(完整版)生物化学知识点重点整理

合集下载

生物化学重点整理

生物化学重点整理

生物化学重点整理生物化学是一门研究生物体化学组成和生命过程中化学变化的科学。

它涵盖了广泛的领域,从分子水平揭示生命的奥秘。

以下是对生物化学重点内容的整理。

一、蛋白质化学蛋白质是生物体内最为重要的大分子之一。

1、蛋白质的组成蛋白质主要由碳、氢、氧、氮等元素组成,其基本组成单位是氨基酸。

氨基酸通过肽键相连形成多肽链,进而折叠形成具有特定空间结构的蛋白质。

2、蛋白质的结构蛋白质具有一级、二级、三级和四级结构。

一级结构指的是氨基酸的排列顺序;二级结构包括α螺旋、β折叠等;三级结构是整个多肽链的三维构象;四级结构则是由多个亚基组成的蛋白质的空间排列。

3、蛋白质的性质蛋白质具有两性解离、胶体性质、变性与复性等特性。

变性会导致蛋白质的空间结构破坏,从而失去生物活性,但在一定条件下可以复性。

二、核酸化学核酸包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。

1、核酸的组成核酸由核苷酸组成,核苷酸包含碱基、戊糖和磷酸。

DNA 中的碱基有腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C);RNA 中的碱基用尿嘧啶(U)代替了胸腺嘧啶。

2、 DNA 的结构DNA 是双螺旋结构,两条链反向平行,碱基之间遵循互补配对原则(A 与 T 配对,G 与 C 配对)。

3、 RNA 的种类与功能RNA 包括信使 RNA(mRNA)、转运 RNA(tRNA)和核糖体RNA(rRNA)。

mRNA 携带遗传信息,指导蛋白质合成;tRNA 转运氨基酸;rRNA 是核糖体的组成部分。

三、酶酶是生物体内具有催化作用的蛋白质或 RNA。

1、酶的特点酶具有高效性、专一性和可调节性。

高效性使得酶能够大大加快反应速率;专一性保证了酶对特定底物的作用;可调节性使酶的活性能够适应生物体的需求。

2、酶的作用机制酶通过降低反应的活化能来加速反应。

它与底物结合形成酶底物复合物,然后经过一系列的中间步骤完成催化反应。

3、影响酶活性的因素温度、pH 值、底物浓度、酶浓度、抑制剂和激活剂等都会影响酶的活性。

生物化学知识点总结

生物化学知识点总结

生物化学知识点总结1. 生物大分子的结构与功能- 蛋白质:氨基酸序列、一级结构、二级结构(α-螺旋、β-折叠)、三级结构、四级结构。

- 核酸:DNA和RNA的化学结构、碱基配对原则、双螺旋结构。

- 糖类:单糖、二糖、多糖的结构和功能。

- 脂质:甘油三酯、磷脂、固醇的结构和生物学功能。

2. 酶学- 酶的定义、催化机制、酶活性的影响因素(pH、温度、底物浓度)。

- 酶动力学:米氏方程、最大速率(Vmax)、米氏常数(Km)。

- 酶抑制:竞争性抑制、非竞争性抑制、不可逆抑制。

3. 代谢途径- 糖酵解:步骤、ATP产量、调节点。

- 柠檬酸循环(TCA循环):反应步骤、能量产生。

- 电子传递链和氧化磷酸化:电子载体、质子梯度、ATP合成。

- 光合作用:光依赖反应、光合电子传递链、ATP和NADPH的生成。

- 氨基酸代谢:脱氨基作用、尿素循环。

- 脂质代谢:脂肪酸的氧化、合成、甘油代谢。

4. 信号传导- 受体类型:G蛋白偶联受体、酪氨酸激酶受体、离子通道受体。

- 第二信使:cAMP、IP3、DAG、Ca2+。

- 信号传导途径:MAPK途径、PI3K/Akt途径、Wnt/β-catenin途径。

5. 基因表达与调控- DNA复制:半保留复制、DNA聚合酶。

- 转录:RNA聚合酶、启动子、增强子、沉默子。

- 翻译:核糖体结构、tRNA作用、密码子、起始和终止密码子。

- 基因调控:表观遗传学、非编码RNA、microRNA。

6. 分子生物学技术- PCR技术:原理、引物设计、扩增过程。

- 克隆技术:载体选择、限制性内切酶、连接酶。

- 基因编辑:CRISPR-Cas9系统、基因敲除、基因敲入。

- 蛋白质组学:质谱分析、蛋白质标记、蛋白质互作。

7. 生物化学研究方法- 分子杂交技术:Southern印迹、Northern印迹、Western印迹。

- 色谱法:离子交换色谱、凝胶渗透色谱、亲和色谱。

- 光谱学方法:紫外光谱、红外光谱、核磁共振(NMR)。

生物化学考试重点总结

生物化学考试重点总结

生物化学考试重点总结
1. 生物化学基本概念
- 生物大分子:蛋白质、核酸、多糖、脂质
- 酶:催化生化反应的生物催化剂
- 代谢路径:物质在生物体内相互转化的路径
2. 生物大分子的结构与功能
- 蛋白质:结构、功能、种类、合成和降解
- 核酸:DNA和RNA的结构、功能、复制和转录
- 多糖:单糖、二糖、多糖的结构、功能、合成和降解- 脂质:脂肪酸、甘油三酯、磷脂的结构、功能和代谢
3. 代谢途径与调控
- 糖代谢:糖酵解、糖异生、糖原代谢
- 脂肪代谢:脂肪酸氧化、甘油三酯合成、脂肪酸合成- 蛋白质代谢:蛋白质降解、蛋白质合成、氨基酸代谢- 核酸代谢:DNA和RNA的代谢途径及调控机制
4. 其他重点知识点
- 酶动力学:酶的活性、酶动力学参数、酶抑制剂
- 信号转导与调控:细胞信号传导、信号通路、蛋白质磷酸化- 生物膜:细胞膜结构、跨膜转运和信号传导
5. 实验技术
- 分子生物学实验技术:PCR、DNA测序、蛋白质电泳
- 生物化学分离和分析方法:色谱技术、质谱技术、光谱技术
以上是生物化学考试的重点内容总结,希望对你的备考有所帮助。

祝你考试顺利!。

完整版)生物化学知识点重点整理

完整版)生物化学知识点重点整理

完整版)生物化学知识点重点整理生物分子本章节将介绍生物分子的基本概念和特征,包括蛋白质、核酸、多糖和脂质的结构和功能。

本章节将讨论酶在生化反应中的作用机制和催化过程。

包括酶的分类、酶动力学和酶抑制剂等内容。

本章节将介绍生物体内的代谢途径,包括糖代谢、脂肪代谢和蛋白质代谢等重要过程。

本章节将探讨生物能量转化的过程,包括光合作用和呼吸作用等机制,以及相关的能量产生和消耗。

本章节将介绍生物体内遗传信息的传递过程,包括DNA复制、RNA转录和蛋白质翻译等重要步骤。

DNA复制DNA复制是遗传信息传递的第一步。

在细胞分裂过程中,DNA分子能够准确地复制自身,并将遗传信息传递给下一代细胞。

复制过程中,双链DNA分离,每条链作为模板合成新的互补链,形成两个完全一样的DNA分子。

RNA转录RNA转录是将DNA中的遗传信息转录成RNA的过程。

在细胞核中,RNA聚合酶将DNA作为模板合成RNA分子。

转录的产物是一条与DNA互补的RNA链,它可以是信使RNA(mRNA)、转移RNA(tRNA)或核糖体RNA(rRNA),这些RNA分子携带着遗传信息参与到蛋白质的合成过程中。

蛋白质翻译蛋白质翻译是将RNA中的遗传信息翻译成氨基酸序列,从而合成蛋白质的过程。

蛋白质翻译发生在细胞质的核糖体上,通过配对规则,每个三个核苷酸对应一个特定的氨基酸,从而组成特定的蛋白质。

翻译过程可分为启动、延伸和终止三个阶段。

以上是生物体内遗传信息的传递过程的重要步骤。

深入了解这些过程有助于理解生物体内的遗传机制和生命周期的维持。

本章节将讨论基因调控的机制和影响因素,包括转录因子、表观遗传学和信号转导等内容。

本章节将探讨生物化学与人体健康的关系,包括营养物质、药物代谢和疾病发生机制等相关内容。

本章节将探讨生物化学与人体健康的关系,包括营养物质、药物代谢和疾病发生机制等相关内容。

生物化学笔记(完整版)

生物化学笔记(完整版)

第一章绪论一、生物化学的的概念:生物化学〔biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学与物理学之间的一门边缘学科。

二、生物化学的开展:1.表达生物化学阶段:是生物化学开展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以与生物体的分泌物和排泄物。

2.动态生物化学阶段:是生物化学蓬勃开展的时期。

就在这一时期,人们根本上弄清了生物体各种主要化学物质的代途径。

3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。

三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以与水、无机盐等组成,此外还含有一些低分子物质。

2.物质代:物质代的根本过程主要包括三大步骤:消化、吸收→中间代→排泄。

其中,中间代过程是在细胞进展的,最为复杂的化学变化过程,它包括合成代,分解代,物质互变,代调控,能量代几方面的容。

3.细胞信号转导:细胞存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代、生理活动与生长分化。

4.生物分子的结构与功能:通过对生物大分子结构的理解,提醒结构与功能之间的关系。

5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要容。

第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的根本组成单位。

构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。

2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。

二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。

生物化学重点笔记(整理版)

生物化学重点笔记(整理版)

教学目标:1.掌握蛋白质的概念、重要性和分子组成。

2.掌握α-氨基酸的结构通式和20种氨基酸的名称、符号、结构、分类;掌握氨基酸的重要性质;熟悉肽和活性肽的概念。

3.掌握蛋白质的一、二、三、四级结构的特点及其重要化学键。

4.了解蛋白质结构与功能间的关系。

5.熟悉蛋白质的重要性质和分类导入:100年前,恩格斯指出“蛋白体是生命的存在形式”;今天人们如何认识蛋白质的概念和重要性?1839年荷兰化学家马尔德(G.J.Mulder)研究了乳和蛋中的清蛋白,并按瑞典化学家Berzelius的提议把提取的物质命名为蛋白质(Protein,源自希腊语,意指“第一重要的”)。

德国化学家费希尔(E.Fischer)研究了蛋白质的组成和结构,在1907年奠立蛋白质化学。

英国的鲍林(L.Pauling)在1951年推引出蛋白质的螺旋;桑格(F.Sanger)在1953年测出胰岛素的一级结构。

佩鲁茨(M.F.Perutz)和肯德鲁(J.C.kendrew) 在1960年测定血红蛋白和肌红蛋白的晶体结构。

1965年,我国生化学者首先合成了具有生物活性的蛋白质——胰岛素(insulin)。

蛋白质是由L-α-氨基酸通过肽键缩合而成的,具有较稳定的构象和一定生物功能的生物大分子(biomacromolecule)。

蛋白质是生命活动所依赖的物质基础,是生物体中含量最丰富的大分子。

单细胞的大肠杆菌含有3000多种蛋白质,而人体有10万种以上结构和功能各异的蛋白质,人体干重的45%是蛋白质。

生命是物质运动的高级形式,是通过蛋白质的多种功能来实现的。

新陈代谢的所有的化学反应几乎都是在酶的催化下进行的,已发现的酶绝大多数是蛋白质。

生命活动所需要的许多小分子物质和离子,它们的运输由蛋白质来完成。

生物的运动、生物体的防御体系离不开蛋白质。

蛋白质在遗传信息的控制、细胞膜的通透性,以及高等动物的记忆、识别机构等方面都起着重要的作用。

随着蛋白质工程和蛋白质组学的兴起和发展,人们对蛋白质的结构与功能的认识越来越深刻。

生物化学知识点总整理

生物化学知识点总整理

生物化学知识点总整理一、蛋白质1.蛋白质的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合物,由C、H、O、N、S元素组成,N的含量为16%。

2.氨基酸共有20种,分类:非极性疏水R基氨基酸、极性不带电荷R基氨基酸、带正电荷R基氨基酸(碱性氨基酸)、带负电荷R基氨基酸(酸性氨基酸)、芳香族氨基酸。

3.氨基酸的紫外线吸收特征:色氨酸和酪氨酸在280纳米波长附近存在吸收峰。

4.氨基酸的等电点:在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的净电荷为零,此时溶液的PH值称为该氨基酸的等电点;蛋白质等电点:在某一PH值下,蛋白质的净电荷为零,则该PH值称为蛋白质的等电点。

5.氨基酸残基:氨基酸缩合成肽之后氨基酸本身不完整,称为氨基酸残基。

6.半胱氨酸连接用二硫键(—S—S—)7.肽键:一个氨基酸的α-羧基与另一个氨基酸α-氨基脱水缩合形成的化学键。

8.N末端和C末端:主链的一端含有游离的α氨基称为氨基端或N端;另一端含有游离的α羧基,称为羧基端或C端。

9.蛋白质的分子结构:(1)一级结构:蛋白质分子内氨基酸的排列顺序,化学键为肽键和二硫键;(2)二级结构:多肽链主链的局部构象,不涉及侧链的空间排布,化学键为氢键,其主要形式为α螺旋、β折叠、β转角和无规则卷曲;(3)三级结构:整条肽链中,全部氨基酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置,化学键为疏水键、离子键、氢键及范德华力;(4)四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用。

10.α螺旋:(1)肽平面围绕Cα旋转盘绕形成右手螺旋结构,称为α螺旋;(2).螺旋上升一圈,大约需要 3.6个氨基酸,螺距为0.54纳米,螺旋的直径为0.5纳米;(3).氨基酸的R基分布在螺旋的外侧;(4).在α螺旋中,每一个肽键的羰基氧与从该羰基所属氨基酸开始向后数第五个氨基酸的氨基氢形成氢键,从而使α螺旋非常稳定。

生物化学复习重点

生物化学复习重点

生物化学复习重点第一章蛋白质1.蛋白质的元素组成:C、H、O、N、S及其他微量元素,N为特征性元素2.氨基酸通式特点:α-L -氨基酸,只有甘氨酸没有手性(旋光性),脯氨酸为亚氨基酸。

3.氨基酸分类:(1)、酸性氨基酸:一氨基二羧基氨基酸,有天冬氨酸、谷氨酸,带负电荷(2)、碱性氨基酸:二氨基一羧基氨基酸,有赖氨酸、精氨酸、组氨酸,带正电荷(3)、中性氨基酸:一氨基一羧基氨基酸,有甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甲硫氨酸、半胱氨酸、苯丙氨酸、色氨酸、酪氨酸、脯氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸。

不带电荷。

4.两性解离:氨基酸是两性电解质是指在溶液中既可以给出H+而表现酸性,其氨基可以结合H+而表现碱性。

在一定条件下,氨基酸是一种既带正电荷,又带负电荷的离子,这种离子称为兼性离子。

5.等电点:在某一pH值条件下,氨基酸解离成阳离子和阴离子的程度相等,溶液中的氨基酸以兼性离子的形式存在,且净电荷为0 此时溶液的pH值称为该氨基酸的等电点。

肽键:存在于蛋白质和肽分子中,是由一个氨基酸的α羧基与另一个氨基酸的α氨基缩合形成的化学键。

肽键:一个氨基酸的a-COOH 和相邻的另一个氨基酸的a-NH2脱水形成共价键。

氨基酸通过钛键连接成肽,根据所含氨基酸的多少分为寡肽和多肽;根据结构功能分为生物活性肽和蛋白质。

肽键结构的六个原子构成一个钛单元,六个原子处于同一个平面上称为肽平面pI=(pK1,+pK2,)/25.氨基酸紫外吸收:280nm,苯丙氨酸、色氨酸、酪氨酸有紫外吸收6.蛋白质的一级结构(Primary structure):它是指蛋白质中的氨基酸按照特定的排列顺序通过肽键连接起来的多肽链结构。

7.蛋白质二级结构的概念:是指蛋白质多肽链局部片段的构象该片段的氨基酸序列是连续的,而主链构象通常是规则的的基础上,按照一定的方式有规律的旋转或折叠形成的空间构象。

其实质是多肽链在空间的排列方式蛋白质二级结构主要类型有:a-螺旋、β-折叠、β-转角维持二级结构的作用力:氢键a-螺旋(a-Helix):是指蛋白质多肽通过肽平面旋转盘绕形成的一种右手螺旋结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、蛋白质化学蛋白质的特征性元素(N),主要元素:C、H、O、N、S,根据含氮量换算蛋白质含量:样品蛋白质含量=样品含氮量*6.25 (各种蛋白质的含氮量接近,平均值为16%),组成蛋白质的氨基酸的数量(20种),酸性氨基酸/带负电荷的R基氨基酸:天冬氨酸(D)、谷氨酸(E);碱性氨基酸/带正电荷的R基氨基酸:赖氨酸(K)、组氨酸(H)、精氨酸(R)非极性脂肪族R基氨基酸:甘氨酸(G)、丙氨酸(A)、脯氨酸(P)、缬氨酸(V)、亮氨酸(L)、异亮氨酸(I)、甲硫氨酸(M);极性不带电荷R基氨基酸:丝氨酸(S)、苏氨酸(T)、半胱氨酸(C)、天冬酰胺(N)、谷氨酰胺(Q);芳香族R基氨基酸:苯丙氨酸(F)、络氨酸(Y)、色氨酸(W)肽的基本特点一级结构的定义:通常描述为蛋白质多肽链中氨基酸的连接顺序,简称氨基酸序列(由遗传信息决定)。

维持稳定的化学键:肽键(主)、二硫键(可能存在),二级结构的种类:α螺旋、β折叠、β转角、无规卷曲、超二级结构,四级结构的特点:肽键数≧2,肽链之间无共价键相连,可独立形成三级结构,是否具有生物活性取决于是否达到其最高级结构蛋白质的一级结构与功能的关系:1、蛋白质的一级结构决定其构象 2、一级结构相似则其功能也相似3、改变蛋白质的一级结构可以直接影响其功能因基因突变造成蛋白质结构或合成量异常而导致的疾病称分子病,如镰状细胞贫血(溶血性贫血),疯牛病是二级结构改变等电点(pI)的定义:在某一pH值条件下,蛋白质的净电荷为零,则该pH值为蛋白质的等电点(pI)。

蛋白质在不同pH条件下的带电情况(取决于该蛋白质所带酸碱基团的解离状态):若溶液pH<pI,则蛋白质带正电荷,在电场中向负极移动;若溶液pH>pI,则蛋白质带负电荷,在电场中向正极移动。

(碱性蛋白质含碱性氨基酸多,等电点高,在生理条件下净带正电荷,如组蛋白和精蛋白;酸性蛋白质含酸性氨基酸多,等电点低,在生理条件下净带负电荷,如胃蛋白酶),蛋白质稳定胶体溶液的条件:(颗粒表面电荷同性电荷、水化膜),蛋白质变性:指由于稳定蛋白质构象的化学键被破坏,造成其四级结构、三级结构甚至二级结构被破坏,结果其天然构象部分或全部改变。

实质:空间结构被破坏。

变性导致蛋白质理化性质改变,生物活性丧失。

变性只破坏稳定蛋白质构象的化学键,即只破坏其构象,不破坏其氨基酸序列。

变性本质:破坏二硫键沉降速度与分子量及分子形状有关沉降系数:沉降速度与离心加速度的比值为一常数,称沉降系数沉淀的蛋白质不一定变性变性的蛋白质易于沉淀二、核酸化学核酸的特征性元素:P,组成元素:C、H、O、N、P,核苷酸的组成成分:一分子磷酸、一分子戊糖、一分子碱基(腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶T、尿嘧啶U),DNA的组成单位:一分子磷酸、一分子脱氧核糖、一分子碱基(A、G、C、T);RNA的组成单位:磷酸、核糖、碱基(A、G、C、U)核苷酸连接的化学键(磷酸二酯键):一个核苷酸与另一个核苷酸通过三五磷酸二酯键连接,互补碱基通过氢键相连一磷酸脱氧核苷通过酸酐键结合第二个第三个磷酸基DNA二级结构特点:1、为右手双螺旋,两条链以反平行方式排列;2 、两条由磷酸和脱氧核糖形成的主链骨架位于螺旋外侧,碱基位于内侧;3 、两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);4 、碱基平面与螺旋纵轴接近垂直,糖环平面接近平行5 、螺旋的螺距为3.4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对6 、螺旋结构中,围绕中心轴形成两个螺旋形的凹槽.(即有大小沟)或1、Chargaff法则,不同物种DNA的碱基组成不同,同一个体不同组织DNA的碱基组成相同,DNA的碱基组成不随个体的年龄、营养状况和环境改变而改变,A=T G=C A+G=T+C2、右手双螺旋结构:两股DNA反向互补形成双链结构、DNA双链进一步形成右手螺旋结构、氢键和碱基堆积力维系DNA双螺旋结构的稳定性RNA含有较多的稀有碱基,它们各具不同功能mRNA(是在蛋白质合成过程中负责传递遗传信息、直接指导蛋白质合成的RNA。

含量少、种类多、寿命短、大小差异大。

由编码区和非翻译区密码子构成)结构特点:1 真核生物mRNA有5’端帽子结构(m7G)和3’端的Poly(A)尾巴(组氨酸不具尾巴哈)~2 真核细胞的前mRNA有许多内含子(会被加工剪接为成熟的mRNA翻译)~3 真核细胞的mRNA多是单顺反子,即一条mRNA编码一条多肽~4 原核的转录翻译在一个空间(因为无细胞核),但是真核的就在不同的区域~5 还有就是半衰期不同,原核的降解得很快~大多时候都是边转录边翻译边降解的,真核相对要慢点tRNA(是在蛋白质合成过程中负责转运氨基酸、解读mRNA遗传密码的RNA。

)结构特点:(一级)1、是一类单链小分子RNA,长73~93nt。

2、是含有碱基最多的RNA,含7~15个稀有碱基,分布在非配对区。

3、5’端核苷酸往往是鸟苷酸。

4、3’端是CCA序列,其3’-羟基是氨基酸结合位点。

5、二级结构呈三叶草形TψC环识别核糖体一:结构特点:①含有稀有碱基较多,达核苷酸总量的5%-20%.②不同的tRNA尽管核苷酸组分和排列顺序各异,但其3’端都含有CCA序列,是所有tRNA接受氨基酸的特定位置.③所有的tRNA分子都折叠成紧密的三叶草二级结构和L型立体构象,结构较稳定,半衰期均在24小时以上.二:主要功能:①运输功能②在逆转录作用中作为合成互补链DNA链的引物.③在细菌细胞壁、叶绿素、脂多糖和氨酰磷脂酰甘油的合成中都与某些tRNA的参与有关.核酸的紫外吸收性质:在260mm附近存在吸收峰核酸变性的定义;在一定条件下断开双链核酸碱基对氢键,可以使其局部解离,甚至完全解离成单链,形成无规线团,称为核酸的溶解、变性。

增色效应:变性导致核酸紫外吸收值增大的现象解链温度(Tm):使双链DNA解链度达到50%所需要的温度,也叫变性温度、熔点三、酶酶活性中心(能与直接与底物分子结合,并催化底物化学反应的部位)的特点:(1)活性部位在酶分子的总体积中只占相当小的部分;(2)酶的活性部位是一个三维实体;(3)酶的活性部位与底物诱导契合;(4)酶的活性部位是位于酶分子表面的一个裂缝内;(5)底物通过次级键较弱的力结合到酶上;(6)酶活性部位具有柔性或可运动性。

、从Vmax可以计算酶的转换数:酶的转换数(催化常数)即酶-底物复合物分解生成产物的速度常数k3.温度对酶活性的影响:酶是蛋白质,温度对酶的影响有两重性1、升高反应温度,提高活化分子数,使酶促反应加快2、过高导致蛋白质变性失活,使酶促反应减慢(当反应温度低于最适温度时,每升温10℃,反应可加快1~2倍;当反应温度高于最适温度时,多数酶在60℃以上变性显著,80℃以上发生不可逆变性)抑制作用的分类:不可逆抑制作用(不可逆抑制剂:巯基酶抑制剂、丝氨酸酶抑制剂);可逆抑制剂-可逆抑制作用(竞争性抑制剂-竞争性抑制作用、非竞争性抑制剂-非竞争性抑制作用、反竞争性抑制剂-反竞争性抑制作用)有机磷农药中毒机制:有机磷中毒时乙酰胆碱酯酶受到抑制,造成乙酰胆碱在接头间隙内积累,出现胆碱能神经兴奋性增强的中毒症状(肌束颤动、瞳孔缩小、胸闷、恶心呕吐、腹痛腹泻、大小便失禁、大汗、汗泪流涎、气道分泌物增多、心率减慢等)。

竞争性抑制作用的定义:指的是有些抑制剂和酶底物结构相似,可与底物竞争酶活性中心,从而抑制酶和底物结合成中间产物。

作用特点:1 抑制剂和底物的结构相似,都能与酶的活性中心结合。

2 抑制剂与底物存在竞争,即不能同时结合活性中心。

3 抑制剂通过与活性中心结合抑制酶促反应。

4 动力学特征是表现Km值增大,表现Vmax不变,因此提高底物浓度可以削弱甚至消除竞争性抑制剂的抑制作用。

酶原:某些酶在细胞内合成或初分泌时只是酶的无活性前体,此前体物质称为酶原。

酶原激活:有些酶在刚合成时、初分泌时或发挥作用前只是无活性的前体,必需水解一个或者几个特定肽键,使酶蛋白的构象发生改变,从而表现出酶的活性,酶原向酶转化的过程。

实质:酶的活性中心形成或暴露的过程。

生理意义:酶原是酶的安全转运形式、酶原是酶的安全储存形式。

四、维生素维生素的分类:水溶性维生素、脂溶性维生素。

水溶性维生素的分类:维生素C、B族维生素(硫胺素、核黄素、烟酰胺、吡哆醛、泛酸、生物素、叶酸、钴胺素和硫辛酸等)。

特点:1 易溶于水,不溶或微溶于有机溶剂。

2 机体储存量很少,必须经常摄取。

3 摄取过多部分可以随尿液排出体外,一般不会导致积累而引起中毒脂溶性维生素的分类:维生素A、维生素D、维生素E和维生素K等。

维生素A和维生素D是激素前体。

特点:1、易溶于脂肪及有机溶剂,不溶于水。

2、在食物中常与脂类共存。

3、在血浆中与脂蛋白或特异的结合蛋白结合运输。

4、可以在脂肪组织、肝脏内储存。

5、会因脂类吸收不足而吸收不足,甚至出现缺乏症。

6、摄取过多会发生中毒维生素C:维生素C是多种羟化酶的辅助因子(1、在胶原蛋白的翻译后修饰过程中参与脯氨酸和赖氨酸的羟化,促进成熟胶原蛋白的合成。

2、参与胆固醇转化。

3、参与芳香族氨基酸代谢。

4、参与肉碱合成。

5、参与肽类激素酰胺化);维生素C参与其他代谢(1、维持巯基酶活性中心巯基的还原状态,保护巯基酶。

2、把氧化型谷胱甘肽(GSSG)还原成还原型谷胱甘肽(GSH)。

3、把高铁血红蛋白还原成血红蛋白,恢复其运氧能力。

4、把Fe3+还原成Fe2+,有利于非血红素铁的吸收。

5、保护低密度脂蛋白不被氧化。

6、保护叶酸不被氧化。

7、胃液中维生素C浓度极高,可以防止形成具有致癌性的N-亚硝基化合物。

)临床上主要用于防治坏血病,治疗高铁血红蛋白症,还用于病毒性疾病、缺铁性贫血、组织创伤、血小板减少性紫癜等的辅助治疗。

活性形式:维生素C(去氢抗坏血酸)缺乏坏血病维生素B1(硫胺素)活性形式焦磷酸硫胺素维生素B2(视黄素)活性形式黄素辅酶维生素PP(维生素B3 )活性形式辅酶Ⅰ和辅酶Ⅱ维生素B6 活性形式磷酸吡哆醛和磷酸吡哆胺泛酸活性形式辅酶A和酰基载体蛋白叶酸活性形式5,6,7,8-四氢叶酸缺乏巨幼细胞性贫血维生素B12 (钴胺素)活性形式甲钴胺素和5’-脱氧腺苷钴胺素维生素A缺乏夜盲干眼病过多中毒五、生物氧化生物氧化的定义:指糖、脂肪和蛋白质等营养物质在体内氧化分解、最终生成二氧化碳和水并释放能量满足机体生命活动需要的过程。

特点:营养物质在体内、外氧化分解的化学本质相同,耗氧量相同,终产物相同,释放能量相同;1、生物氧化过程是由发生在细胞内的一系列酶促反应完成的,反应是在生理条件下进行的。

2、营养物质在生物氧化过程中逐步释放能量,并尽可能多地以化学能的形式储存于高能化合物中,使其得到最有效的利用。

相关文档
最新文档