,)+∞上单调递减,∴函数()f x 的极小值为11111(1)ln 1ln()022f a a a a a a a ⎛⎫⎛⎫-=+---=-+-> ⎪ ⎪⎝⎭⎝⎭,∴函数()f x 至多一个零点,不合题意.综上所述,实数a 的取值范围是(2,)+∞.【点睛】导函数研究函数的零点个数问题,一般思路为求定义域,求导,得到函数极值,最值情况,进而由最值情况先得到必要性,再证明充分性.⑨【答案】(1)()()f xg x >(2)证明见解析【解析】【分析】(1)利用函数导数的几何意义求出切线斜率,再由点斜式求切线方程,作差即可比较大小;(2)先求出曲线()y f x =在点(ln ,0)m 处的切线方程,作差后构造函数()()()F x f x h x =-,利用导数求最小值为0,可得()()f x h x ≥,设()h x n =的正根为0x ,可得2103(11ln ln x x mn x x m m m --<-=++,再利用放缩法求证即可.【小问1详解】令()(e )0xx f x m m=-=,因为a b <所以函数()f x 的两个零点分别是0a =,ln b m =,e ()(1)1xf x x m+'=-,所以11(0)1m f m m -='-=,所以曲线()y f x =在点(0,0)处的切线方程为1my x m-=,所以1(e )(e 1)()()x x x m x m x x m m mf xg -=---=-,若0x >,则()()0f x g x ->,即()()f x g x >.【小问2详解】e ()(1)1xf x x m+'=-,所以(ln )ln f m m =',所以曲线()y f x =在点(ln ,0)m 处的切线方程为ln (ln )y m x m =-,记()ln (ln )h x m x m =-,)(()()()ln (l )n e xF x x m mf x h x m x m =-=---,e (1)l 1(n )x x m m F +-=-',2)0(()e xF mx x '+'>=,所以()F x '在(0,)+∞上单调递增,又(ln )0F m '=,所以当(0,ln )x m ∈时,()0F x '<,()F x 单调递减;当(ln ,)x m ∈+∞时,()0F x '>,()F x 单调递增,所以()F x 在ln x m =处取得极小值,即()(ln )0F x F m ≥=,即当0x ≥时,()()f x h x ≥,设()h x n =的正根为0x ,则0ln (ln )m x m n -=,所以0ln ln nx m m=+,因为()h x 是增函数,220()()()h x f x n h x ≤==,即20x x ≤,结合(1),设1()m g x x n m -==的根为3x ,则31mnx m=-,因为()g x 为减函数,113()()()g x f x n g x <==,所以13x x ≥,所以2103()11ln ln x x mn x x m m m --<-=++,设1()ln x x x x ϕ-=-,22111()0(2)x x x x x xϕ-=-=>≥',所以()ϕx 在[2,)+∞上单调递增,1()(2)ln 202x ϕϕ≥=->,所以1ln 0m m m-->,所以11ln m mm -<,所以112ln ln m mm m >+-,()()e 11x f x x m +'=-,()(2)0xe f x x m=+'>',所以′(p 单调递增,因为1(0)10f m'=-<,(ln )ln 0f m m '=>,所以存在唯一4(0,ln )x m ∈,使得4()0f x '=,当4(0)x x ∈,时,()0f x '<,()f x 单调递减;当4(,)x x ∈+∞时,()0f x '>,()f x 单调递增;因为(0)(ln )0f f m ==,若关于x 的方程()f x n =有两个正根,必有0n <,所以(112ln ln m m n m nm +<-,所以212ln ln n x x m m-<+【点睛】思路点睛:本题第二问难度很大,证明212ln ln nx x m m-<+的过程中,用导数最值先证明2103(11ln ln x x m n x x m m m --<-=++,再利用()112ln ln mm n m n m +<-放缩得证,思维难度较大,属于难题.⑩【答案】(1)112a -;(2)证明见解析.【解析】【分析】(1)设出切点坐标,对函数()f x 求导,再借助导数的几何意义列式计算作答.(2)当1a =时,不等式等价转化为证1e 12xx x -≥+,当20ea <≤时,转化证明111e e 22x x ax x a -≥-,作差构造函数即可推理作答.【小问1详解】0a >,11()e 21x f x a x '=-+,而1(1)0e f a -=>,即点11,2A ⎛⎫-- ⎪⎝⎭不在曲线C 上,设切点000(,()),1T x f x x >-,则切线AT 的斜率为00011()e 21x f x a x k '=+=,又001()21f x k x +=+,于是得00002()111e 2(1)21x f x a x x +=++000002(1)1e 12(e 1)1x x x x x a a +-+=-++,整理得:002e 110x x x a ++=,即00002e 011x x a x =++,有00021(e )011x x a x +=++,而0021e 011x a x +>++,因此,00x =,11(0)2f a '=-,所以切线的斜率为112a -.【小问2详解】当1a =时,1x ≥-,111()e 10e 1222x x f x ax x x x x ≥⇔-+≥⇔-≥+令()e 1x h x x =--,求导得()e 1x h x '=-,当0x <时,()0h x '<,当0x >时,()0h x '>,即函数()h x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,R x ∀∈,()(0)0h x h ≥=,即e 1x x ≥+,因此当1x ≥-时,111(1)e 11222xx x x x ++-≥+=≥+,当且仅当0x =时取“=”,则1e 102xx x -+≥,于是得当1a =且1x ≥-时,1()2f x ax ≥.当20e a <≤时,1x ≥-,111()e 122x f x ax ax x a ≥⇔-≥+,令1e )(1)(21111()e ()22x x x x a x ax x a a ϕ-=+-=--,1x ≥-,由20e a <≤得10a ->,则(1)(11()e )02x x a a ϕ'+->=,即()ϕx 在[1,)-+∞上单调递增,又(1)11(1))0e (2a a ϕ=--≥-,即当1x ≥-时,()(1)0x ϕϕ≥-≥,于是得当20e a <≤,1x ≥-时,111e e 22x x ax x a -≥-,而1e 12xx x -≥+,因此,11e 12x ax x a -≥+,从而得当20e a <≤,1x ≥-时1()2f x ax ≥,所以当1a =或20e a <≤时,1()(1)2f x ax x ≥≥-.【点睛】思路点睛:解决过某点的函数f (x )的切线问题,先设出切点坐标00(,)x y ,求导并求出切线方程000()()y y f x x x '-=-,然后将给定点代入切线方程转化为方程根的问题求解.。

导数中八大切线问题题型总结(学生版)--高中数学

导数中八大切线问题题型总结(学生版)--高中数学

导数中八大切线问题题型总结【考点预测】1.在点的切线方程切线方程y-f(x0)=f (x0)(x-x0)的计算:函数y=f(x)在点A(x0,f(x0))处的切线方程为y-f(x0)=f(x0)(x-x0),抓住关键y0=f(x0) k=f (x0) .2.过点的切线方程设切点为P(x0,y0),则斜率k=f (x0),过切点的切线方程为:y-y0=f (x0)(x-x0),又因为切线方程过点A(m,n),所以n-y0=f (x0)(m-x0)然后解出x0的值.(x0有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.【题型目录】题型一:导数与切线斜率的关系题型二:在点P处切线(此类题目点P即为切点)题型三:过点P的切线(此类题目点P不一定为切点,需要设切点为x0,y0)题型四:已知切线求参数问题题型五:切线的条数问题(判断切线条数以及由切线条数求范围)题型六:公切线问题题型七:切线平行、垂直、重合问题题型八:与切线相关的最值问题【典例例题】题型一:导数与切线斜率的关系【例1】(2022·全国·高三专题练习(文))函数y=f(x)的图像如图所示,下列不等关系正确的是( )A.0<f (2)<f (3)<f(3)-f(2)B.0<f (2)<f(3)-f(2)<f (3)C.0<f (3)<f(3)-f(2)<f (2)D.0<f(3)-f(2)<f (2)<f (3)【例2】函数y=f x 的图象如图所示,f′x 是函数f x 的导函数,则下列大小关系正确的是( )A.2f′4 <f4 -f2 <2f′2B.2f′2 <f4 -f2 <2f′4C.2f′4 <2f′2 <f4 -f2D.f4 -f2 <2f′4 <2f′2【题型专练】1.(2021·福建·泉州鲤城北大培文学校高三期中)(多选题)已知函数f x 的图象如图所示,f x 是f x 的导函数,则下列数值的排序正确的是()A.f 3 <f 2B.f 3 <f 3 -f 2C.f 2 <f 3 -f 2D.f 3 -f 2 <02.(2022·黑龙江齐齐哈尔·高二期末)函数y =f x 的图象如图所示,f x 是函数f x 的导函数,则下列数值排序正确的是( )A.2f 3 <f 5 -f 3 <2f 5B.2f 3 <2f 5 <f 5 -f 3C.f 5 -f 3 <2f 3 <2f 5D.2f 3 <2f 5 <f 5 -f 3题型二:在点P 处切线(此类题目点P 即为切点)【例1】【2019年新课标3卷理科】已知曲线y =ae x +x ln x 在点1,ae 处的切线方程为y =2x +b ,则A.a =e ,b =-1B.a =e ,b =1C.a =e -1,b =1D.a =e -1,b =-1【例2】(2022·全国·高三专题练习(文))已知函数f (x )是定义在R 上的奇函数,且f (x )=-2x 3+3ax 2-f (1)x ,则函数f (x )的图象在点(-2,f (-2))处的切线的斜率为( )A.-21B.-27C.-24D.-25【例3】(2022·河南省浚县第一中学模拟预测(理))曲线y =x ln (2x +5)在x =-2处的切线方程为( )A.4x -y +8=0B.4x +y +8=0C.3x -y +6=0D.3x +y +6=0【例4】过函数f (x )=12e 2x-x 图像上一个动点作函数的切线,则切线领斜角范围为( )A.0,3π4B.0,π2∪3π4,π C.3π4,π D.π2,3π4【例5】(2022·安徽·巢湖市第一中学模拟预测(文))曲线y =2x +ax +2在点1,b 处的切线方程为kx -y +6=0,则k 的值为( )A.-1B.-23C.12D.1【例6】(2022·江西·丰城九中高二期末(理))已知函数f x =f 2 3x 2−x ,x >0g x ,x <0图像关于原点对称,则f (x )在x=-1处的切线方程为( )A.3x-y+2=0B.3x-y-2=0C.3x+y+4=0D.3x+y-4=0【题型专练】1.【2018年新课标1卷理科】设函数f x =x3+a-1x2+ax.若f x 为奇函数,则曲线y=f x 在点0,0处的切线方程为( )A.y=-2xB.y=-xC.y=2xD.y=x2.【2021年甲卷理科】曲线y=2x-1x+2在点-1,-3处的切线方程为__________.3.【2019年新课标1卷理科】曲线y=3(x2+x)e x在点(0,0)处的切线方程为___________.4.【2018年新课标2卷理科】曲线y=2ln(x+1)在点(0,0)处的切线方程为__________.5.【2018年新课标3卷理科】曲线y=ax+1e x在点0,1处的切线的斜率为-2,则a=________.题型三:过点P的切线(此类题目点P不一定为切点,需要设切点为x0,y0)【例1】【2022年新高考2卷】曲线y=ln|x|过坐标原点的两条切线的方程为____________,_____ _______.【例2】(2022·四川·广安二中二模(文))函数f x =x2e x过点0,0的切线方程为( )A.y=0B.ex+y=0C.y=0或x+ey=0D.y=0或ex+y=0【例3】(2022·四川省成都市郫都区第一中学高三阶段练习(文))若过点12,0的直线与函数f(x)=xe x的图象相切,则所有可能的切点横坐标之和为( )A.e+1B.-12C.1D.12【例4】(2022·广东·佛山市南海区九江中学高二阶段练习)直线y=12x-b与曲线y=-12x+ln x相切,则b的值为( )A.2B.-2C.-1D.1【题型专练】1.(2022·陕西安康·高三期末(文))曲线y=2x ln x+3过点-12,0的切线方程是( )A.2x+y+1=0B.2x-y+1=0C.2x+4y+1=0D.2x-4y+1=02.(2022·广东茂名·二模)过坐标原点作曲线y=ln x的切线,则切点的纵坐标为( )A.eB.1C.1eD.1e3.过点(0,-1)作曲线f(x)=x ln x的切线,则切线方程为()A.x+y+1=0B.x-y-1=0C.x+2y+2=0D.2x-y-1=04.已知f (x )=x 2,则过点P (-1,0)且与曲线y =f (x )相切的直线方程为( )A.y =0B.4x +y +4=0C.y =0或4x +y +4=0D.y =0或4x -y +4=0题型四:已知切线求参数问题【例1】(2022·湖南·模拟预测)已知P 是曲线C :y =ln x +x 2+3-a x 上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若π3≤θ<π2,则实数a 的取值范围是( )A.23,0B.22,0C.-∞,23D.-∞,22【例2】(2022·广东·石门高级中学高二阶段练习)若直线y =kx +1-ln2是曲线y =ln x +2的切线,则k =________.【例3】(2022·陕西·千阳县中学高三阶段练习(文))已知曲线y =ae x +x ln x 在点1,ae 处的切线方程为y =2x +b ,则b =_____【例4】(2022·江苏苏州·模拟预测)已知奇函数f x =x 2-2x ax +b a ≠0 在点a ,f a 处的切线方程为y =f a ,则b =( )A.-1或1B.-233或233C.-2或2D.-433或433【题型专练】1.(2022·云南·丽江市教育科学研究所高二期末)已知曲线f (x )=(x +a )e x 在点(-1,f (-1))处的切线与直线2x +y -1=0垂直,则实数a 的值为_________.2.(2022·云南昆明·模拟预测(文))若函数f x =a x +ln x 的图象在x =4处的切线方程为y =x +b ,则( )A.a =3,b =2+ln4B.a =3,b =-2+ln4C.a =32,b =-1+ln4D.a =32,b =1+ln43.(2022·河南·方城第一高级中学模拟预测(理))已知直线l 的斜率为2,l 与曲线C 1:y =x 1+ln x 和圆C 2:x 2+y 2-6x +n =0均相切,则n =( )A.-4B.-1C.1D.4题型五:切线的条数问题(判断切线条数以及由切线条数求范围)【例1】(2022·河南洛阳·三模(文))若过点P 1,0 作曲线y =x 3的切线,则这样的切线共有( )A.0条B.1条C.2条D.3条【例2】(2022·全国·高三专题练习)若过点(a ,b )可以作曲线y =ln x 的两条切线,则( )A.a <ln bB.b <ln aC.ln b <aD.ln a <b【例3】【2021年新高考1卷】若过点a ,b 可以作曲线y =e x 的两条切线,则( )A.e b <aB.e a <bC.0<a <e bD.0<b <e a【例4】(2022·河南洛阳·三模(理))若过点P 1,t 可作出曲线y =x 3的三条切线,则实数t 的取值范围是( )A.-∞,1B.0,+∞C.0,1D.0,1【例5】(2022·河北·高三阶段练习)若过点P (1,m )可以作三条直线与曲线C :y =xe x相切,则m 的取值范围为( )A.-∞,3e 2B.0,1eC.(-∞,0)D.1e ,3e 2【例6】(2022·黑龙江·哈尔滨市第六中学校高二期末)过直线y =x -1上一点P 可以作曲线f x =x -ln x 的两条切线,则点P 横坐标t 的取值范围为( )A.0<t <1B.1<t <eC.0<t <eD.1e<t <1【题型专练】1.(2022·内蒙古呼和浩特·二模(理))若过点P -1,m 可以作三条直线与曲线C :y =xe x 相切,则m 的取值范围是( )A.-3e 2,+∞ B.-1e,0 C.-1e ,-1e2 D.-3e2,-1e 2.(2022·广东深圳·二模)已知a >0,若过点(a ,b )可以作曲线y =x 3的三条切线,则( )A.b <0B.0<b <a 3C.b >a 3D.b b -a 3 =03.(2022·安徽·安庆市第二中学高二期末)若过点a ,b a >0 可以作曲线y =xe x 的三条切线,则()A.0<a <be bB.-ae a <b <0C.0<ae 2<b +4D.-a +4 <be 2<04.(2022·山东枣庄·高二期末)已知函数f x =x +1 e x ,过点M (1,t )可作3条与曲线y =f x 相切的直线,则实数t 的取值范围是( )A.-4e 2,0B.-4e 2,2eC.-6e 3,2e D.-6e 3,05.(2022·山东潍坊·三模)过点P 1,m m ∈R 有n 条直线与函数f x =xe x 的图像相切,当n 取最大值时,m 的取值范围为( )A.-5e 2<m <e B.-5e 2<m <0 C.-1e<m <0 D.m <e题型六:公切线问题【例1】(2023届贵州省遵义市新高考协作体)高三上学期入学质量监测数学(理)试题)若直线y =kx +b 是曲线y =e x +1的切线,也是y =e x +2的切线,则k =( )A.ln2B.-ln2C.2D.-2【例2】(2022·全国·高三专题练习)若函数f x =ln x 与函数g (x )=x 2+x +a (x <0)有公切线,则实数a 的取值范围是( )A.ln12e,+∞ B.-1,+∞C.1,+∞D.ln2,+∞【例3】(2022·河北石家庄·高二期末)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值可能是( )A.1.2B.4C.5.6D.2e【例4】(2022·全国·高三专题练习)已知曲线C 1:f x =e x +a 和曲线C 2:g x =ln (x +b )+a 2a ,b ∈R ,若存在斜率为1的直线与C 1,C 2同时相切,则b 的取值范围是( )A.-94,+∞B.0,+∞C.-∞,1D.-∞,94【例5】(2022·江苏·南京外国语学校模拟预测)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围为( )A.0,2eB.0,eC.2e ,+∞D.e ,2e【例6】(2022·重庆市育才中学高三阶段练习)若直线l :y =kx +b (k >1)为曲线f x =e x -1与曲线g x =e ln x的公切线,则l 的纵截距b =( )A.0B.1C.eD.-e【例7】(2022·河南·南阳中学高三阶段练习(理))若直线y =k 1x +1 -1与曲线y =e x 相切,直线y =k 2x +1 -1与曲线y =ln x 相切,则k 1k 2的值为( )A.12B.1C.eD.e 2【题型专练】1.已知函数f x =x ln x ,g x =ax 2-x .若经过点A 1,0 存在一条直线l 与曲线y =f x 和y =g x 都相切,则a =( )A.-1B.1C.2D.32.【2020年新课标3卷理科】若直线l 与曲线y =x 和x 2+y 2=15都相切,则l 的方程为( )A.y =2x +1B.y =2x +12C.y =12x +1D.y =12x +123.(2022·河北省唐县第一中学高三阶段练习)已知函数f x =a ln x ,g x =be x ,若直线y =kx k >0 与函数f x ,g x 的图象都相切,则a +1b 的最小值为( )A.2B.2eC.e 2D.e4.(2022·全国·高三专题练习)若两曲线y =ln x -1与y =ax 2存在公切线,则正实数a 的取值范围是( )A.0,2eB.12e -3,+∞C.0,12e -3 D.2e ,+∞5.(2022·全国·高三专题练习)若仅存在一条直线与函数f (x )=a ln x (a >0)和g (x )=x 2的图象均相切,则实数a =( )A.eB.eC.2eD.2e6.若曲线y =ln x 与曲线:y =x 2−k 有公切线,则实数k 的最大值为( )A.78+12ln2 B.78-12ln2 C.12+12ln2 D.12+12ln2题型七:切线平行、垂直、重合问题【例1】(2023·全国·高三专题练习)函数f (x )=ln x +ax 存在与直线2x -y =0平行的切线,则实数a 的取值范围是( )A.(-∞,2] B.-∞,2-1e ∪2-1e ,2C.2,+∞D.0,+∞【例2】(2022·安徽·合肥一中模拟预测(文))对于三次函数f (x ),若曲线y =f (x )在点(0,0)处的切线与曲线y=xf (x )在点(1,2)处点的切线重合,则f ′(2)=( )A.-34B.-14C.-4D.14【例3】(2022·全国·高三专题练习)若直线x =a 与两曲线y =e x ,y =ln x 分别交于A ,B 两点,且曲线y =e x 在点A 处的切线为m ,曲线y =ln x 在点B 处的切线为n ,则下列结论:①∃a ∈0,+∞ ,使得m ⎳n ;②当m ⎳n 时,AB 取得最小值;③AB 的最小值为2;④AB 最小值小于52.其中正确的个数是( )A.1 B.2C.3D.4【题型专练】1.(2022·山西太原·二模(理))已知函数f x =a sin x +b cos x +cx 图象上存在两条互相垂直的切线,且a 2+b 2=1,则a +b +c 的最大值为( )A.23B.22C.3D.22.(2022·全国·高三专题练习)已知函数f (x )=x 2+2x 的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))(x 1<x 2<0)处的切线互相垂直,则x 2-x 1的最小值为( )A.12B.1C.32D.23.(2022·全国·高三专题练习)已知函数f (x )=x 2+x +2a (x <0)-1x(x >0)的图象上存在不同的两点A ,B ,使得曲线y =f (x )在这两点处的切线重合,则实数a 的取值范围是( )A.-∞,-18B.-1,18C.(1,+∞)D.(-∞,1)∪18,+∞题型八:与切线相关的最值问题【例1】(2022·全国·高三专题练习)若点P 是曲线y =32x 2-2ln x 上任意一点,则点P 到直线y =x -3的距离的最小值为( )A.724B.332C.2D.5【例2】(2022·山东省淄博第一中学高三开学考试)动直线l 分别与直线y =2x -1,曲线y =32x 2-ln x 相交于A ,B 两点,则AB 的最小值为( )A.510B.55C.1D.5【例3】(2022·河南·许昌高中高三开学考试(理))已知函数y =e 2x +1的图象与函数y =ln x +1 +12的图象关于某一条直线l 对称,若P ,Q 分别为它们图象上的两个动点,则这两点之间距离的最小值为( )A.2ln22B.2ln24C.24+ln22D.24+ln2【例4】(2022·山东聊城·二模)实数x 1,x 2,y 1,y 2满足:x 21-ln x 1-y 1=0,x 2-y 2-4=0,则x 1-x 2 2+y 1-y 22的最小值为( )A.0B.22C.42D.8【题型专练】1.(2022·山西·高二期末)已知点P 是曲线y =x 2-3ln x 上一点,若点P 到直线2x +2y +3=0的距离最小,则点P 的坐标为___________.2.(2022·江苏·高三专题练习)已知a ,b 为正实数,直线y =x -a 与曲线y =ln (x +b )相切,则a 22-b的取值范围是()A.(0,+∞)B.(0,1)C.0,12D.[1,+∞)3.(2022·全国·高三专题练习)曲线y =e 2x 上的点到直线2x -y -4=0的最短距离是( )A.5B.3C.2D.14.(2022·河北衡水·高三阶段练习)已知函数f(x)=ln x x-2x2在x=1处的切线为l,第一象限内的点P(a,b)在切线l上,则1a+1+1b+1的最小值为( )A.2+324 B.3+424 C.4+235 D.3+245.(2022·河南·灵宝市第一高级中学模拟预测(文))已知直线y=kx+b是曲线y=x+1的切线,则k2+b2 -2b的最小值为( )A.-12B.0C.54D.3。

专题突破卷03 导数中的公切线问题 (学生版) 2025年高考数学一轮复习考点通关卷(新高考通用)

专题突破卷03 导数中的公切线问题 (学生版) 2025年高考数学一轮复习考点通关卷(新高考通用)

专题突破卷03 导数中的公切线问题题型一 求在曲线上一点处的切线方程1.已知函数()[]()()23,0,2,22,2,,x x x f x f x x ¥ì-Îï=í-Î+ïî则()f x 在点()()5,5f 处的切线方程为( )A .4280x y --=B .4120x y +-=C .4120x y --=D .4220x y +-=2.若曲线e x y a =+在0x =处的切线也是曲线ln y x =的切线,则=a ( )A .2-B .1C .1-D .e3.定义在R 上的偶函数()f x 满足(1)(3)f x f x -=-,当[0,1]Î时,2()f x x =,若6()log |1|g x x =-,下列命题:①()f x 是周期函数;②函数()f x 的图象在72x =处的切线方程为44170x y +-=;③函数()f x 的图象与函数()g x 的图象的所有交点的横坐标之和为12;④(2022)(2023)(2024)(2025)2f f f f +++=.其中正确命题的个数为( )A .4B .3C .2D .14.在平面直角坐标系xOy 中,已知点()2,1M 为抛物线E :()220x py p =>上一点,若抛物线E 在点M 处的切线恰好与圆C :()()2220x y b b +-=<相切,则b =( )A .B .2-C .3-D .4-5.若函数()3221f x x x =++,则()f x 在点()1,2P -处的切线方程为( )A .10x y +-=B .30x y ++=C .250x y -+=D .230x y +-=6.已知函数2()e x f x x =-,则下列结论中错误的是( )A .e 1((0))ef f -=B .()f x 为减函数C .()2log 3(2)f f <D .曲线()y f x =在点(1,(1))f 处的切线方程为(2e)1y x =--7.已知曲线211ln 22y x x =++在点()1,1处的切线与抛物线2x ay =也相切,则实数a 的值为( )A .0B .12C .1D .0或18.已知曲线1:()sin()c f x A x w j =+与2π:()cos()0,0,||2c g x A x A w j w j æö=+>><ç÷èø,下面结论不正确的是( )A .12,c c 有公切线B .12,c c 在区间[,]a b 上均达到一个极大值点和极小值点,则3π2a b w-³C .不等式()()f x g x >在π45π4,44j j w w ++æöç÷èø一定成立D .记点π4,4P m j w -æöç÷èø处12,c c 9.设A ,B ,C ,D 为抛物线24x y =上不同的四点,A ,D 关于该抛物线的对称轴对称,BC 平行于该抛物线在点D 处的切线l .设点D 到直线AB 和直线AC 的距离分别为1d ,2d ,已知12d d +=sin BAC Ð=( )A .12B C .1D 10.若过点(),a b 可以作曲线ln 1y x =+的两条切线,则( )A .ln b a<B .ln 1b a >+C .0a <D .e ab >11.已知函数()f x 是偶函数,当0x >时,()32f x x x =+,则曲线()y f x =在=1x -处的切线方程为( )A .52y x =--B .58y x =--C .52y x =+D .58y x =+12.曲线()e 3xf x x =-在点()()0,0f 处的切线与两坐标轴所围成的三角形的面积为( )A .18B .16C .14D .1313.曲线ln 2y x =在点1,02æöç÷èø处的切线方程为( )A .210x y -+=B .210x y --=C .220x y -+=D .220x y --=14.已知二次函数()y ax x b =-(0b ¹且1b ¹)的图象与曲线ln y x =交于点P ,与x 轴交于点A (异于点O ),若曲线ln y x =在点P 处的切线为l ,且l 与AP 垂直,则a 的值为( )A .1e-B .1-C .D .2-15.牛顿迭代法是求方程近似解的一种方法.如图,方程 ()0f x =的根就是函数()f x 的零点r ,取初始值()0,x f x 的图象在点()()00,x f x 处的切线与x 轴的交点的横坐标为 ()1,x f x 的图象在点()()11,x f x 处的切线与x 轴的交点的横坐标为2x ,一直继续下去,得到12,,,n x x x L ,它们越来越接近r .设函数()2f x x bx =+,02x =,用牛顿迭代法得到11619x =,则实数b =( )A .1B .12C .23D .34题型二 求过一点的切线方程16.已知曲线23ln y x x =-的一条切线方程为y x m =-+,则实数m =( )A .2-B .1-C .1D .217.若过点(),(0)m n m >可以作两条直线与曲线1ln 2y x =相切,则下列选项正确的是( )A .2ln n m <B .2ln n m >C .2ln 0m n >>D .2ln 0m n <<18.若过点(),2a 可以作曲线ln y x =的两条切线,则a 的取值范围为( )A .()2,e -¥B .(),ln2-¥C .()20,eD .()0,ln219.已知点()1,P m 不在函数3()3=-f x x mx 的图象上,且过点P 仅有一条直线与()f x 的图象相切,则实数m 的取值范围为( )A .1110,,442æöæöç÷ç÷èøèøU B .1(,0)(,)4-¥+¥U C .110,,44æöæö+¥ç÷ç÷èøèøU D .11(,)(,)42-¥È+¥20.已知函数()211ln ,0224ln ,0x x f x x x ìæöæö£ïç÷ç÷=íèøèøï>î,若函数()()g x f x mx =-有4个零点,则m 的取值范围为( )A .216e m m ìü³íýîþB .{}2eln 2m m ³C .2216eln 2e m m ìü<<íýîþD .2216eln 2e m m m ìü==íýîþ或21.若过点()1,b 可以作曲线()ln 1y x =+的两条切线,则( )A .ln22b <<B .ln2b >C .0ln2b <<D .1b >22.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B ¢都落在边AD 上,记为B ¢;折痕l 与AB 交于点E ,点M 满足关系式EM EB EB ¢=+uuur uuuu r uuu r .以点B 为坐标原点建立坐标系,若曲线T 是由点M 的轨迹及其关于边AB 对称的曲线组成的,等腰梯形1111D C B A 的111111,,A B B C C D 分别与曲线T 切于点P 、Q 、R ,且11,A D 在x 轴上.则梯形1111D C B A 的面积最小值为( )A .6B .C .D .23.若曲线 1e xax y +=有且仅有一条过坐标原点的切线,则正数a 的值为( )A .14B C .13D 24.过坐标原点作曲线()()2e 22xf x x x =-+的切线,则切线共有( )A .1条B .2条C .3条D .4条25.若曲线()1log a f x x x=+(0a >且1a ¹)有两条过坐标原点的切线,则a 的取值范围为( )A .æççèB .ö÷÷øC .(D .)+¥26.已知()()3,0lg 1,0x x f x x x ì£ï=í+>ïî,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为( )A .1,1B .1,2C .2,1D .2,227.已知抛物线C :24x y =,过直线l :24x y +=上的动点P 可作C 的两条切线,记切点为,A B ,则直线AB ( )A .斜率为2B .斜率为2±C .恒过点()0,2-D .恒过点()1,2--28.已知点(),P x y 是曲线2y x = )A B C D 29.设点P (异于原点)在曲线()4:0C y ax a =¹上,已知过P 的直线l 垂直于曲线C 过点P 的切线,若直线l 的纵截距的取值范围是34,éö+¥÷êëø,则=a ( )A .2B .1C .1-D .1±30.已知(,)P x y 为函数12e 24x y x x -=+-( )A B C .1D )e 5+题型三 已知切线求参数问题31.函数()e x f kx b x =--恰好有一零点0x ,且0k b >>,则0x 的取值范围是( )A .(,0)-¥B .(0,1)C .(,1)-¥D .(1,)+¥32.已知双曲线2222:1(0,0)x y C a b a b-=>>的虚轴长为4,C 的一条渐近线与曲线sin y x =在3π4x =处的切线垂直,M ,N 为C 上不同两点,且以MN 为直径的圆经过坐标原点O ,则2211OMON+=( )A .14B .4C .12D .233.已知直线y kx b =+恒在曲线()ln 2y x =+的上方,则bk的取值范围是( )A .()1,+¥B .3,4æö+¥ç÷èøC .()0,¥+D .4,5æö+¥ç÷èø34.已知 0m > ,0n >,直线 2e y x m =+ 与曲线 2ln 4y x n =-+ 相切,则 11m n+ 的最小值是( )A .4B .3C .2D .135.贝塞尔曲线(Beziercurve )是应用于二维图形应用程序的数学曲线,一般的矢量图形软件通过它来精确画出曲线.三次函数()f x 的图象是可由A ,B ,C ,D 四点确定的贝塞尔曲线,其中A ,D 在()f x 的图象上,()f x 在点A ,D 处的切线分别过点B ,C .若()0,0A ,()1,1B --,()2,2C ,()1,0D ,则()f x =( )A .3254x x x --B .333x x -C .3234x x x-+D .3232x x x--36.已知函数()1e xf x ax =++,曲线()y f x =在ln3x =处的切线与直线2ln50x y -+=平行,则实数a 的值为( )A .1B .12C .1-D .32-37.若直线y kx =与曲线ln y x =相切,则k =( )A .21e B .22e C .1eD .2e38.首钢滑雪大跳台是冬奥史上第一座与工业旧址结合再利用的竞赛场馆,它的设计创造性地融入了敦煌壁画中飞天的元素,建筑外形优美流畅,飘逸灵动,被形象地称为雪飞天.雪飞天的助滑道可以看成一条线段PQ 和一段圆弧 QM组成,如图所示.在适当的坐标系下圆弧 QM所在圆C 的方程为()()22103128x y ++-=.若某运动员在起跳点M 以倾斜角为45°且与圆C 相切的直线方向起跳,起跳后的飞行轨迹是一个对称轴在y 轴上的抛物线的一部分,则该抛物线的方程为( )A .()244x y =-+B .2132y x =--C .()2321x y =--D .()2144y x =-+39.已知函数2()ln f x x m x =+的图象在点(1,1)P 处的切线经过点(0,1)Q ,则实数m 的值为( )A .2-B .1-C .1D .240.函数e x m y n +=-的图象与直线e y x =相切,则以下错误的是( )A .若1m =,则e n =B .若1n =,则1em =C .en m =+D .e n m=41.已知曲线e x y x =,过点()3,0作该曲线的两条切线,切点分别为()()1122,,,x y x y ,则12x x +=( )A .3-B .CD .342.已知()ln f x x x =+,曲线()y f x =在点Q 处的切线l 与直线2140x y --=平行,则直线l 的方程为( )A .210x y -+=B .210x y --=C .210x y ++=D .210x y +-=43.已知函数()()1e xf x x =+,过点(),0P m 作曲线()y f x =的两条切线,切点分别为()(),A a f a 和()(),B b f b ,若0a b +=,则实数m =( )A .0B .1C .2D .344.若曲线()ln f x ax x =-与直线222ln20x y -+-=相切,则实数=a ( )A .1-B .1C .2D .e45.函数()ln f x x a x =-在区间()1,6的图象上存在两条相互垂直的切线,则a 的取值范围( )A .()1,6B .()1,3C .()3,4D .()4,6题型四 两条切线平行、垂直、重合(公切线)问题46.设曲线()e xf x a b =+和曲线()πcos2xg x c =+在它们的公共点()0,2P 处有相同的切线,则+a b c 的值为 .47.已知函数y =x y a =(0a >且1a ¹)的图象在公共点处有相同的切线,则公共点坐标为.48.已知函数()24e 2(0)x f x x x x -=->,函数()2233()g x x ax a a a =-+--ÎR .若过点()0,0O 的直线l 与曲线()y f x =相切于点P ,与曲线()y g x =相切于点Q ,当P 、Q 两点不重合时,线段PQ 的长为 .49.已知函数31e ,0,()2,0,xx x f x x x ìæö+>ïç÷=èøíï<î点A ,B 在曲线()y f x =上(A 在第一象限),过A ,B 的切线相互平行,且分别交y 轴于P ,Q 两点,则BQ AP的最小值为 .50.若两个函数()ln =+f x x a 和()()e ,R xg x b a b =Î存在过点12,2æöç÷èø的公切线,设切点坐标分别为()()()()1122,,,x f x x g x ,则()()()121222x x f x g x éù++=ëû.51.已知函数121y x =的图象与函数2xy a =(0a >且1a ¹)的图象在公共点处有相同的切线,则=a .52.曲线e x y =在()11,A x y 处的切线与曲线ln y x m =+相切于点()22,B x y ,若12x x <且2121111x x y y +=--,则实数m 的值为 .53.已知函数121y x =的图象与函数2(0xy a a =>且1)a ¹的图象在公共点处有相同的切线,则=a,切线方程为 .54.已知函数()1sin 22f x x =.若曲线()y f x =在点()()11,A x f x 处的切线与其在点()()22,B x f x 处的切线相互垂直,则12x x -的一个取值为.55.写出与函数()sin f x x =在0x =处有公共切线的一个函数()g x = .56.写出与函数()sin2f x x =在0x =处有公共切线的一个函数()g x = .57.若曲线(),0f x y =上两个不同点处的切线重合,则称这条切线为曲线(),0f x y =的“自公切线”,则下列方程对应的曲线中存在“自公切线”的序号为.22222;3sin 4cos ;310;10y x x y x x x xy x y x x =-=+-+=+---=①②③④.58.已知实数x ,y 满足23ln 0x x y --=)R m Î的最小值为 .59.已知曲线()e xf x x =+在点()()0,0f 处的切线与曲线()ln 1y x a =-+相切,则=a.60.已知曲线()f x =()ln g x a x =(a R Î)相交,且在交点处有相同的切线,则=a .1.已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++有且仅有一个公共点,则实数a 的值是( )A .8-B .0C .0或8D .82.直线2y x a =+与曲线()22ln f x bx x x =+-相切于点()()22f ,,则ab 的值为( )A .12B .2ln2-C .ln2-D .2ln2-3.已知定义在R 上的函数()f x 满足()()23e xf x f x =-+,则曲线()y f x =在点()()0,0f 处的切线方程为A .33y x =+B .33y x =-C .3y x =+D .3y x =-4.过点()3,0作曲线()e xf x x =的两条切线,切点分别为()()11,x f x ,()()22,x f x ,则12x x +=( )A .3-B .C D .35.已知函数()g x 为奇函数,其图象在点(,())a g a 处的切线方程为210x y -+=,记()g x 的导函数为()g x ¢,则()g a ¢-=( )A .2B .2-C .12D .12-6.点P 是曲线()f x =P 到直线20x y -+=的距离的最小值是( )A B .74C D .347.若函数()ln x f x x=与()e x ab g x -=-在1x =处有相同的切线,则a b +=( )A .1-B .0C .1D .28.已知函数()f x 在点=1x -处的切线方程为10x y +-=,则()()11f f ¢-+-=( )A .1-B .0C .1D .29.若曲线33y x x =++在点()1,5处的切线与ln y x ax =+在点()1,a 处的切线平行,则=a ( )A .3B .2C .32D .1210.若过点2(2,)P a a 可作3条直线与曲线3()f x x =相切,则a 的取值范围为( )A .(0,8)B .1(,)8+¥C .1(,0)(0,8-¥U D .(,0)(8,)-¥È+¥11.对于函数()2e xf x x=,下列说法正确的是( )A .()f x 恰有一个极值点B .()f x 有最小值但没有最大值C .直线()2y k x =+与曲线()y f x =的公共点个数最多为4D .经过点()0,0可作曲线()y f x =的两条切线12.已知函数()b f x ax =的导函数为2()3f x x ¢=,则a b += ,过点(1,1)且与曲线()y f x =相切的直线方程为 .13.若函数()21ln 2f x x t x =-的图象在点()()1,1f 处的切线方程为y kx b =+,则k b += ;若方程()0f x =有两个不等的实根,则实数t 的取值范围为 .14.已知函数()21e xx x f x -+=.(1)求曲线()y f x =在()()0,0f 处的切线方程;(2)求函数()f x 的极值.15.已知()()21ln 12f x ax x x =-+-+,其中0a >.(1)若函数()f x 在3x =处的切线与x 轴平行,求a 的值;(2)求()f x 的极值点;(3)若()f x 在[)0,¥+上的最大值是0,求a 的取值范围.16.已知函数()sin x x x j =-,()()ln 1e x f x a x =-+,其中a ÎR .(1)当1a =时,求函数()f x 在0x =处的切线方程;(2)证明:当[)0,x Î+¥时()306x x j +≥;(3)对任意[]0,πx Î,()()22f x x j ¢³+恒成立,求实数a 的取值范围.17.已知函数()2e e x f x ax =+-,R a Î,()f x ¢为()f x 的导函数.(注:e 2.71828=×××是自然对数的底数)(1)求曲线()y f x =在点()()0,0f 处的切线方程;(2)讨论()f x ¢的单调性;(3)若()f x 无极值点,求实数a 的取值范围.18.已知函数()ln f x x x =-.(1)求曲线()f x 在点()()1,1f 处的切线方程;(2)求证:()1f x £-;19.已知函数()()1e x f x ax a =-+.(1)若1a =,求()f x 的图象在点()()1,1f 处的切线方程;(2)若关于x 的方程()1ef x =-恰有两个不同的实数解,求a 的取值范围.20.已知0a >,函数()()2ln ln e f x x a a x x =-+-,其中e 是自然对数的底数.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程.(2)已知R t Î,2()(2)ln g x tx t x x =+--时,讨论函数()g x 的单调性.(3)求证:函数()f x 存在极值点,并求极值点0x 的最小值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

类型一:在型切线方程1.(2017·高考全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为________.2.(2017·高考天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.3:2016考全国卷Ⅲ)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.4.曲线y =a ln x (a >0)在x =1处的切线与两坐标轴围成的三角形的面积为4,则a =________.5.(2018·山师附中质检)已知直线y =kx +b 与曲线y =ax 2+2+ln x 相切于点P (1,4),则b 的值为( )A .3B .1C .-3D .-16.(2018·福州质检)如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .47.(2018·赣中南五校联考)已知函数f n (x )=x n +1,n ∈N 的图象与直线x =1交于点P ,若图象在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 019x 1+log 2 019x 2+…+log 2 019x 2 018的值为( )A .-1B .1-log 2 0192 018C .-log 2 0192 018D .18.(2018·兰州模拟)已知函数f (x ),g (x )满足f (5)=5,f ′(5)=3,g (5)=4,g ′(x )=1,则函数y =f (x )+2g (x )的图象在x =5处的切线方程为________.9.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.则f (x )的解析式为________.类型二:过型切线方程1. 已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A .x +y -1=0B .x -y -1=0C .x +y +1=0D .x -y +1=02 若直线y =2x +m 是曲线y =x ln x 的切线,则实数m 的值为________.3.函数f (x )=ln x +ax 存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A .(-∞,2] B .(-∞,2) C .(2,+∞) D .(0,+∞)类型三:公切线问题1 (2016·高考全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.2.若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =( ) A .-1 B .0 C .1D .2 3.(2018·南昌模拟)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-24.(2018·潍坊模拟)若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,则a 的值是________.类型一:在型切线方程1.(2017·高考全国卷Ⅰ)曲线y =x 2+1x 在点(1,2)处的切线方程为________.解析:∵y =x 2+1x ,∴y ′=2x -1x 2,∴y ′|x =1=2-1=1,∴所求切线方程为y -2=x -1,即x -y +1=0. 答案:x -y +1=02.(2017·高考天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:由题意可知f ′(x )=a -1x ,所以f ′(1)=a -1,因为f (1)=a ,所以切点坐标为(1,a ),所以切线l 的方程为y -a =(a -1)(x -1), 即y =(a -1)x +1.令x =0,得y =1,即直线l 在y 轴上的截距为1. 答案:13:2016考全国卷Ⅲ)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析:令x >0,则-x <0,f (-x )=ln x -3x , 又f (-x )=f (x ), ∴f (x )=ln x -3x (x >0), 则f ′(x )=1x-3(x >0),∴f ′(1)=-2,∴在点(1,-3)处的切线方程为y +3= -2(x -1),则y =-2x -1. 答案:y =-2x -14.曲线y =a ln x (a >0)在x =1处的切线与两坐标轴围成的三角形的面积为4,则a =________.解析:∵y =a ln x ,∴y ′=ax,∴在x =1处的切线的斜率k =a ,而f (1)=a ln 1=0, 故切点为(1,0),∴切线方程为y =a (x -1).令y =0,得x =1;令x =0,得y =-a . ∴三角形面积S =12×a ×1=4,∴a =8.答案:85.(2018·山师附中质检)已知直线y =kx +b 与曲线y =ax 2+2+ln x 相切于点P (1,4),则b 的值为( )A .3B .1C .-3D .-1解析:选D.法一:因为点P (1,4)在曲线y =ax 2+2+ln x 上,所以a +2=4,解得a =2,故y ′=2ax +1x =4x +1x,所以y ′|x =1=5=k ,将点P (1,4)代入y =5x +b ,得b =-1.故选D.法二:由题意得y ′=2ax +1x ,所以在点P (1,4)处的切线方程为y -4=(2a +1)(x -1),即y =(2a +1)x -2a +3,故⎩⎪⎨⎪⎧2a +1=k ,-2a +3=b ,a +2=4,解得⎩⎪⎨⎪⎧a =2,k =5,b =-1.6.(2018·福州质检)如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B.依题意得f (3)=k ×3+2=1,k =-13,则f ′(3)=k =-13,g ′(3)=f (3)+3f ′(3)=1-1=0,故选B.7.(2018·赣中南五校联考)已知函数f n (x )=x n +1,n ∈N 的图象与直线x =1交于点P ,若图象在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 019x 1+log 2 019x 2+…+log 2 019x 2 018的值为( )A .-1B .1-log 2 0192 018C .-log 2 0192 018D .1解析:选A.由题意可得点P 的坐标为(1,1),f ′n (x )=(n +1)·x n ,所以f n (x )图象在点P 处的切线的斜率为n +1,故可得切线的方程为y -1=(n +1)(x -1),所以切线与x 轴交点的横坐标为x n =nn +1,则log 2 019x 1+log 2 019x 2+…+log 2 019x 2 018=log 2 019(x 1x 2…x 2 018)=log 2019⎝⎛⎭⎫12×23×34×…×2 0182 019=log 2 01912 019=-1,故选A.8.(2018·兰州模拟)已知函数f (x ),g (x )满足f (5)=5,f ′(5)=3,g (5)=4,g ′(5)=1,则函数y =f (x )+2g (x )的图象在x =5处的切线方程为________.解析:由y =f (x )+2g (x )=h (x )知y ′=h ′(x )=f ′(x )g (x )-(f (x )+2)g ′(x )g 2(x )得h ′(5)=f ′(5)g (5)-(f (5)+2)g ′(5)g 2(5)=3×4-(5+2)×142=516.又h (5)=f (5)+2g (5)=5+24=74,所以切线方程为y -74=516(x -5),即5x -16y +3=0. 答案:5x -16y +3=09.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.则f (x )的解析式为________.解析:方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .答案:f (x )=x -3x类型二:过型切线方程1. 已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A .x +y -1=0B .x -y -1=0C .x +y +1=0D .x -y +1=0解析:∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.故选B. 答案:B2 若直线y =2x +m 是曲线y =x ln x 的切线,则实数m 的值为________. 解析:设切点为(x 0,x 0ln x 0), 由y ′=(x ln x )′=ln x +x ·1x =ln x +1,得切线的斜率k =ln x 0+1,故切线方程为y -x 0ln x 0=(ln x 0+1)(x -x 0), 整理得y =(ln x 0+1)x -x 0,与y =2x +m 比较得⎩⎪⎨⎪⎧ln x 0+1=2,-x 0=m ,解得x 0=e ,故m =-e. 答案:-e3.函数f (x )=ln x +ax 存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A .(-∞,2] B .(-∞,2) C .(2,+∞)D .(0,+∞)解析:直线2x -y =0的斜率为2,且f ′(x )=1x +a (x >0),令1x +a =2得a =2-1x .因为x>0,则1x>0,所以a <2.故选B.答案:B类型三:公切线问题1 (2016·高考全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析:直线y =kx +b 与曲线y =ln x +2,y =ln(x +1)均相切,设切点分别为A (x 1,y 1),B (x 2,y 2),由y =ln x +2得y ′=1x ,由y =ln(x +1)得y ′=1x +1,∴k =1x 1=1x 2+1,∴x 1=1k ,x 2=1k -1,∴y 1=-ln k +2,y 2=-ln k .即A ⎝⎛⎭⎫1k ,-ln k +2, B ⎝⎛⎭⎫1k -1,-ln k , ∵A 、B 在直线y =kx +b 上,∴⎩⎨⎧2-ln k =k ·1k+b ,-ln k =k ·⎝⎛⎭⎫1k -1+b ⇒⎩⎪⎨⎪⎧b =1-ln 2,k =2. 答案:1-ln 22.若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =( ) A .-1 B .0 C .1D .2解析:选C.依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b , 于是有f ′(0)=g ′(0),即-a sin 0=2×0+b ,b =0, m =f (0)=g (0),即m =a =1,因此a +b =1.3.(2018·南昌模拟)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2解析:选D.∵f ′(x )=1x,∴直线l 的斜率为k =f ′(1)=1,又f (1)=0, ∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有⎩⎪⎨⎪⎧x 0+m =1,y 0=x 0-1,y 0=12x 2+mx 0+72,m <0解得m =-2.4.(2018·潍坊模拟)若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,则a 的值是________.解析:易知点O (0,0)在曲线y =x 3-3x 2+2x 上. ①当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0, 依题意Δ=4-4a =0,得a =1.②当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =y ′|x =x 0=3x 20-6x 0+2,① 又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.答案:1或164。

相关文档
最新文档