混凝土结构构件计算
混凝土承重计算公式(一)

混凝土承重计算公式(一)混凝土承重计算公式概述混凝土承重计算是结构设计中的一项重要工作,用于确定混凝土结构的承重能力。
在进行混凝土承重计算时,需要考虑多个因素,包括混凝土的强度、尺寸、钢筋配筋等。
下面将列举一些相关的计算公式,并通过举例进行解释说明。
承载力计算公式混凝土的承载力可以通过以下公式计算:•承载力 = 设计强度× 断面面积其中,设计强度是指混凝土的强度,可以根据设计要求和试验数据确定;断面面积是指混凝土构件截面的面积。
弯曲承载力计算公式对于受弯构件的混凝土承重计算,可以使用以下公式:•弯曲承载力= α × β × fc × wz其中,α和β是调整系数,根据实际情况确定;fc是混凝土的抗压强度;wz是混凝土截面的有效宽度。
剪切承载力计算公式对于受剪构件的混凝土承重计算,可以使用以下公式:•剪切承载力= αs × βs × fc × As其中,αs和βs是调整系数,根据实际情况确定;fc是混凝土的抗压强度;As是剪切面中的钢筋面积。
举例说明假设有一根混凝土梁,尺寸为宽度1000mm、高度250mm,混凝土的设计强度为30MPa。
我们来计算其承载力。
•断面面积= 1000mm × 250mm = 250000mm² = ²•承载力= 30MPa × ² =可以得出,该混凝土梁的承载力为。
对于弯曲承载力和剪切承载力的计算,可以根据具体情况和相关公式进行类似的推导和计算。
总结混凝土承重计算是结构设计中不可或缺的一部分。
通过使用相关的计算公式,根据混凝土的强度和结构尺寸等因素,可以准确地确定混凝土结构的承载能力。
在实际应用中,需要根据具体情况选择合适的计算公式和参数。
混凝土结构设计原理-受拉构件承载力计算

压应力激活
当混凝土构件上方有可变形物体 施加荷载时,混凝土构件会受到 凸起作用,产生如何的抗压应力 呢?
受拉钢筋的计算方法
1
钢筋数量
2
根据受拉构件受到的作用力确定需要多
少根钢筋。
3
材料参数
4
考虑钢筋材料特性,如弹性模量和屈服 强度。
钢筋位置
考虑不同位置的钢筋受拉。
钢筋尺寸
根据结构要求和现实情况,选择合适的 钢筋尺寸。
混凝土结构设计原理-受 拉构件承载力计算
在混凝土结构设计中,受拉构件是非常重要的组成部分,本次演讲将向您介 绍受拉构件承载力的相关原理及计算方法。
构件受拉承载力的基本原理
应力分布特点
受力状态分析
受拉构件在受到外加载荷作用下, 应力分布特点影响极大。
受拉构件在单向拉力作用下,纵 向应变不服从胡克定律,此时的 受力状态是怎样的呢?
混凝土的受拉承载力计算方法
纵向受拉强度
根据混凝土强度、长度、纵横向钢筋等参数,计算混凝土受拉的极限承载力。
截面尺寸设计
考虑构件竖向尺寸,设计混凝土承载力等参数。
混凝土强度变化
不同强度的混凝土对受拉承载力的计算有何影响?
考虑压力区高度的计算方法
混凝土强度等级: 压应力区高尺寸效应的基础上,如何还可以提高混凝土结构的承载力?
3 弹性应变修正系数
了解弹性应变修正系数对混凝土结构设计的影响。
考虑钢筋的剪切破坏的计算方法
1
剪切破坏机理
了解混凝土受力情况下,钢筋如何承受
板条剪应力
2
剪切力破坏,计算限制条件。
板条曲腰发生剪切破坏时,计算应力条
件。
3
锚固长度
考虑锚固长度对钢筋承载力的影响。
混凝土受弯构件正截面承载力计算

r As f y As a1 fcbx x a1 fc
bh0 bh0 f y bh0 f y h0 f y
令
x
h0
则
r
a1 fc
fy
令b为 = r max时的相对受压区高度,即
rmax
b
a1
f
fc
y
= r max时的破坏形态为受压区边缘混凝土达到极限压
c fc e0 e ecu
n
2
1 60
(
fcu,k
50)
2.0
各系数查表4-3
e0 0.002 0.5( fcu,k 50)105 0.002
ecu 0.0033 0.5( fcu,k 50)105 0.0033
4.钢筋应力—应变关系的假定(本构关系)
Ese e e y fy e ey
4.3钢筋混凝土受弯构件正截面试验研究
一、受弯构件正截面破坏过程
受弯构件正截面破坏分为三个阶段 • 第一阶段:裂缝开裂前 • 第二阶段:从开裂到钢筋屈服 • 第三阶段:从钢筋屈服到梁破坏
(1)第I阶段
当荷载比较小时,混凝土基本处 于弹性阶段,截面上应力分布为三 角形,荷载-挠度曲线或弯矩-曲率 曲线基本接近直线。截面抗弯刚度 较大,挠度和截面曲率很小,钢筋 的应力也很小,且都于弯矩近似成 正比。
My
Mu
Failure”,破坏前
可吸收较大的应变
能。
0
f
2.超筋梁(Over reinforced)破坏
钢筋配置过多,将发生这种破坏。 破坏特征:破坏时钢筋没有达到屈服强度,破坏是由 于压区混凝土被压碎引起,没有明显预兆,为脆性破 坏。
结构 工程量计算规则

砼结构工程量计算规则一、现浇混凝土工程量除另有规定者外,均按设计图示尺寸实体体积以立方米计算,不扣除结构、构件内钢筋、预埋铁件及墙、板中面积在0.3m2以内洞口所占的体积。
二、混凝土垫层、砂石垫层按设计图纸垫层的体积以立方米计算。
三、混凝土柱按结构断面面积乘以柱的高度以立方米计算,柱的高度按柱基上表面(或楼板上表面)至上一层板(或梁的下表面)标高之差计算。
四、构造柱按设计高度计算,嵌入墙体部分并入柱体积以立方米计算。
五、依附柱上的牛腿和柱帽,并入柱身体积以立方米计算。
六、混凝土梁与柱连接时,梁长算至柱内侧,嵌入墙内的梁头按梁计算;主梁与次梁连接时,次梁长度算至柱梁内侧面。
七、梁高自梁底算至板底,反梁自板顶算至梁顶。
八、混凝土板按墙与墙之间的净空面积乘以板厚以立方米计算。
九、混凝土墙体按墙的中心线长度乘以墙高、厚度以立方米计算。
十、混凝土墙垛、附墙柱、暗柱、暗梁及突出部分并入墙体以立方米计算。
十一、混凝土墙的体积中,板与墙相叠加部分按墙计算;柱或梁与墙相叠加部分,分别按柱或梁以立方米计算。
十二、混凝土整体楼梯,包括休息平台、平台梁、斜梁及楼梯与楼板连接的梁、踏步、踏步板,按设计图示尺寸以立方米计算。
十三、填充混凝土按设计图纸填充量以立方米计算。
十四、砖砌楼梯按设计图纸水平投影面积以平方米计算。
十五、小型混凝土构件是指单件体积在0.05m3以内构件。
模板计算规则一、模板工程量按模板接触混凝土的面积以平方米计算,倾斜的模板靠墙的并入墙的模板计算,靠梁的并入梁的模板计算。
二、现浇混凝土墙、板上单孔面积在0.3m2以内的孔洞模板计算时不予扣除,洞侧壁模板面积也不再计算;单孔面积在0.3m2以上时,孔洞模板计算应予扣除,洞侧壁模板面积并入墙、板工程量内计算。
三、车站脚手架以墙体立面积以平方米计算。
四、车站活动脚手、悬空脚手按车站站内地面净面积计算,不扣除垛、柱、间隔墙所占面积。
钢筋及金属结构计算规则一、钢筋工程按不同品种、规格,分别按设计图示尺寸以吨计算。
混凝土结构计算书

混凝土结构计算书混凝土结构是一种广泛应用于建筑工程中的结构形式,具有良好的承载能力和耐久性。
在设计和施工过程中,为了确保结构的安全和稳定,需要进行混凝土结构的计算。
本文将介绍混凝土结构计算的基本原理和步骤,并对其中的一些关键要点进行详细解析。
一、混凝土结构计算的基本原理混凝土结构的计算是通过对结构的静力学和材料力学进行分析,来确定结构的受力状态和变形情况。
在计算过程中,需要考虑结构的荷载作用、材料的力学性能和结构的几何形状等因素,以确保结构在使用和设计寿命内具有足够的安全性和稳定性。
二、混凝土结构计算的步骤1. 确定结构的荷载:根据建筑物的用途和规模,确定结构所受的荷载类型和大小。
常见的荷载包括自重、活载、风荷载、地震荷载等。
2. 确定结构的几何形状:根据建筑物的布置和功能需求,确定结构的几何形状和尺寸。
包括结构的平面布置、柱、梁、板等的截面形状和尺寸。
3. 确定材料的力学性能:根据混凝土和钢筋的材料特性,确定其力学性能参数,如混凝土的抗压强度、钢筋的屈服强度等。
4. 进行静力学分析:根据结构的几何形状、荷载和材料性能,进行静力学分析,确定结构的受力状态和内力大小。
5. 进行构件设计:根据结构的受力状态和内力大小,进行构件的尺寸和配筋设计。
根据混凝土和钢筋的受力性能,确定构件的尺寸和配筋要求,以确保构件的受力性能满足设计要求。
6. 进行整体稳定性分析:对整个结构进行整体稳定性分析,以确保结构在荷载作用下的整体稳定性。
包括对结构的抗侧扭、抗倾覆、抗滑移等进行分析。
三、混凝土结构计算的关键要点解析1. 混凝土强度的确定:混凝土的抗压强度是混凝土结构计算中的重要参数。
根据混凝土的设计强度等级和强度检验结果,确定混凝土的抗压强度。
2. 钢筋的选取:钢筋在混凝土结构中起到增强混凝土受力能力的作用。
根据结构的受力状态和要求的变形性能,选取合适的钢筋种类和截面积。
3. 构件的尺寸设计:在进行构件的尺寸设计时,需要考虑构件的受力性能、施工工艺和经济性等因素。
混凝土结构基本原理 受弯构件承载力计算习题

[3-8]T形截面梁b=200mm,h=500mm,b‘f=400mm,h’f=100mm, 承受荷载设计值 q=60kN·m, 混凝土为C30级,纵筋为HRB400级钢筋,环境作用等级为一类,设 计使用年限为50年 。求AB跨中及B支座需配置的纵向受拉钢筋。 解:(1)计算M
60KN/m
A 5700
(2) 计算As , 并验算适用条件
1
1
M
1 fc
b'f
b
h
' f
h0
0.51 fcbh02
h
' f
2
1
1
550 106
1.0
16.7
600
250
100
535
0.5 1.0 16.7 250 5352
100 2
0.51 fcbh02
1
3.3075 106
0.51.014.31000 452
0.122 b
0.576
(4) 计算As
As
1 fcbh0 fy
1.0 14.31000 45 0.122 270
290.8mm 2
minbh 0.002 1000 70 140mm2
(1)计算ξ ,并验算适用条件
1
1
M 0.51 fcbh02
1
1
0.5
1.0
220 106 14.3 200
4102
0.709 b
0.518
(2) 采用双筋梁,令ξ= ξb , ho=h-65=450-65=385 mm,f‘y=360N/mm2 ,as’=40
第10节钢筋混凝土受压构件承载力计算

第10节钢筋混凝土受压构件承载力计算钢筋混凝土结构中,钢筋混凝土受压构件(如柱和墙)的承载力计算是结构设计中的重要内容之一、本文将从受压构件承载力计算的基本原理、假设条件和计算方法等方面进行详细介绍。
1.基本原理:钢筋混凝土受压构件的承载力计算是基于构件在受压状态下的稳定性和极限强度理论进行的。
根据弹性力学理论,构件在受外载荷作用下会发生弹性变形,当荷载增大到一定程度时,构件进入非弹性变形阶段,到达极限承载力。
因此,承载力计算涉及到弹性极限状态和极限承载力的确定。
2.假设条件:在承载力计算中,一般采用以下假设条件:(1)材料的弹性线性:混凝土和钢筋的应力-应变关系符合弹性线性假设,线性弹性模量E为常数;(2)平面截面假定:构件截面平面仍是平面在载荷作用下仍处于平面;(3)材料的强度:混凝土和钢筋的强度符合破坏准则,常用的有混凝土的抗压强度、钢筋的屈服强度和附加应力等。
3.计算方法:(1)弹性计算:首先进行弹性计算,即通过材料特性和几何性质,计算出构件在设计荷载下的应力和应变,进行稳定性分析,检查是否满足弹性稳定性和承载力要求;(2)极限强度计算:当弹性计算不满足要求时,需要进行极限强度计算。
根据材料的破坏准则,分别计算混凝土的抗压强度和钢筋的屈服强度,并根据材料的强度进行构件抗弯承载力和轴向承载力的计算;(3)受限状态计算:在受压构件中,由于受到压力作用,有可能出现多种破坏状态,如混凝土挤压破坏、钢筋屈服、钢筋断裂等,需要确定受限构件状态下的承载力。
4.常用计算方法:(1)弹性计算:可使用弹性理论方法,如戴森公式、沃弗公式等进行计算;(2)极限强度计算:可使用极限强度理论方法,如塑性区方法、破坏准则方法进行计算;(3)受限状态计算:通常使用零应变截面方法、等效矩形应力块法、等效矩形应力块-受压钢筋法等进行计算。
总之,钢筋混凝土受压构件承载力计算是结构设计中的重要环节,需要根据构件的几何形状、受力情况和所用材料的特性等进行合理的计算。
钢筋混凝土构件受压构件承载力计算

轴心受压、偏心受压和受弯构件截面极限应力状态
’
构件截面应力随偏心距变化
矩形截面偏心受压
偏
心 受
计算基本假定
重心轴
压 平截面假定
构
计算中和轴
件 不考虑混凝土的抗拉作用
正
实际中和轴
截 混凝土和钢筋的应力应变关系
面
承 受压区混凝土采用等效矩形应力图形。 载
力 x 2 a 时,受压钢筋达到抗压设计强度。
偏
心
受
N与M线性关系
压
N与M曲线关系
构
dN/dM=0
件
纵
向
弯
曲
的
影
响
短柱、长柱和细长柱 e0相同、长细比不同时Nu的变化
长细比增加,附加弯矩增大, 长柱承载力Nu降低。(同轴压)
偏
偏心距增大系数法是一个传统的方法,使
心
用方便,在大多数情况下具有足够的精度,至
受 压
今被各国规范所采用。
构
式(5-11)是由两端铰支、计算长度为l0 、
x) 2
f cbx f y As
KV
Vu
0.7 ftbh0
1.25 f yv
Asv s
h0
fy Asb sins
1.正截面承载力(N、M)
单
KN
Nu
fcbx
f
' y
As
s
As
向 偏
KNe
Nue
fcbx h0
x 2
f
' y
As'
算
推导
适筋、超筋、界限破坏时的截面平均应变图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17
第二节 .轴心受压构件
• (3).正截面承载力计算
ห้องสมุดไป่ตู้
Nu
0.9(
fc A
f
' y
As'
)
— —稳定系数
N —轴向压力设计值;
A—构件的截面面积,当纵向钢筋配筋率大于0.03时,A改用Ac,Ac=AAs’;
As—全部纵向钢筋的截面面积。
主要计算要求:
(1)截面设计
(2)截面校核
5
第一节 轴心受拉构件
•
钢筋混凝土轴心受拉构件一般采用正方形、矩
形或其他对称截面,纵向钢筋在截面中对称布置或沿周
边均匀布置,偏心受拉构件的截面多为矩形。由于偏心
受拉构件的截面作用有弯矩,所以矩形截面的长边宜和
弯矩作用平面平行,纵向钢筋布置在短边上。
• 轴心受拉构件的截面配筋
• 单向偏心受拉
6
第一节 轴心受拉构件
10
第二节
• 二、受压构件的一般构造 1.材料强度等级 2.截面形式和尺寸 3.纵向钢筋 4.箍筋
轴心受压构件
11
第二节.轴心受压构件
• 三、配有普通箍筋的轴心受压构件正截面承载力计算 1.轴心受压短柱的应力分析及破坏形态 短柱:l0/b≤8或l0/i ≤28 • (1)初始偏心的影响很小,可不考虑; • (2)钢筋和混凝土的压应变相等 • (3)达到极限荷载时,短柱的极限压应变为0.0025~0.0035 短柱的极限承载力
18
第二节 .轴心受压构件
*计算要点:
(1)配筋率限制:规范规定,受压构件全部纵向钢筋的最小配 筋率为0.6%,当采用HRB400级钢筋时,可减少0.1%,即0.5%.
*一般可取适宜配筋率1%
(2)
— —可假定取1.0
19
第二节.轴心受压构件
• 【例1】某多层现浇框架结构房屋。底层中间柱按 轴心受压构件计算。该柱以承受恒荷载为主,安全 等级为二级。轴向力设计值N=2160KN,计算长度
As As
A bh
混凝土保护层厚度:p348--附录 7
7
第一节 轴心受拉构件
• 二、轴心受拉构件正截面承载力计算
•
钢筋混凝土轴心受拉构件,开裂以前混凝土与钢筋
共同承担拉力;开裂以后,开裂截面混凝土退出工作,全
部拉力由钢筋承担;破坏时整个截面全部裂通。所以,轴
心受拉构件的正截面承载力按下列公式计算:
8
第一节 轴心受拉构件
计算要点:
(1).构件截面的确定:从计算公式来看,混凝土构件截面与强 度计算无关,但是从最小配筋率来看,截面大小对配筋量有 限制作用.
(2).一侧最小配筋率:
45 ft 0.2% fy
9
第二节 轴心受压构件
一.几个基本概念:
1.螺旋箍筋(或焊接环箍):
2.长细比: 构件的计算长 度 l0 与构件的 回转半径 i0 之 比
Ns
fc A
f
' y
As'
12
第二节.轴心受压构件
• 短柱的破坏形态
13
第二节.轴心受压构件
• 2.轴心受压长柱的应力分析及破坏形态
长柱:l0/b>8或l0/i >28
• (1)需考虑初始偏心e0的影响, e0产生附加弯矩,附加弯矩引起水平 挠度af,水平挠度又加大初始偏心;
• (2)长柱最终是在弯矩和轴力共同作用下破坏,破坏特征类似偏心受 压柱。
3
第一节 轴心受拉构件
一、概述:
承受纵向拉力的构件,称为受拉构件。
当纵向拉力作用线与构件截面形心轴线重合时为轴心受拉构件; 当纵向拉力作用线偏离构件截面形心轴线时,或构件上既作用有拉力又 作用有弯矩时,则称为偏心受拉构件。
4
第一节 轴心受拉构件
• 钢筋混凝土桁架中的拉杆、有内压力的圆管管壁、圆形水池的环形池壁等, 可以按轴心受拉构件计算。 联肢剪力墙的某些墙肢、双肢柱的某些肢杆、悬伸式桁架承受 节间竖向荷载的受拉上弦杆,以及一般屋架承担节间荷载的下弦杆等都属 于偏心受拉构件;此外,经常遇到的矩形筒仓、斗仓及水池,其仓壁或池 壁也同时受到轴向拉力及弯矩的作用,故也属于偏心受拉构件。
21
第二节.轴心受压构件
• *配有螺旋式(或焊接环式)箍筋的轴心受压构 件的实际应用:
• (1)当配置普通箍筋不能满足强度要求时; • (2)圆形截面构件。
22
第二节.轴心受压构件
• 2.正截面受压承载力计算
l0=5.6m,混凝土强度等级为C25(f c=11.9N/mm2)。 钢筋采用HRB400( fy’=360N/mm2) 。求该柱的截面
尺寸及纵筋面积。
20
第二节.轴心受压构件
• 四、配有螺旋式(或焊接环式)箍筋的轴心受压构件 正截面承载力计算
1.箍筋的横向约束
对配置螺旋式或焊接 环式箍筋的柱,箍筋所包围的 核芯混凝土,相当于受到一个 套箍作用,有效地限制了核芯 混凝土的横向变形,使核芯混 凝土在三向压应力作用下工作, 从而提高了轴心受压构件正截 面承载力。
混凝土结构原理及应用
土木工程学院 主讲:冯云平
1
钢筋混凝土基本构件的 承载力和变形
• 主要内容:轴心受力构件, 受弯构件, 偏心受压构件, 偏心受拉构件, 受扭构件, 混凝土结构裂缝与变形控制
2
第3章. 轴心受力构件
•
轴心受力构件包括轴心受拉构件和轴心受压构件,在荷载作用下其截面上
一般作用有轴力(N)、弯矩(M)和剪力(V)。
*长柱的极限承载力Nl< Ns(当其他条件相同时)
*考虑长短柱的计算公式的统一,引入系数:
稳定系数 Nl
Ns
14
第二节.轴心受压构件
• 3、配有普通箍筋的轴心受压构件正截面承载力计算
• (1).钢筋混凝土轴心受压构件的稳定系数
15
第二节.轴心受压构件
(2).理想支承柱的计算长度
16
第二节.轴心受压构件
•
轴心受拉和偏心受拉构件中的纵向钢筋配
筋都应满足最小配筋率的要求。从受力的角度看,轴
心受拉构件中并不需要箍筋,但为了形成钢筋骨架,
仍必须设置箍筋,如屋架下弦箍筋间距一般不宜大于
200mm,箍筋直径4~6mm。偏心受拉构件要进行斜截
面抗剪计算,配置箍筋时应考虑抗剪要求。
• 基本概念:
•
配筋率:p352-附录9
N f y As
式中 N——轴向拉力设计值: fy——钢筋抗拉强度设计值,为了控制受拉构件在使用荷载下的变 形和裂缝开展,规定轴心受拉和小偏心受拉构件的fy大于300N/mm2时,
仍应按300N/mm2取用。 应该注意,轴心受拉构件的钢筋用量并不总是由强度要求决定的, 在许多情况下,裂缝宽度验算对纵筋用量起决定作用。