生化名词解释

合集下载

生化名词解释

生化名词解释

名词解释:1、结构域:分子量较大的蛋白质在形成三级结构时,肽链中一些肽段可形成结构较为紧密、功能相对独立的特定区域称为结构域常包含多个超二级结构。

2、氨基酸的等电点:在某一PH值溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相同,成为兼性离子,呈电中性,此溶液的pH值称该氨基酸的等电点。

3、蛋白质的等电点:在某一PH值溶液中,蛋白质解离成阳离子和阴离子的趋势相同,成为兼性离子,呈电中性,此溶液的pH值称为该蛋白质的等电点。

4、蛋白质的变性:在某些物理因素或化学因素的作用下,蛋白质特定的空间构象被破坏,从而引起理化性质改变,生物活性丧失,这种现象称为蛋白质变性。

5、酶的活性中心:酶分子中能和底物特意地结合并催化底物转化为产物的具有特定三维结构的区域称为活性中心。

辅酶或辅基参与组成酶的活性中心。

6、同工酶:同工酶是指在同种生物体内,催化同一种化学反应,但酶蛋白的分子结构和理化性质、免疫学特性都有所不同的一组酶。

7、酶的变构调节:某些特异的代谢物分子作用于酶时,以共价键的形式可逆地结合至活性中心以外的部位,使其构象改变,活性也随之改变,这种调节称为酶的变构调节。

8、共价修饰:酶蛋白多肽链上的某些残疾侧链在另一种酶的催化作用发生可逆的共价变化,从而引起酶空间结构及催化活性的改变,这种调节称为酶的化学修饰,也称共价修饰。

9、酶的竞争性抑制:竞争性抑制剂的化学结构与底物的化学结构相似,两者能够共同竞争同一种酶的活性中心,结果影响了酶与底物的结合,使有活性的酶分子数减少,导致酶促反应速度下降,这种作用称为竞争性抑制作用。

竞争性抑制作用的强弱取决于抑制剂浓度与底物浓度的相对比例。

10、底物水平磷酸化:代谢物脱氢、脱水时,引起分子内能量重新分布,形成高能化学键,将底物分子中的高能键的能量直接转移给ADP生成ATP的过程,称之为底物水平磷酸化。

11、脂肪动员:储存在脂肪库中的脂肪,在脂肪酶的作用下逐步水解为甘油和脂肪酸并释放入血以供其它组织细胞摄取利用的过程叫脂肪动员。

生化名词解释

生化名词解释

第一章1、等电点(isoelectric point):在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。

此时溶液的pH值称为该氨基酸的等电点。

2、肽(peptide):是由氨基酸通过肽键缩合而形成的化合物。

3、肽键(peptide bond):是由一个氨基酸的 -羧基与另一个氨基酸的 -氨基脱水缩合而形成的化学键。

4、氨基酸的理化性质:氨基酸具有两性解离的性质;含共轭双键的氨基酸具有紫外线吸收的性质。

5、蛋白质(protein):是由许多氨基酸(amino acids)通过肽键(peptide bond)相连形成的高分子含氮化合物,是生命的物质基础。

6、蛋白质的理化性质:两性解离性质;胶体的性质;蛋白质空间结构破坏而引起变形;蛋白质的紫外线吸收的性质;蛋白质的呈色反应(茚三酮反应,双缩脲反应)7、肽单元:参与肽键的6个原子Cα1,C、O、N、H、Cα2位于同一平面,此同一平面上的6个原子构成肽单元。

8、模体:是蛋白子分子中具有特定空间构象和特定功能的结构成分。

一个模体有其特征性的氨基酸序列,并发挥特殊的功能。

9、结构域:分子量较大的蛋白质常可折叠成多个结构较为紧密且稳定的区域,并各行其功能。

结构域是在三级结构层次上的独立功能区。

10、蛋白质的一级结构:蛋白质分子从N-端至C-端所有氨基酸的排列顺序,并且包括二硫键的位置。

11、蛋白质的二级结构:蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链主链骨架原子的相对空间位置,不涉及氨基酸残基侧链的构象。

12、蛋白质的三级结构:是指整条肽链中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。

三级结构是在二级结构的基础上形成的进一步卷曲或折叠的状态。

13、蛋白质的四级结构:是指蛋白质分子中各个亚基之间的空间排布及亚基亚基接触部位的布局和相互作用。

14、蛋白质变性:在一些理化因素的作用下,蛋白质的特定的空间构象被破坏,从而导致其理化性质改变和生物学活性丧失。

生化名词解释

生化名词解释

生化名词解释(整理)1、增色效应:在DNA变性解链过程中,由于碱基之中的共轭双键被暴露出来,使DNA在260nm 处的吸光值增加,称为增色效应。

2、核酶:具有催化活性的RNA称为核酶。

其在rRNA转录后加工过程中起自身剪接的作用,催化部位具有特殊的锤头结构。

3、底物水平磷酸化:底物高能磷酸基团直接转移给ADP生成ATP,这种ADP或其他核苷二磷酸的磷酸化作用与底物的脱氢作用直接相偶联的反应称为底物水平磷酸化。

4、Tm:DNA的变性从开始解链到完全解链,是在一个相当窄的温度内完成的,在这个范围内,紫外光吸收值达到最大值50%时的温度称为DNA的解链温度(Tm)。

一种DNA的Tm值的大小与其所含的碱基中的G+C比例相关,G+C比例越高,Tm值越高。

5、Klenow片段:利用特异的蛋白酶将DNA聚合酶Ⅰ水解为大、小两个片段,其中C端的大片段具有DNA聚合酶活性和5ˊ→3ˊ核酸外切酶活性,称为Klenow片段。

它是分子生物学研究中常用的工具酶。

6、顺式作用元件:指可影响自身基因表达活性的DNA序列。

按功能特性分为启动子、增强子及沉默子。

7、框移突变:基因编码区域插入或缺失碱基,DNA分子三联体密码的阅读方式改变,使转录翻译出的氨基酸排列顺序发生改变,称为框移突变。

8、酶的比活力:即酶纯度的量度,指单位重量的蛋白质中所具有酶的活力单位数,一般用IU/mg蛋白质来表示。

一般而言,酶的比活力越高,酶纯度越高。

9、SD序列:原核生物mRNA上起始密码子上游,普遍存在AGGA序列,因其发现者是Shin- Dalgarno而称为SD序列。

此序列能与核糖体小亚基上的16S rRNA近3ˊ端的UCCU序列互补结合,与翻译起始复合物的形成有关。

10、信号肽:即Signal Peptide,它是一段由3-60个氨基酸组成的短肽序列,常指新合成多肽链中用于指导蛋白质跨膜转移(定位)的N-末端的氨基酸序列(有时不一定在N端),至少含有一个带正电荷的氨基酸,中部有一高度疏水区以通过细胞膜。

生化名词解释

生化名词解释

1.蛋白质等电点:AA所带电荷为零时所处溶液的PH值。

2.肽键和肽链:一分子AA的羧基与另一分子AA的氨基脱水缩合形成的共价键结构即肽键。

多个AA分子脱水缩合就形成肽链。

3.肽平面:组成肽腱的四个原子相邻的两个α碳原子处于同一平面上,为刚性平面结构。

4.一级结构:指组成蛋白质的多肽链中氨基酸的排列顺序,不涉及肽链的空间排序。

5.二级结构:多肽链主链的局部空间结构,不考虑侧链的空间构象。

6.三级结构:指整个多肽链的空间结构,包括侧链在内的所有原子的空间排布,即蛋白质的三维结构。

7.四级结构:蛋白质由相同或不同的亚基以非共价键结合在一起,这种亚基间的组合方式即为蛋白质的四级结构。

8.超二级结构:相邻的二级结构单元组合在一起,相互作用,形成有规则的,在空间上能辨认的二级结构组合体,充当三级结构的构件,即超二级结构。

9.结构域:较大的球形蛋白质分子中,多肽链往往形成几个紧密的球状构象,这些球状结构间以松散的肽链相连,这些球状构象即结构域。

10.蛋白质的变性与复性:当受到某些因素影响时,维系天然构象的次级键被破坏,蛋白质失去天然构象,导致生物活性丧失及相关物理、化学性质的改变的过程为变性。

变性后蛋白质除去变性因素后,重新恢复天然构象和生物活性的过程称为蛋白质的复性。

11.分子病:由于遗传上的原因而造成蛋白质分子结构或合成量的异常所引起的疾病。

12.盐析法:在蛋白质溶液中加入大量的中性盐以破坏蛋白质胶体的稳定性使其析出。

13.别构效应:一个蛋白质与其配体结构后,蛋白质的空间构象发生变化,使它适用于功能的需要,这一类变化称为别构效应。

14.构型与构象:构型,分子中由于各原子或基团间特有的固定的空间排列方式不同而使它呈现出不同的较定的立体结构;构象,由于分子中的某个原子(基团)绕C-C单键自由旋转而形成的不同的暂时性的易变的空间结构形式,不同的构象之间可以相互转变,在各种构象形式中,势能最低、最稳定的构象是优势对象。

生化名词解释

生化名词解释

1.糖是一类多羟基醛或多羟基酮及其缩合物和衍生物的总称;分为单糖、寡糖、多糖和复合糖。

2.必需脂肪酸:维持人体生长所需的,体内又不能合成的脂肪酸。

3.皂化价:完全皂化1克油或脂所消耗的氢氧化钾的毫克数。

4.蛋白质变性:蛋白质受到某些物理和化学因素作用时,引起生物活性的丧失,溶解度的降低,以及其他的理化性质的改变,这种变化称为蛋白质的变性作用。

5.DNA变性:指维持核酸双螺旋结构的氢键断裂从而使核酸变成单链结构的过程。

6.肽平面:形成肽键的4个原子和与之相连的2个C原子共处于一个平面上,形成肽平面。

7.米氏常数:是反应速度为最大值的一半时的底物浓度8.竞争性抑制作用:抑制剂与底物竞争与酶的同一活性中心结合,从而干扰了酶与底物的结合,使酶的催化活性降低的作用。

9.三羧酸循环:以乙酰CoA 为起点,多种生物大分子(糖,脂,氨基酸)的共同最终代谢途径。

10.糖异生:非糖物质转变为葡萄糖或糖原的过程称为糖异生作用。

糖异生的意义:11.糖酵解:葡萄糖在胞液中经一系列酶促反应分解为丙酮酸的过程,称为糖酵解12.脂肪酸的β-氧化、ω-氧化肝和肌肉是进行脂肪酸氧化最活跃的组织,其最主要的氧化形式是β-氧化。

ω-氧化:在酶的催化下,脂肪酸的烷基端碳先氧化成羟基,再氧化成羧基,最后生成α,ω-二羧酸,然后在两端进行β-氧化。

13.转氨基作用:在转氨酶的催化下,某一氨基酸的a(阿尔法)-氨基转移到另一种a-氨基转移到另一种a-酮酸的酮基上,生成相应的氨基酸;原来的氨基酸则转变成a-酮酸。

14.呼吸链:又称电子传递链,指代谢物上脱下的氢经一系列传递体,最后传递给分子氧而生成水的体系。

15.冈崎片段:随从链上不连续复制的DNA片段称为冈崎片段。

16.分子伴侣:一类在序列上没有相关性但有共同功能的蛋白质,它们在细胞内帮助其他含多肽的结构完成正确的组装,而且在组装完毕后与之分离,不构成这些蛋白质结构执行功能时的组份。

17.酮体:在肝脏中,脂肪酸氧化分解的中间产物乙酰乙酸、β-羟基丁酸及丙酮,三者统称为酮体。

生化名词解释

生化名词解释

1、等电点(isoelectric point):在某一pH值的溶液中,氨基酸解离成阴/阳离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的pH值称该氨基酸的等电点。

2、肽单元(肽平面):参与肽键的6个原子——C-α1,C,O,N,H,C-α2。

位于同一平面,C-α1 和C-α2 在平面上所处的位置为反式(trans)构型,此同一平面上的6个原子构成肽单元。

3、蛋白质一级结构:蛋白质分子中氨基酸的排列顺序称蛋白质的一级结构。

一级结构的主要化学键是肽键,有的还包含二硫键。

一级结构是蛋白质空间构象和特异生物学功能的基础。

4、二级结构:指蛋白质分子中某一段肽链的局部空间结构,也就是该肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。

蛋白质二级结构包括α-螺旋、β-折叠、β-转角和无规卷曲。

维持蛋白质二级结构的化学键是氢键。

5、三级结构:多肽链中全部氨基酸残基的相对空间位置,也就是整条多肽链所有原子在三维空间的排布位置。

6、亚基:在蛋白质的四级结构中,每个具有独立三级结构的多肽链就是一个亚基,亚基与亚基间呈特定的三维空间排布,并以非共价键相连接。

7、四级结构:由两条或两条以上多肽链组成的蛋白质,每一条多肽链都有其完整的三级结构,称为蛋白质的亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接,这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。

8、α-螺旋(α-helix):是蛋白质多肽链主链二级结构的主要类型之一,肽链主链骨架围绕中心轴盘绕成有规律的右手螺旋状。

9、β-折叠(βpleated sheet):是蛋白质二级结构的一种,其主要特征是:①多肽链充分伸展,每个肽单元以C-α为旋转点,依次折叠成锯齿结构;②氨基酸侧链交替地位于锯齿状结构的上、下方;③两条以上肽链或一条肽链内的若干肽段平行排列,通过链间羰基氧和亚氨基氢形成氢键,从而稳固β-折叠结构;④肽链有顺式平行和反式平行两种。

生化名词解释

生化名词解释

1.当氨基酸分子带有相等正、负电荷,即所带净电荷为零时,溶液的pH值称为该氨基酸的等电点(pI)。

2.两氨基酸单位之间的酰胺键(-CO-NH-),称为肽键.3.蛋白质的一级结构(primary structure)就是蛋白质多肽链中氨基酸残基的排列顺序(sequence)。

4.蛋白质的二级结构(secondary structure)多肽链中主链原子的局部空间排布即构象,不涉及侧链部分的构象。

维系蛋白质二级结构的主要化学键是氢键。

5.肽键中-C-N-键的性质介于单、双键之间,具有部分双键的性质,因而不能旋转,这就将固定在一个平面之内6.β-折叠是由若干肽段或肽链排列起来所形成的扇面状片层构象。

7.模序是指在多肽链内顺序上相互邻近的二级结构肽段常常在空间折叠中靠近,彼此相互作用,形成一个具有特殊功能的空间结构8.整条多肽链中所有原子在三维空间的排布位置。

9.结构域也是蛋白质构象中二级结构与三级结构之间的一个层次。

在较大的蛋白质分子中,蛋白质三级结构常可分割成一个或数个球状或纤维状的区域,每个区域折叠得较为紧密,有独特的空间构象,各行其功能,称为结构域。

(10.蛋白质的四级结构是指亚基的立体排布、相互作用及接触部位的布局。

11.协同效应(cooperativity)的定义是指一个亚基与其配体结合后,能影响寡聚体中另一亚基与配体的结合能力。

如果是促进作用则称为正协同效应,反之称为负协同效应12.当蛋白质溶液处于某一pH时,蛋白质游离成正、负离子的趋势相等,即成为兼性离子,此时溶液的pH值称为蛋白质的等电点(isoelectric point,简写pI)13.天然蛋白质的严密结构在某些物理或化学因素作用下,其特定的空间结构被破坏,从而导致理化性质改变和生物学活性的丧失,称之为蛋白质的变性作用14.将接近于等电点附近的蛋白质溶液加热,可使蛋白质可形成比较坚固的凝块,称蛋白质凝固15.在蛋白质溶液中加入大量的中性盐以破坏蛋白质的胶体稳定性而使其析出,这种方法称为盐析。

生化名词解释

生化名词解释

名词解释1、酶的比活力:每毫克酶蛋白所具有的酶活力单位数。

2、蛋白质的三级结构:多肽链借助各种非共价键弯曲、折叠成具有特定走向的紧密球状结构。

3、别构效应:某种不直接涉及蛋白质活性的物质,结合于蛋白质活性部位以外的其他部位(别构部位),引起蛋白质分子的构象变化,而导致蛋白质活性的改变。

4、寡糖:由2~20个单糖分子通过糖苷键构成的糖类物质。

5、第二信使:细胞表面受体接受细胞外信号后转换而来的细胞内信号称为第二信使,而将细胞外信号称为第一信使。

6、分子杂交:用一个DNA单链或一个RNA单链与另一待测DNA单链形成双链,以测定某特异序列的存在。

7、蛋白质的可逆变性:用适当的方法消除变性因素,可使蛋白质恢复活性。

8、全酶:具有催化活性的酶,包括所有必需的亚基、辅基和其它辅助因子。

9、米氏常数Km:Km的数值等于酶促反应达到其最大速率一半时的底物浓度,它的大小只与酶的性质有关,而与酶浓度无关。

10、波尔效应:pH值或和CO2分压的变化对血红蛋白结合氧能力具有影响,血液pH值降低或CO2分压升高,使血红蛋白对O2的亲和力降低,在任意O2分压下血红蛋白氧饱和度均降低,氧分数饱和曲线右移;反之亦然。

这种pH对Hb氧亲和力的影响称为波尔效应。

11、肽聚糖:N-乙酰葡萄糖胺(NAG)和N-乙酰胞壁酸(NAMA)交替连接的杂多糖与不同组成的肽交叉连接形成的大分子。

肽聚糖是许多细菌细胞壁的主要成分。

12、乳化作用:由于表面活性剂的作用,使本来不能混合到一起的两种液体能够混到一起的现象称为乳化现象,具有乳化作用的表面活性剂称为乳化剂。

13、酸败现象:食物和其他产品中的不饱和脂肪酸被氧化或水解而产生的一种具有异臭的状态,酸败后的油脂密度减小,碘值降低,酸值增高。

14、碘值:不饱和脂肪酸中的不饱和度越高,用以与之加成的卤素量也越多,通常以“碘值”表示。

在一定条件下,每100g脂肪所吸收碘的克数称为该脂肪的“碘值”。

15、自由基::凡是具有不成对电子的原子或基团,称为自由基或游离基。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生化名词解释11.氨基酸的等电点:当溶液在某一特定的pH值时,氨基酸以两性离子的形式存在,正电荷数与负电荷数相等,净电荷为零,在直流电场中既不向正极移动也不向负极移动,这时溶液的pH值称为该氨基酸的等电点,用pI表示。

2.肽键:是指键,是一个氨基酸的α–COOH基和另一个氨基酸的α–NH2基所形成的酰胺键。

3.多肽链:由许多氨基酸残基通过肽键彼此连接而成的链状多肽,称为多肽链。

4.肽平面:肽链主链的肽键具有双键的性质,因而不能自由旋转,使连接在肽键上的六个原子共处于一个平面上,此平面称为肽平面。

5.蛋白质的一级结构:多肽链上各种氨基酸残基的排列顺序,即氨基酸序列。

6.肽单位:多肽链上的重复结构,如Cα–CO–NH–Cα称为肽单位,每一个肽单位实际上就是一个肽平面。

7.多肽:含有三个以上的氨基酸的肽统称为多肽。

8.氨基酸残基:多肽链上的每个氨基酸,由于形成肽键而失去了一分子水,成为不完整的分子形式,这种不完整的氨基酸被称为氨基酸残基。

9.蛋白质二级结构:多肽链主链骨架中,某些肽段可以借助氢键形成有规律的构象,如α–螺旋、β–折叠和β–转角;另一些肽段则形成不规则的构象,如无规卷曲。

这些多肽链主链骨架中局部的构象,就是二级结构。

10.超二级结构:在球状蛋白质分子的一级结构顺序上,相邻的二级结构常常在三维折叠中相互靠近,彼此作用,从而形成有规则的二级结构的聚合体,就是超二级结构。

11.结构域:在较大的蛋白质分子里,多肽链的三维折叠常常形成两个或多个松散连接的近似球状的三维实体,即是结构域。

它是球蛋白分子三级结构的折叠单位。

12.蛋白质三级结构:指一条多肽链在二级结构(超二级结构及结构域)的基础上,进一步的盘绕、折叠,从而产生特定的空间结构。

或者说三级结构是指多肽链中所有原子的空间排布。

维系三级结构的力有疏水作用力、氢键、范德华力、盐键(静电引力)。

另外二硫键在某些蛋白质中也起着非常重要的作用。

13.蛋白质四级结构:由相同或不同的亚基(或分子)按照一定的排布方式聚合而成的聚合体结构。

它包括亚基(或分子)的种类、数目、空间排布以及相互作用。

14.二硫键:指两个硫原子之间的共价键,在蛋白质分子中二硫键对稳定蛋白质分子构象起重要作用。

15.二面角:在多肽链中,Cα碳原子刚好位于互相连接的两个肽平面的交线上。

Cα碳原子上的Cα–N和Cα–C都是单键,可以绕键轴旋转,其中以Cα–N旋转的角度称为Φ,而以Cα–C旋转的角度称为Ψ,这就是α–碳原子上的一对二面角。

它决定了由α–碳原子连接的两个肽单位的相对位置。

16.α–螺旋:是蛋白质多肽链主链二级结构的主要类型之一。

肽链主链骨架围绕中心轴盘绕成螺旋状,称为α–螺旋。

17.β–折叠或β–折叠片:二条β–折叠股平行排布,彼此以氢键相连,可以构成β–折叠片。

β–折叠片又称为β–折叠。

18.β–转角:又称为β–回折。

多肽链中的一段主链骨架以180°返回折叠;由四个连续的氨基酸残基组成;第一个肽单位上的C=O基氧原子和第三个肽单位的N–H基氢原子生成一个氢键。

19.无规卷曲:主链骨架片段中,大多数的二面角(Φ,Ψ)都不相同,其构象不规则。

它存在于各种球蛋白之中,含量较多。

20.亚基:较大的球蛋白分子,往往由二条或更多条的多肽链组成功能单位。

这些多肽链本身都具有球状的三级结构,彼此以非共价键相连。

这些多肽链就是球蛋白分子的亚基。

它是由一条肽链组成,也可以通过二硫键把几条肽链连接在一起组成。

21.寡聚蛋白:由两个或两个以上的亚基或单体组成的蛋白质统称为寡聚蛋白。

22.蛋白质的高级结构:指一条或数条多肽上的所有原子在三维空间中的排布,又称构象、三维结构、空间结构、立体结构。

23.蛋白质激活:指蛋白质前体在机体需要时经某些蛋白酶的限制性水解,切去部分肽段后变成有活性的蛋白质的过程。

24.分子病:由于基因突变导致蛋白质一级结构突变,使蛋白质生物功能下降或丧失,而产生的疾病被称为分子病。

25.变构效应:也称别构效应,在寡聚蛋白分子中一个亚基由于与配体的结合而发生的构象变化,引起相邻其它亚基的构象和与配体结合的能力亦发生改变的现象。

26.蛋白质变性:天然蛋白质,在变性因素作用下,其一级结构保持不变,但其高级结构发生了异常的变化,即由天然态(折叠态)变成了变性态(伸展态),从而引起了生物功能的丧失,以及物理、化学性质的改变。

这种现象被称为蛋白质的变性。

27.蛋白质复性:除去变性剂后,在适宜的条件下,变性蛋白质从伸展态恢复到折叠态,并恢复全部生物活性的现象叫蛋白质的复性。

28.蛋白质的等电点:当溶液在某个pH时,使蛋白质分子所带的正电荷和负电荷数正好相等,即净电数为零,在直流电场中既不向正极移动也不向负极移动,此时的溶液的pH就是该蛋白质的等电点,用pI表示。

29.电泳:在直流电场中,带正电荷的蛋白质分子向阴极移动,带负电荷的蛋白质分子向阳极移动的现象叫电泳。

30.盐溶:在蛋白质水溶液中,加入少量的中性盐,如硫酸铵等,会增加蛋白质分子表面的电荷,增强蛋白质分子与水分子的作用,从而使蛋白质在水溶液中的溶解度增大,这种现象称为盐溶。

31.盐析:在高浓度的盐溶液中,无机盐的离子从蛋白质分子的水膜中夺取水分子,将水膜除去,导致蛋白质分子的相互结合,从而发生沉淀,这种现象称为盐析。

32.简单蛋白质:又称单纯蛋白质,即水解后只产生各种氨基酸的蛋白质。

33.结合蛋白质:即由蛋白质和非蛋白质两部分结合而成的蛋白质,非蛋白质部分通常称为辅基。

1.酶:酶是生物体内一类具有催化活性和特殊空间构象的生物大分子物质,包括蛋白质和核酸等。

2.酶的专一性:酶对于底物和反应类型有严格的选择性。

一般地说,酶只能作用于一种或一类化学底物,催化一种或一类化学反应,这就是酶的所谓的高度专一性。

3.全酶:酶蛋白与辅助因子结合之后所形成的复合物,称为全酶,只有全酶才有催化活性,将酶蛋白和辅助因子分开后均无催化作用。

4.辅酶:把那些与酶蛋白结合比较松弛,用透析法可以除去的小分子有机化合物,称为辅酶。

5.酶活性部位:酶分子中能直接与底物分子结合,并催化底物化学反应的部位,称为酶的活性部位或活性中心。

它包括结合中心与催化中心。

6.酶原:有些酶,如参与消化的各种蛋白酶(如胃蛋白酶、胰蛋白酶,以及胰凝乳蛋白酶等),在最初合成和分泌时,没有催化活性。

这种没有活性的酶的前体,被称为酶原。

7.必需基团:是指直接参与对底物分子结合和催化的基团以及参与维持酶分子构象的基团。

8.酶原激活:酶原必须经过适当的切割肽链,才能转变成有催化活性的酶。

使无活性的酶原转变成活性酶的过程,称为酶原激活。

这个过程实质上是酶活性部位组建、完善或者暴露的过程。

9.诱导契合学说:酶分子的活性部位结构原来并不与底物分子的结构互补,但活性部位有一定的柔性,当底物分子与酶分子相遇时可以诱导酶蛋白的构象发生相应的变化,使活性部位上各个结合基团与催化基团达到对底物结构正确的空间排布与定向从而使酶与底物互补结合,产生酶–底物复合物,并使底物发生化学反应。

10.定向效应:是指在酶活性部位中,催化基团与底物分子反应基团之间,形成了正确的定向排列,使分子间的反应按正确的方向相互作用形成中间产物,从而降低了底物分子的活化能,增加了底物反应速度。

11.共价催化:某些酶分子的催化基团可以通过共价键与底物分子结合形成不稳定的共价中间产物,这个中间产物极易变成过渡态,因而大大降低了活化能,使反应速度大为提高,这种催化称为共价催化。

12.酸催化:在酶活性中心上,有些催化基团是质子供体(酸催化基团),可以向底物分子提供质子,称为酸催化。

13.酶活力(酶活性)是指:酶催化底物化学反应的能力。

14.酶的活力单位:是衡量酶活力大小的计量单位,国际生物化学协会酶学委员会对酶活力单位作了下列规定:在25℃,最适PH,饱和底物浓度的反应条件下,1min内,将1微摩尔(μmol)的底物转化为产物所需要的酶量,定为一个国际单位(1U=1μmol/min)。

15.酶的比活力:比活力(比活性)是指:每mg蛋白质中所具有的酶活力(活力单位数)。

16.Kat:在最适条件下,每秒钟内,能使1mol底物转化成产物所需要的酶量,定为一个Kat单位(1Kat=1mol/s)。

17.K m:是当酶反应速度为最大反应速度一半时的底物浓度。

18.酶的最适pH:只有在特定的pH下,酶、底物和辅酶的解离状态,最适宜它们相互结合,并发生催化作用,从而使酶反应速度达到最大值,这个pH称为酶的最适pH。

19.酶的最适温度:使反应速度达到最大值的温度被称为最适温度。

动物体内各种酶的最适温度一般在37~40℃。

20.竞争性抑制作用:有些抑制剂,其分子结构与底物分子结构十分相似,因而,也能够与酶分子的底物结合基团相结合,从而抑制酶活性。

抑制剂和底物对酶的结合,是相互竞争、相互排斥的。

这种抑制作用,称为竞争性抑制作用。

21.调节酶:对代谢途径的反应速度起调节作用的酶称为调节酶。

22.变构效应:调节物与酶分子的调节部位(或一个亚基的活性部位)结合之后,引起酶分子构象发生变化,从而提高或降低活性部位(或另一个亚基的活性部位)的酶活性(或对底物的亲和力)。

这种效应称为变构效应。

23.正协同效应:提高酶活性的变构效应,称为变构激活或正协同效应。

24.效应子:能使变构酶产生变构效应的物质,称为效应物,又称效应子,调节物。

25.变构激活剂:与调节部位(或活性部位)结合之后,能提高酶活性的效应物,称为变构激活剂(或正效应物)。

26.共价修饰调节:有些酶,在其它酶的催化下,其分子结构中的某种特殊的基团能与特殊的化学基团,共价结合或解离,从而使酶分子从无活性(或低活性)形式变成活性(或高活性)形式,或者从有活性(高活性)形式变成无活性(或低活性)形式。

这种修饰作用称为共价修饰调节。

27.同工酶:能催化相同的化学反应,但在蛋白质分子的结构、理化性质和生物学性质方面,都存在明显差异的一组酶。

即能催化相同化学反应的数种不同分子形式的酶。

28.酶工程:是由酶学与化学工程技术、基因工程技术、微生物学技术相结合而产生的一门新的技术科学。

酶工程分为化学酶工程和生物酶工程两大类。

29.固定化酶:是指采用物理或化学的方法,将酶固定在固相载体上,或者将酶包埋在微胶囊或凝胶中,从而使酶成为一种可以反复使用的形式。

30.多酶复合体:又称多酶体系,是由几种酶彼此嵌合而形成的复合体,分子量很大,一般有几百万,例如:丙酮酸脱氢酶复合体是由丙酮酸脱氢酶、二氢硫辛酸转乙酰基酶与二氢硫辛酸脱氢酶彼此嵌合而成的。

它有利于一系列反应的连续进行。

1.血糖:就是指血中的葡萄糖。

2.糖酵解:是在无氧条件下,把葡萄糖转变为乳酸(三碳糖)并产生ATP 的一系列反应。

相关文档
最新文档