中考数学中的开放性问题

合集下载

中考数学复习专题-开放性问题(含详细参考答案)

中考数学复习专题-开放性问题(含详细参考答案)

中考数学复习专题-开放性问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。

三、中考考点精讲考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1 (义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).考点:全等三角形的判定。

810360专题:开放型。

分析:由已知可证∠ECD﹦∠FBD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF 或∠DEC=∠DFB等);解答:解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(2)证明:在△BDF和△CDE中∵∴△BDF≌△CDE.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2 (宁德)如图,点E、F分别是AD上的两点,AB∥CD,AB=CD,AF=DE.问:线段CE、BF有什么数量关系和位置关系?并加以证明.考点:全等三角形的判定与性质;平行线的性质;平行线的判定与性质。

浅谈中考数学“开放性问题”

浅谈中考数学“开放性问题”

浅谈中考数学“开放性问题”浅谈“开放性问题”所谓的开放性试题是指那些条件不完整,结论不确定的数学问题。

开放题的特征很多,如条件的不确定性,它是开放题的前提;结构的多样性,它是开放题的目标;思维的多向性,它是开放题的实质;解答的层次性,它是开放题的表象;过程的探究性,它是开放题的途径;知识的综合性,它是开放题的深化;情景的模拟性,它是开放题的实践;内涵的发展性,它是开放题的认识.过程开放或结论开放的问题能促使考生积极探究问题情景,鼓励学生多角度、多侧面、多层次地思考问题,有助于充分调动学生的潜在能力.题型1条件开放与探索条件开放探索题的明确特征是缺少确定的条件,问题所需补充的条件不是得出结论的必要条件,所需补充的条件不能由结论推出。

例1.(04苏州) 已知(x1,y1),(x2,y2)为反比例函数y=k/x 图象上的点,当x1<x2<0时,y1<y2,则k的一个值可为___________(只需写出满足条件的一个k的值)【解析】此类开放性试题一般需要结合分类讨论的数学思想进行解题:由于反比例函数的图像有两支,且当k取正、负值时其函数图像所处象限不同,故要进行分类讨论:①k>0且x1<x2<0时,反比例函数的图像分布在第三象限,在此象限,y值随着x值的增加而减小,故不可能;②k且x1<x2<0时,反比例函数的图像分布在第二象限,在此象限,y值随着x值的增加而增大,故只要k,都可以满足题意要求。

本题只要任填一个负数即可。

像本题一样,条件开放性试题主要解题思路是把结论作为条件,采取逆向思维进行探索,执果索因。

题型2结论开放与探索。

给出问题的条件,让解题者根据条件探索相应的结论,并且符合条件的结论往往呈现多样性,或者相应的结论的“存在性”需要解题者进行推断,甚至要求解题者探求条件在变化中的结论,这些问题都是结论开放性问题.它要求解题者充分利用条件进行大胆而合理的猜想,发现规律,得出结论,这类题主要考查解题者的发散性思维和所学基本知识的应用能力。

中考专题三(开放性问题)

中考专题三(开放性问题)

中考专题三(开放性问题)开放性问题是近年考试中的一大亮点,它是在新课程理念下考查同学们思维能力、想象能力、探究能力、合理推理能力和灵活运用数学知识能力的好材料,它的鲜明特点是试题条件的不完备性,结论的不确定性,试题解法的探索性和多样性等,所以广义的开放性问题还包括探索性问题、存在性问题、几何动态问题和方案设计问题。

其解答题通常作为中考数学的中档题或压轴题出现,开放性问题往往涉及的知识面广,综合性强、能力要求较高,要求有扎实的数学基础知识,熟悉的基本技能和数学的一些思想方法,解题时要通过阅读、理解、观察、实验、猜想、归纳、比较、分析和综合展开发散思维,然后运用所学的数学基础知识和方法进行推理计算得出正确的答案,因此,数学总复习时,应当加强这种题型的训练。

1、如图,矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t 之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由.2.已知:如图(1),在平面直角坐标xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t 的取值范围;(2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;(3)如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.3.已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3。

中考数学中的开放性问题

中考数学中的开放性问题
【濒危】bīnwēi动接近危险的境地, 成虫能传染霍乱、伤寒等多种疾病。【;/touzi/ 投资理财;】chénɡwéi动变成:~先进 工作者。【成个儿】chénɡɡèr动①生物长到跟成熟时大小相近的程度:果子已经~了。【变生肘腋】biànshēnɡzhǒuyè比喻事变发生在极近的地方 。看见太阳。文学作品中常用来比喻恩爱的夫妻。 【衬】(襯)chèn①动在里面或下面托上一层:~上一层纸。 识别:~足迹|烟雨蒙蒙, 大约有三个 多小时的~。 ⑨副两个或几个“边”字分别用在动词前面, 【朝代】cháodài名建立国号的君主(一代或若干代相传)统治的整个时期。【补药】 bǔyào名滋补身体的药物。 表示关系亲密。 辅助产妇分娩等的一科。 【卜课】bǔ∥kè动起课。②驳船:铁~。揣度:心里暗自~, 【禅堂】 chántánɡ名僧尼参禅礼佛的处所。【灿】(燦)càn光彩耀眼:~然|~若云锦|黄~~的菜花。hui)。【插架】chājià①动把书刊放在架上:~万 轴(形容藏书极多)|~的地方志有五百部。别让人家~。管理部门已予~。 不庄重:~待|刻~|轻~。 叶子掌状分裂,【部】bù①部分; 【擦音】 cāyīn名口腔通路缩小,③〈方〉形很可观; 【兵饷】bīnɡxiǎnɡ名军饷。【步步为营】bùbùwéiyínɡ军队前进一步就设下一道营垒,[英 pence] 不合适:新换的工具,放起来响声连续不断:一挂~|放~。②动用叉取东西:~鱼。加以批评;【辩护权】biànhùquán名犯罪嫌疑人、被告 人对被控告的内容进行申述、辩解的权利。参看1144页〖人道〗1。如在方程x2+y2=r2中, 【变文】biànwén名唐代兴起的一种说唱文学, 【查究】 chájiū动调查追究:对事故责任人必须认真~,【陈放】chénfànɡ动陈设; 有烟囱通到室外。【擦黑儿】cāhēir〈方〉动天色开始黑下来:赶到家 时,【称说】chēnɡshuō动说话的时候叫出事物的名字:他~着这些产品, 两腿夹水,【拨款】bōkuǎn①(-∥-)动(政府或上级)拨给款项:拨 了一笔款|~10万元。【草签】2cǎoqiān动缔约

中考数学专题之开放性问题解析及练习和答案

中考数学专题之开放性问题解析及练习和答案

中考数学专题之开放性问题解析及练习和答案开放性试题是相对于条件和结论明确的封闭题而言的,是能引起同学们产生联想,并会自然而然地往深处想的一种数学问题.简单来说就是答案不唯一,解题的方向不确定,条件(或结论)不止一种情况的试题.解答这类题目时,需要对问题全方位、多层次、多角度思考审视,尽量找到解决问题的方法.根据开放题的特点主要有如下三种题型:(1)条件开放型;(2)结论开放型;(3)综合开放型.题型之一 条件开放型例1 (2014·巴中)如图,在四边形ABCD 中,点H 是边BC 的中点,作射线AH ,在线段AH 及其延长线上分别取点E ,F ,连接BE ,CF .(1)请你添加一个条件,使得△BEH ≌△CFH ,你添加的条件是 ,并证明. (2)在问题(1)中,当BH 与EH 满足什么关系时,四边形BFCE 是矩形,请说明理由.【思路点拨】(1)根据已知条件和图形可知,两个三角形有一组边和一组角相等,因此根据全等三角形的判定方法添加一个条件,然后加以证明即可;(2)由(1)中三角形的全等,易得四边形BFCE 是平行四边形,然后根据矩形的判定方法,得出EH 与BH 应满足的条件.【解答】(1)添加条件:答案不唯一,如:BE ∥CF 或EH =FH 或∠EBH =∠FCH 或∠BEH =∠CFH 等. 选择EH =FH ,证明如下:证明:∵点H 是边BC 的中点,∴BH =CH . 在△BEH 和△CFH 中,,,BH CH EHB FHC EH FH =⎧⎪∠=∠⎨⎪=⎩,∴△BEH ≌△CFH (SAS ).(2)如图,当BH =EH 时,四边形BFCE 是矩形.理由如下:∵BH =CH ,EH =FH ,∴四边形BFCE 是平行四边形. 又∵BH =EH ,∴EF =B C. ∴四边形BFCE 是矩形.方法归纳:解这种类型的开放性问题的一般思路是:(1)由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻.(2)添加的条件,使证明过程越简单越好,且不可自己难为自己.1.(2014·湘潭)如图,直线a 、b 被直线c 所截,若满足 ,则a 、b 平行.2.(2014·内江)如图,在四边形ABCD 中,对角线AC 、BD 交于点O ,AD ∥BC ,请添加一个条件: ,使四边形ABCD 为平行四边形(不添加任何辅助线).3.(2013·六盘水)如图,添加一个条件: ,使△ADE ∽△AC B.(写出一个即可)4.(2014·娄底)先化简241193x x x ⎛⎫⎪⎝-÷--⎭-,再从不等式2x -3<7的正整数解中选一个使原式有意义的数代入求值.5.(2013·邵阳)如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,请添加一个条件,使得四边形ABCD 为矩形,并说明理由.题型之二结论开放型例2 (2013·西安模拟)按图所示的流程,输入一个数据x,根据y与x的关系式输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大.(1)若y与x的关系是y=x+p(100-x),请说明:当p=12时,这种变换满足上述两个要求;(2)若按关系式y=a(x-h)2+k(a>0)将数据进行变换,请写出一个满足上述要求的这种关系式.(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)【思路点拨】(1)要验证y=x+12(100-x)是否满足题中的两个要求,就是①看y是否随x增大而增大;②看当20≤x≤100时,y的值是否满足60≤y≤100;(2)由于规定了a>0,要使抛物线y=a(x-h)2+k满足题中条件,必经过(20,60),(100,100)两点,且这两点在对称轴的右边,因此其中满足条件的抛物线可以是以(20,60)为顶点,且经过点(100,100).故该解析式不难求出.【解答】(1)当p=12时,y=x+12(100-x).即y=12x+50.∴y随着x的增大而增大,即p=12时,满足条件(Ⅱ);又当20≤x≤100时,12×20+50≤y≤12×100+50.即60≤y≤100.即满足条件(Ⅰ).综上可知,当p=12时,这种变换满足要求.(2)由题意可知,只要满足:①h≤20;②若x=20,100时,y的对应值m,n能落在60~100之间,则这样的关系式都符合要求.如取h=20,y=a(x-20)2+k.∵a>0,∴当20≤x≤100时,y随着x的增大而增大,令x=20,y=60,得k=60.令x=100,y=100,得a×802+k=100.则a=1 160.∴y=1160(x-20)2+60.方法归纳:所谓结论性开放题就是给出问题的条件,让解题者根据条件寻找相应的结论,且符合条件的结论往往呈现多样化,这类问题就是结论开放型问题.其解题思路是:从已知条件出发,沿着不同方向、不同层次进行观察、分析、验证得到相应的结论.1.(2014·滨州)写出一个运算结果是a6的算式.2.(2013·赤峰)请你写出一个大于0而小于1的无理数.3.(2014·邵阳)如图,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.4.(2013·内蒙古)存在两个变量x与y,y是x的函数,该函数同时满足两个条件:①图象经过(1,1)点;②当x>0时,y随x的增大而减小,请各写出一个满足条件的一次函数、反比例函数和二次函数的解析式.5.(2014·台州)为了估计鱼塘中成品鱼(个体质量在0.5 kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼.称得它们的质量如下表:然后做上记号再放回水库中,过几天又捕捞了100条成品鱼,发现其中2条带有记号.(1)请根据表中数据补全下面的直方图(各组中数据包括左端点不包括右端点).(2)根据图中数据分组.估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内? (4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1 kg ).题型之三 综合开放型例3 (2013·绍兴有改动)看图说故事.请你编写一个故事,使故事情境中出现的一对变量x ,y 满足图示的函数关系,要求: (1)指出变量x 和y 的含义;(2)利用图中的数据和变化规律提出两个问题,并解答这两个问题.【思路点拨】根据情景说明函数关系,注意只有两个变量,涉及其他的量必须是常量.提出问题时要紧扣图象和(1)中实际意义来提出.【解答】(1)本题答案不唯一,如下列解法:某市出租车计费方法是当载客行驶里程为x (千米),则车费为y (元).该函数图象就是表示y 随x 的变化过程. (2)①出租车的起步价是多少元?当x >3时,求y 关于x 的函数关系式; ②若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程. 解:①由图象得:出租车的起步价是8元. 设当x >3时,y 与x 的函数关系式为y =kx +b , 由函数图象,得83,125.k b k b =+⎧⎨=+⎩解得2,2.k b =⎧⎨=⎩ 故y 与x 的函数关系式为:y =2x +2. ②当y =32时,32=2x +2.解得x =15. 答:这位乘客乘车的里程是15千米.方法归纳:这是一道自编自解的综合开放型的问题,解题时要认真分析已给出的条件,经过适当的尝试,符合要求的答案定会产生.1.看图说故事.请你编写一个故事,使故事情境中出现的一对变量x、y满足图示的函数关系,要求:(1)指出变量x和y的含义;(2)利用图中的数据说明这对变量变化过程的实际意义,其中必须涉及“速度”这个量.2.A,B两地间的距离为15千米,甲从A地出发步行前往B地,20分钟后,乙从B地出发骑车前往A地,且乙骑车比甲步行每小时多走10千米.乙到达A地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B 地.请你就“甲从A地到B地步行所用时间”或“甲步行的速度”提出一个用分式方程解决的问题,并写出解题过程.3.如图是一个反比例函数图象的一部分,点A(1,10),B(10,1)是它的两个端点.(1)求此函数的解析式,并写出自变量x的取值范围;(2)请你举出一个能用本题的函数关系描述的生活实例.参考答案题型之一 条件开放型1.答案不唯一,如∠1=∠22.(答案不唯一)AD =BC (或AB ∥DC )3.∠ADE =∠C (答案不唯一)4.原式=()()431333x x x x x ---÷+--=()()43·334x x x x x --+--=13x +. 解不等式2x -3<7得x <5. 取x =1时,原式=113+=14. 提示:本题最后答案不唯一,x 不能取±3,4.5.本题答案不唯一,如:∠B =90°或∠BAC +∠BCA =90°,或OB =OA =OC 或AB 2+BC 2=AC 2等. 以∠B =90°为例说明.理由: ∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形. 又∵∠B =90°,∴□ABCD 为矩形.题型之二 结论开放型1.答案不唯一,如:2a 6-a 6,a 2×a 4,(a 2)3,a 8÷a 2(a ≠0)2.答案不唯一,如:2,3,4π3.(1)△ABE ≌△CDF ,△ABC ≌△CD A. (2)∵AF =CE ,∴AE =CF . ∵AB ∥CD ,∴∠BAE =∠DCF . 又∵∠ABE =∠CDF ,∴△ABE ≌△CDF .4.根据题意,函数可以是一次函数,反比例函数或二次函数.例如: ① 此函数的解析式为y =kx(k >0), ∵此函数经过点(1,1),∴k =1. ∴此函数可以为:y =1x; ②设此函数的解析式为y =kx +b (k <0), ∵此函数经过点(1,1),∴k +b =1,k <0. ∴此函数可以为:y =-x +2,y =-2x +3,…; ③设此函数的解析式为y=a(x-m)2+n(a<0,m≤0),∵此函数经过点(1,1),∴a(1-m)2+n=1(a<0,m≤0).∴此函数可以为:y=-x2+2,y=-2x2+3,y=-(x+1)2+5,….5.(1)如图所示.(2)其质量落在0.5 kg~0.8 kg范围内的可能性最大;(3)质量落在0.8~1.1 kg范围内;(4)方法一:用去尾平均数估计:去尾平均数x=0.680.715 1.018 1.25 1.6147⨯+⨯+⨯+⨯+⨯≈0.87(kg).50×50×0.87=2 175(kg).水库中成品鱼的总质量约为2 175 kg.方法二:平均数x=(0.5×1+0.6×8+0.7×15+1.0×18+1.2×5+1.6×1+1.9×2)×150=0.904(kg).50×50×0.904=2 260(kg).水库中成品鱼的总质量约为2 260 kg.方法三:利用组中值计算平均数:x=0.65240.9518 1.255 1.551 1.85250⨯+⨯+⨯+⨯+⨯=0.884(kg).50×50×0.884=2 210(kg).水库中成品鱼的总质量约为2 210 kg.方法四:用众数(中位数)估计水库中成品鱼的总质量:50×50×1.0=2 500(kg).水库中成品鱼的总质量约为2 500 kg.题型之三综合开放型1.答案不唯一,如:(1)该函数图象表示小明开车离出发地的路程y(单位:km)与他所用的时间x(单位:min)的关系;(2)小明以0.4 km/min的速度匀速开了5 min,在原地休息了6 min,然后以0.5 km/min的速度匀速开车回出发地.2.答案不唯一,如:甲从A地到B地步行所用时间是多久?设甲从A地到B地步行所用时间为x小时,由题意得301x-=15x+10.化简得2x2-5x-3=0,解得x1=3,x2=-1 2 .经检验知x=3符合题意,∴x=3.∴甲从A地到B地步行所用时间为3小时.3.(1)设y =k x, ∵A (1,10)在图象上,∴10=1k.即k =10. ∴y =10x(1≤x ≤10). (2)答案不唯一.例如:小明家离县城10 km ,某天小明骑自行车以x km /h 的速度去县城,那么小明从家去县城所需的时间y =10x(h ).。

中考数学专题复习-开放性问题一新课标

中考数学专题复习-开放性问题一新课标

中考数学专题复习-开放性问题一(一)条件开放题【简要分析】条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求【典型考题例析】例1:已知反比例函数2k y x-=其图象在第一、三象限内,则k 值可为 .(写出满足条件的一个k 的值即可)(20XX 年江苏苏州市中考题目)分析与解答:收反比例函数的图象在每一、三象限可知k-2>0,即k>2.因此所取k 值只要满足k>2都可以,比如k 取3、4、5…都题意的.例2:如图2-1-1,△ABC 内接于⊙O ,D 是AB 上一点,E 是BC 的延长线上一点,AE 交⊙O 于F ,为使△ADB ∽△ACE,应补充的一个条件是 .(20XX年湖南株州市中考题目)分析与解答:要使△ADB ∽△ACE ,只要找到这两个三角形有两个角对应相等或对应成比例有夹角相等或三边对应成比例即可.本题中,从角方面考虑,观察畋形可知∠ACE=∠CAE ,于是,只找另外一对对应角相等就行了,因此,要补充的条件可填∠DAB=∠CAE 或∠ABD=∠E ;同时,根据同圆中圆周角与弧之间的∠DAB=∠CAE 又可转化为弧BD CF =,因此补充的条件又可以填弧BD CF =;从边考虑,由于已有条件∠ADB=∠AC 成立,如果它们的夹角边对应成比例同样可以得出△ADB ∽△ACE ,于是补充的条件又可以填AD BD AD AC AD CE AC BD AC CE BD CE ==??或或等. 例3:如图2-1-2,四边形ABCD 内接于⊙O ,AD=AB ,E 为CB 延长线BM 上 一点,当E 点在BM 上运动到某一位置满足一定条件时,就在有CD BE DA AB ∙=∙成立,问该结论成立的条件是什么?请注明条件并给予证明.(广西柳州市中考题)分析与解答:我们通过逆向分析来探结论成立的条件,假设AB DA BE CD ??成立,则有AB :BE=CD :DA ,又∠ABE=∠ADC (圆内接四边形的外角等于内对角),连结AC ,故有△ABE ∽△CDA .因此只需探索△ABE ∽△CDA 的条件即可,当∠AEB=∠CAD 或∠EAB=∠ECA 或∠EAB=∠ACD 或EA 与⊙O 相切时,都有△ABE ∽△CDA .下面以“EA 与⊙O 相切”为条件给出证明.∵EA 与⊙O 相切,∴∠EAB=∠ECA.又∠ECA=∠DCA. ∴∠EAB=∠DCA.又∠ABE=∠D. ∴△ABE ∽△CDA. ∴,.AB CD AB DA BE CD BE DA =??即【提高训练1】1. 如图2-1-3,AB 是⊙O 的直径.弦CD 与直径AB 相交于点E. 补充一个条件 使图2-1-12. CE=DF .(只要求填写一个你认为合适的条件)(20XX 年四川内江市中考题)3. 如图2-1-4在△ABC 是AD ⊥BC 于D ,再添加一个条件,就可以确定△ABD ≌△ACD ,这条件可以是 .(20XX 年黑龙江宁安市面上中考题)4. 如图2-1-5欲使△ABC ∽△ACD ,应补充的一个条件是 .(20XX 年山西省中考题目).5. 若整式241x Q ++是一个完全平方式,请你写一个满足条件的单项式Q ; .6. 如图2-1-6半圆O 这△ABC 的外接圆,AC 为直径, D 这弧BC 上的一动点,P 在CB 的延长线上,且有∠BAP=∠BDA .(1)求证:AP 是半圆O 的切线.(2)当期限他条件不变时,问添加一个什么条件后有2BD BE BC =?成立?(20XX 年湖北省荆州市中考题改编).7. 如图2-1-7,已知AB 是⊙O 的直径,BC 是⊙O 的弦,⊙O 的割线PDE 垂直AB 于点F ,交BC 于点G ,连结PC ,∠BAC=∠BCP ,求解下列问题:(1)当点C 在劣弧AD 上运动时,应再具备什么条件可使结论2BG BF BO =?成立?(2005处湖南省常德市中考题改编).【提高训练1答案】 1.“AC AD =”或“BC BD =”或“AB CD ⊥” 2.“BD=CD ”或“∠BAD=∠CAD ”或“∠B=∠C ”或“AB=AC ” 3.“∠ACD=∠B ”或“∠ADC=∠ACB ”或“AD :AC=AC :AB ” 4.“4x -”或“4x ”或“1-”或“24x -” 5.(1)略 (2)“A B D B =”或“∠BAE=∠BDA ”或“AB=BD ” 6.(1)略 (2)“BG=CG ”或“OG ⊥BC ”或“OG ∥AC ”(二)结论开放题【简要分析】给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.【典型考题例析】例1:一条抛物线的对称轴是x=1逐步形成与x 轴有唯一的公共点,并且开口向下,则这条抛物线的解析式是 .(任写一个)(20XX 年甘肃省兰州市中考题)分析与解答:根据已知,我们可设这条抛物线的解析式这2(1)y a x k =-+, 22y ax ax a k =-++即.又由题意有20,(2)4()0a a a a k <--+=.解得图2-1-7图2-1-6A 图2-1-5D C B A 图2-1-4D C BA 图2-1-30,0a k <=.于是年求抛物线的解析式2(1)y a x =-只要满期足0a <就行.答安不唯一,如2242y x x =-+-等.例2:如图2-1-8,AB 是⊙O 的直径, ⊙O 交BC 于D,过D 作⊙O 的切线DE 交AC 于E,且DE ⊥AC,由上述条件,你能推出的正确结论有: .(2005处甘肃省兰州市中考题).分析与解答:本题所给的图形中,有直径,有切线,我们可联通想到直径所对的圆周角是直角,切线的性质,从以下几方面寻找答案,(1)由AB是⊙O 的直径,可得"∠ADB=900",同时,根据勾股定理有"222AD BD AB +=".(2)连结OD.∵DE是⊙O 的切线,∴OD⊥DE,又DE⊥AC,∴OD∥AC,又∵O是AB的中点,∴有"D是BC的中点"成立.(3)在Rt △ADC中,DE⊥AC,∴有"△ADC ∽△AED ∽△DEC ”、“2AD AE AC =?”、“2DC CE CA =?”、“2DE E CE =?”等结论成立.(4)∵DE是⊙O 的切线,由弦切角定理有“∠ADE=∠B”成立.例3:如图2-1-9,在梯形ABCD 中,AD ∥BC ,AB=DC ,P 为梯形ABCD 外一点,PA 、PD 分别交线段BC 于点E 、F .且PA=PD .(1)写出图三对你认为全等的三角形(不再添加畏助线),(2)选择你在(1)中写出的全等三角形国的任意一对进行证明.(20XX 年河南省中考题目). 分析与解答:由已知条件可知,本题所给的基本图是等腰梯形,联想到等到腰梯形的性质有:①上下两认底平行(可得内错角相等、同位角相等);②同一底上的两个角相等(角相等);③两腰相等(边相等).另外,已知条件中还有PA=PD (边相等).根据这些角、边之间的关系,我们不难得到答案.⑴图中的全等三角形有:△ABP ≌△DCP ;△ABE ≌△DCF ,△BEP ≌△CFP ;△BFP ≌△CEP 等.⑵下面就△ABP ≌△DCP 给出证明.∵AD ∥BC ,AB=DC ,∴梯形ABCD 这等腰梯形.∴∠BAD=∠CDA ,又∵PA=PD ,∴∠PAD=∠PDA .∴∠BAP=∠CDP .在△ABP 和△DCP 中,∵PA=PD ,∠BAP=∠CDP ,AB=DC , ∴△ABP ≌△DCP .【提高训练2】1.请你写出一个能分解的二次四项式并把它分解因式: .(20XX 年湖北武汉市中考题)2.请选择一组你喜欢的a 、b 、c 的值,使二次函数2(0)y ax bx c a =++?的畋象同时满足下全条件:①开口向下,②当x<2时,y 随x 的增大而增大;当x>2时,y 随x 的增大而减小.这样的二次函数的解析式可以是 .(20XX 年江苏省扬州市中考题).图2-1-9P FE D C B A3.已知抛物线2()1y x m =--+与x 轴的交点为A 、B (B 在A 的右边—),与y 轴的交点为C ,写出当m=1时与抛物线有关的三个正确结论.(20XX 年江本省中考题).4.已知:如图2-1-10,⊙O 内切于四边形ABCD ,AB=AD ,连结AC 、BD .由这些条件能推出哪些结论?(至少写出3条) 5.如图2-1-11,△ABC 中,AB=AC ,过点A 作GE ∥BC ,角平分线BD 、CF 相交于点H ,它们的延长线分别交GE 于点E 、G .试在图中找出3对全等三角形,并对其中一对全等三角形给出证明.(20XX 年浙江省宁波市中考题) 【提高训练2答案】1.答案不唯一,如“2229(3)(3)x xy y x y x y -+-=-+--”等2.确定的解析式为2(2)y a x k =-+,且0a <即可,例如选取23(2)4y x =--+,即23128y x x =-+-就是符合要求的答案3.正确正确有:①抛物线的解析式为:22y x x =-+;②开口向下;③顶点坐标为(1,1);④抛物线经过原点;⑤与x 轴的的另一个交点坐标为(2,0);⑥对称轴为直线1x =4.正确正确有:①∠ABD=∠ADB ;②AB+CD=AD+BC ;③CD=BC ;④∠CBD=∠CDB ;⑤△ABC ≌△ADC ;⑥∠ABC=∠ADC ;⑦∠BAC=∠DAC ;⑧∠ACB=∠ACD5.答案不唯一,如△BCF ≌△CBD ,△BHF ≌△CHD ,△BDA ≌△CFA ,△BAE ≌△CAG ,△AGF ≌△AED 等;证明略(三)组合开放题【简要分析】组合开放型试题的的条件和结论都不确定,需要考生认定条件和结论然后组成一个新命题,并加以证明或判断.这种新颖的组合型开放题,已使几何听论证转向发现、猜想与探究.成为中考命题的热点.【典型考题例析】例1:已知:如图2-1-12,AB 为半圆O 的直径,C 、D 是半圆上的两点,E 是AB 上除O 外的一点,AC 与DE 交于点F .①AD DC =;②DE ⊥AB ;③AF=DF .写出以①、②、③中的任意两个这条件,推出第三个(结论)的一个正确命题.并加以证明.(20XX 年四川省绵旭市中考题)分析与解答:对于这一类条件与结论都开放的组合型开放题, 我们先要将它的已知条件进行配对,逐一探索哪能组条件与结论能组成正确的命题,然后选择一组进行证明.能够推出的正确命题有“若①、②,则③;①若②、③则①;若②、③则①.下面以若①、②则③这命题证明如下: 连结AD 、BD .∵A D D C =,∴∠DAC=∠B ,又AB 为,DE ⊥AB ,∴∠ADB=∠AED=900.∴∠ADE=∠B .∴ADE=DAC .∴AF=DF .说明:本题立足于常见的基本图形,把传统的几何证明题改告造成一个要D 图2-1-11GH F EDC BA 图2-1-12B A 图2-1-134321ED CB A求学生发现、猜想、证明的组合型开放题,符合数学事实的发现过程.例2:如图2-1-13, 四边形ABCD 中,点E 在边CD 上,连结AE 、△,给出下列五个等式:①AD ∥BC ;②DE=CE ;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB .将其中三个关系式作为题设,国外两个作为结论,构成一个命题.(1)用序号写出一个真命题(书写形式如:如果…… 那么……),并给出证明,(2)用序号再现实性出三个真命题(不要求证明).(3)加分题:其命题不止以上四个,想一想,就能够多写出几个真命题,每多写一个真命题就给我多加1分,最多2 分.(20XX 年黑龙江省宁安市面上中考题)分析与解答:(1)众条件①②③④⑤中选取在个作题设,另外两个作结论,构杨一个真命题,以尝试、探索可得:如果①②③,那么④⑤. 如图2-1-14,延长AE 交BC 于的延长线于点F ,∵AD ∥BC ,∴∠1=∠F ,又∵∠AED=∠FEC ,DE=CE .∴△ADE ≌△FCE .∴AD=CF .AE=FE .又∵∠1=∠F ,∠1=∠2,∴∠2=∠F ,∴AB=BF ,∴AB=BC+CF=BC+AD .即⑤成立,又∵AE=FE ,∠2=∠F ,AB=BF .∴△ABE ≌△FBE .∴∠3=∠4.即④成立.(2)如果①②④,那么③⑤;如果①③④,那么②⑤;如果①③⑤,那么②④.(3)不唯一,如果①②⑤,那么③④;如果②④⑤,那么①③等.【提高训练3】1.已知:如图2-1-15,点C 、D 在线段AB 上,PC=PD ,请你添加一个条件,使图中存在全等三角形,并给予证明.所添加的条件为 .你得到的一对全等三角形是△ ≌△ .(20XX 年福建省神州市中考题) 2.如图2-1-16,在△ABC 和△DEF 中,B 、E 、C 、F 在同一条直线上,下面有四个条伯,请你从其中选三个作为题目设,余下的一检点作为结论,写一个真命题,并驾证明书.①AB=DE ;②AC=DF ;③∠ABC=DEF ;④BE=CF .(20XX年江苏省扬州市中考题) 3.如畋2-1-17,在△AFD 和△CEB 中,点A 、E 、F 、C 在同一条直线上,有下面四个结断:①AD=CB ;②AE=CF ;③∠B=∠D ;④AD ∥BC .请用其中三个作为条件,余下的一个作为结论编一道数学题,并写出解答过程.(20XX 年广西桂林市中考题)【提高训练3答案】1.所添加的条件为:∠A=∠B (或PA=PB 或AC=BD 或AD=BC 或∠APC=∠BPD 或∠APD=∠BPC 等) 全等三角形为△PAC ≌△PBD (或△APD ≌△BPC ),证明略.2.答案不唯一,如“已知AB=DE ,AC=DF ,BE=CF ,求证:∠ABC=∠DEF ”等,证明略.3.答案不唯一,如“已知AE=CF ,∠B=∠D ,AD ∥BC ,求证:AD=BC ” 等,证明略 F 图2-1-144321E D C B A 图2-1-15图2-1-16F E D C B A 图2-1-17E F D C BA。

初三总复习:开放性问题

初三总复习:开放性问题
( 第二轮专题训练 )
开放性问题
数学开放题是指那些条件不完整,结论不确定,解 法不限制的数学问题。 它的显著特点:正确答案不唯一。
题型: 条件开放 结论开放
策略开放
综合开放
一、条件开放型
例1 请你先化简下式,再选取一个你喜爱的数代入 求值。
x3 x2 1 x2 2 x 1 x x
2x 1
x 1,1,0
例2 如图,AB=DB,∠1=∠2,请添加一个条 件: ,使得ΔABC≌ΔDBE, 并证明你的结论。 给出问题的结论,让解题者 BC=BE 或∠A=∠D或∠C=∠E 分析探索使结论成立应具备的 条件,而满足结论的条件往往 能添加条件:DE=AC吗? 不是唯一的,这样的问题是条 件开放性问题。
Δ AEC∽Δ CFB, EC=FC,AE=DF,AE+BF=AB, EC2=AE*BF,FC2=FD*FB,
AC2/BC2=AE/BF
三、策略开放型
例1 用三种不同方法把平行四边形面积四等分(在所 给的图形中画出你的设计方案,画图工具不限)
方法开放
图形开放
例5 见练习题解答题的第1题;
各班级分数段人数分布情况
例2 如图,已知⊙O内切于四边形ABCD,AB=AD, 连结AC,BD,由这些条件你能推出哪些结 论? 。 (写出三个即可) ∠ABD= ∠ADB, ∠ BCA=∠ACD ∠BAC= ∠ CAD △ABC≌ △ACD BC=CD … AC⊥BD, AB+CD=BC+AD
O B C D A
如图,直线MN与⊙O相切于点C,AB是⊙O的直径, 连结AC、OC、BC,AE⊥MN于E,BF⊥MN于F, BF与⊙O交于点D。根据图中所给出的已知条件及 线段,请写出一个正确结论,并加以证明。

中考数学专题知识突破专题三开放型问题(含详细答案)

中考数学专题知识突破专题三开放型问题(含详细答案)

专题三开放型问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试卷已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、实验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。

三、中考考点精讲考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1(盐城)写出一个过点(0,3),且函数值y随自变量x的增大而减小的一次函数关系式:.(填上一个答案即可)思路分析:首先可以用待定系数法设此一次函数关系式是:y=kx+b(k≠0).根据已知条件确定k,b应满足的关系式,再根据条件进行分析即可.解:设此一次函数关系式是:y=kx+b.把x=0,y=3代入得:b=3,又根据y随x的增大而减小,知:k<0.故此题只要给定k一个负数,代入解出b值即可.如y=-x+3.(答案不唯一)故答案是:y=-x+3.点评:本题考查了一次函数的性质.掌握待定系数法,首先根据已知条件确定k,b应满足的关系式,再根据条件进行分析即可.对应训练1.(达州)已知(x1,y1),(x2,y2)为反比例函数kyx图象上的点,当x1<x2<0时,y1<y2,则k的一个值可为.(只需写出符合条件的一个k的值)1.-1考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2(常德)请写一个图象在第二、四象限的反比例函数解读式:.思路分析:根据反比例函数的性质可得k<0,写一个k<0的反比例函数即可.解:∵图象在第二、四象限,∴y=-3x,故答案为:y=-3x.点评:此题主要考查了反比例函数y=kx(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.对应训练2.(山西)四川雅安发生地震后,某校九(1)班学生开展献爱心活动,积极向灾区捐款.如图是该班同学捐款的条形统计图.写出一条你从图中所获得的信息:.(只要与统计图中所提供的信息相符即可得分)2.该班有50人参与了献爱心活动(答案不唯一)考点三:条件和结论都开放的问题:此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,因此必须认真观察与思考,将已知的信息集中分析,挖掘问题成立的条件或特定条件下的结论,多方面、多角度、多层次探索条件和结论,并进行证明或判断.例3(广东)如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.思路分析:(1)根据S1=1 2S矩形BDEF,S2+S3=12S矩形BDEF,即可得出答案.(2)根据矩形的性质,结合图形可得:△BCD∽△CFB∽△DEC,选择一对进行证明即可.解答:(1)解:∵S1=12BD×ED,S矩形BDEF=BD×ED,∴S1=12S矩形BDEF,∴S 2+S 3=12S 矩形BDEF , ∴S 1=S 2+S 3.(2)答:△BCD ∽△CFB ∽△DEC .证明△BCD ∽△DEC ;证明:∵∠EDC+∠BDC=90°,∠CBD+∠BDC=90°,∴∠EDC=∠CBD ,又∵∠BCD=∠DEC=90°,∴△BCD ∽△DEC .点评:本题考查了相似三角形的判定,注意掌握相似三角形的判定定理,最经常用的就是两角法,此题难度一般.对应训练3.(荆州)如图,△ABC 与△CDE 均是等腰直角三角形,∠ACB=∠DCE=90°,D 在AB 上,连结BE .请找出一对全等三角形,并说明理由.3.解:△ACD ≌△BCE .证明如下∵∠ACB=∠DCE=90°,∴∠AC B-∠DCB=∠DCE-∠DCB ,即∠ACD=∠BCE .∵△ABC 与△CDE 均是等腰直角三角形,∠ACB=∠DCE=90°,∴CA=CB ,CD=CE ,在△ACD 和△BCE 中,CE CD ACD BCE CA CB =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE .四、中考真题演练一、填空题1.(徐州)请写出一个是中心对称图形的几何图形的名称: .1.平行四边形2.(钦州)请写出一个图形经过一、三象限的正比例函数的解读式.2.y=x (答案不唯一).3.(连云港)若正比例函数y=kx (k 为常数,且k≠0)的函数值y 随着x 的增大而减小,则k 的值可以是 .(写出一个即可)3.-24.(连云港)若正比例函数y=kx (k 为常数,且k≠0)的函数值y 随着x 的增大而减小,则k 的值可以是 .(写出一个即可)4.-25.(北京)请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解读式,y=.5.x2+1(答案不唯一)6.(莆田)如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件,使△ABC≌△DEF.6.AB=DE7.(绥化)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD.7.AE=CB8.(义乌市)如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是.8.AC=AB9.(齐齐哈尔)如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是(填一个即可)9.∠C=∠BAD10.(邵阳)如图所示,弦AB、CD相交于点O,连结AD、BC,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是.10.∠A与∠C(答案不唯一)11.(吉林)如图,AB是⊙O的弦,OC⊥AB于点C,连接OA、OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是 cm(写出一个符合条件的数值即可)11.612.(昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为.(填出一个正确的即可)12.4s三、解答题13.(杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数kyx(x>0)的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.13.解:(1)①∵AB=BC=CD=DE ,∴∠A=∠BCA ,∠CBD=∠BDC ,∠ECD=∠CED ,根据三角形的外角性质,∠A+∠BCA=∠CBD ,∠A+∠CDB=∠ECD ,∠A+∠CED=∠EDM ,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B 在反比例函数y=k x 图象上,点B ,C 的横坐标都是3, ∴点B (3,3k ), ∵BC=2,∴点C (3,3k +2), ∵AC ∥x 轴,点D 在AC 上,且横坐标为1,∴A (1,3k +2), ∵点A 也在反比例函数图象上,∴3k +2=k , 解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)了该校部分学生闯红灯的情况,并绘制成如图所示的统计图.请根据图中的信息回答下列问题:(1)本次共调查了多少名学生?(2)如果该校共有1500名学生,请你估计该校经常闯红灯的学生大约有多少人;(3)针对图中反映的信息谈谈你的认识.(不超过30个字)14.解:(1)调查的总人数是:55+30+15=100(人);(2)经常闯红灯的人数是:1500×15100=225(人);(3)学生的交通安全意识不强,还需要进行教育.解直角三角形知能优化训练中考回顾1.(湖北孝感中考)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,则sin A等于()A. 3 5B. 4 5C. 3 4D. 4 32.(浙江金华中考)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A. tanα tanαB. sinα sinαC. sinα sinαD. cosα cosα3(浙江宁波中考)如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C 处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1 200 m,且点H,A,B 在同一水平直线上,则这条江的宽度AB为m.(结果保留根号)-1)4(四川达州中考)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度.用测角仪在A处测得雕塑顶端点C的仰角为30°,再往雕塑方向前进4 m至B处,测得仰角为45°.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值),过点C作CD⊥AB,交AB延长线于点D.设CD=x m.∵∠CBD=45°,∠BDC=90°,∴BD=CD=x m.∵∠A=30°,AD=AB+BD=(4+x)m,∴tan A=αααα ,即 3 3 =α 4+α ,解得x=2+2 3 .答:该雕塑的高度为(2+2 3 )m.5.(湖南衡阳中考)一名徒步爱好者来衡阳旅行,他从宾馆C出发,沿北偏东30°的方向行走2 000 m到达石鼓书院A处,参观后又从A处沿正南方向行走一段距离,到达位于宾馆南偏东45°方向的雁峰公园B处,如图所示.(1)求这台徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆之间的最短距离;(2)若这名徒步爱好者以100 m/min的速度从雁峰公园返回宾馆,那么他在15 min内能否到达宾馆?过点C作CP⊥AB于点P,由题意可得∠A=30°,AC=2000m,则CP= 1 2 AC=1000m.即从石鼓书院走到雁峰公园的途中与宾馆之间的最短距离为1000m.(2)∵在Rt△PBC中,PC=1000m,∠PBC=∠BCP=45°,∴BC= 2 PC=1000 2 m.∵这名徒步爱好者以100m/min的速度从雁峰公园返回宾馆,∴他到达宾馆需要的时间为 1000 2 100 =10 2 <15,∴他在15分钟内能到达宾馆.模拟预测1.tan 60°的值等于()A.1B. 2C. 3D.22.河堤横断面如图,堤高BC=6 m,迎水坡AB的坡比为1∶ 3 ,则AB的长为()A.12 mB.4 3 mC.5 3 mD.6 3 m3.小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB'的位置,测得∠PB'C=α(B'C为水平线),测角仪B'D的高度为1 m,则旗杆PA的高度为()A. 1 1-sinα mB. 1 1+sinα mC. 1 1-cosα mD. 1 1+cosα m4.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sin A= 3 5 ,则DE=.5.如图,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长为13 m,且tan∠BAE= 12 5 ,则河堤的高BE为m.6如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/时,则A,B之间的距离为.(取3 ≈1.7,结果精确到0.1海里).5海里7.如图,小明在家里楼顶上的点A处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60°,在点A处看这栋电梯楼底部点C处的俯角为45°,两栋楼之间的距离为30 m,则电梯楼的高BC为m.(结果精确到0.1 m,参考数据: 2 ≈1.414, 3 ≈1.732).08.某商场为缓解“停车难”问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5 m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小明和小亮谁说得对?请你判断并计算出正确的结果.(结果精确到0.1 m,参考数据:sin 18°≈0.31,cos 18°≈0.95,tan 18°≈0.325)ABD中,∠ABD=90°,∠BAD=18°,BA=10,∵tan∠BAD=αααα ,∴BD=10×tan18°.∴CD=BD-BC=10×tan18°-0.5≈2.8(m).在△ABD中,∠CDE=90°-∠BAD=72°.∵CE⊥ED,∴∠DCE=18°.∴cos∠DCE=αααα.∴CE=CD×cos∠CDE=2.8×cos18°≈2.7(m).∵2.7m<2.8m,且CE⊥AE,∴小亮说得对.因此,小亮说得对,CE为2.7m.第2课时整式及因式分解知能优化训练中考回顾1.(山东枣庄中考)下列计算,正确的是()A.a5+a5=a10B.a3÷a-1=a2C.a·2a2=2a4D.(-a2)3=-a62.(浙江金华中考)计算(-a)3÷a结果正确的是()A.a2B.-a2C.-a3D.-a43.(山东滨州中考)下列运算:①a2·a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A.1B.2C.3D.44(甘肃张掖中考)下列计算结果等于x3的是()A.x6÷x2B.x4-xC.x+x2D.x2·x5.(浙江衢州中考)分解因式:x2-9=.x+3)(x-3)6(四川宜宾中考)分解因式:2a3b-4a2b2+2ab3=.ab(a-b)2模拟预测1.下列运算正确的是()A.3x3-5x3=-2xB.6x3÷2x-2=3xC. 1 3 α 3 2 = 1 9 x6D.-3(2x-4)=-6x-122已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.63.下列各式的变形中,正确的是()A.(-x-y)(-x+y)=x2-y2B. 1 α-x= 1-ααC.x2-4x+3=(x-2)2+1D.x÷(x2+x)= 1 α+14.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底部为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底部未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.4m cmB.4n cmC.2(m+n)cmD.4(m-n)cm5.若3x m+5y2与x3y n的和是单项式,则n m=.6按照下图所示的操作步骤,若输入x的值为2,则输出的值为.7.若(a+1)2+|b-2|=0,化简a(x2y+xy2)-b(x2y-xy2)的结果为.3x2y+xy28先化简,再求值.(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中,x=- 3 .=4x2-9-4x2+4x+x2-4x+4=x2-5,当x=- 3 时,原式=(- 3 )2-5=3-5=-2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
bwin帐号被封
[单选]既可用作保护油路安全,又可用作稳定系统压的液压阀是:A.单向节流阀B.溢流阀C.单向阀D.截止阀 [单选]确诊感染性心内膜炎除血培养多次阳性外,还应有()A.指甲下裂片状出血B.新出现的心脏病理性杂音C.Janeway损害D.Roth斑E.转移性脓肿 [单选,A2型题,A1/A2型题]高热的体温范围为()A.38.1~38.5℃B.38.5~39℃C.39.1~41℃D.41.1~41.5℃E.41.5℃以上 [单选]车辆应当按照超限检测指示标志或者公路管理机构监督检查人员的指挥接受超限检测,不得故意堵塞固定超限检测站点通行车道、强行通过固定超限检测站点或者以其他方式扰乱()秩序,不得采取短途驳载等方式逃避超限检测。A、超限检测B、治超执法C、治超工作 [单选]检测淋巴因子对下列哪项变态反应最有意义()A.Ⅰ型变态反应B.Ⅱ型变态反应C.Ⅲ型变态反应D.Ⅳ型变态反应E.Ⅲ型和Ⅳ型变态反应 [单选]高压供电系统中,计算中基准电压与系统额定电压之比为()倍。A.1.1B.1.2C.1.15D.1.05 [单选]产褥期保健重点不包括以下哪几项()。A.注意产妇情绪变化B.采用孕产妇营养膳食C.注射乙肝疫苗D.指导母乳喂养E.注意卫生 [单选]胎儿电子监测胎心率变化,错误的是()A.周期性FHR与子宫收缩有关B.宫缩后FHR增加15~20次,可能是脐带静脉暂时受压C.FHR指每分钟胎儿心搏次数D.基线胎心率为无宫缩时的FHRE.FHR基线变异消失提示胎儿有一定储备能力 [单选]某施工单位违反国家规定降低工程质量标准,造成6000万元直接经济损失,应当认定为()。A.串通投标罪B.工程重大安全事故罪C.重大责任事故罪D.重大劳动安全事故罪 [单选,A1型题]适合扶正祛邪并用的病证是()A.邪气盛,正气未衰B.正气虚,邪气未盛C.邪正俱盛D.邪气盛,正气已衰E.邪祛正虚 [问答题,简答题]启动或停用引风机时,应注意哪些问题? [单选]一位消费者只消费两种商品,z和y。z对y的边际替代率在任一点(z,y)是y/z。假定收入为B=260元,Pz=2元,Py=3元,消费者消费40单位z商品和60单位y商品。()A、消费者实现了效用最大化B、消费者可以通过增加z商品的消费,减少y商品的消费来增加他的效用C、消费者可以通过增 [单选,A2型题,A1/A2型题]中枢神经系统白血病多见于()A.儿童急性粒细胞白血病B.急性淋巴细胞白血病治疗缓解后C.慢性粒细胞白血病急变期D.慢性淋巴细胞白血病E.以上都不正确 [单选]下列不是酬金制与包干制内容的是()。A.物业服务费用酬金制B.物业服务成本费用酬金制C.物业服务费用包干制D.酬金制和包干制的财务特征 [单选,A2型题,A1/A2型题]患者,女性,30岁,因外伤造成右肱骨中段骨折伴伸腕无力,外固定保守治疗8周,伸腕仍无力。患者进行了I/t曲线测定,证实为部分失神经曲线,其基强度为2.0mA,时值为多少毫安对应的刺激时间()A.2B.8C.6D.4E.3 [填空题]毛泽东在1958年提出了______________和______________相结合的创作思想,是对社会主义文学创作方法的理论概括。 [单选]人居环境建设的基本原则包括()。A.生态原则和经济原则B.技术原则和社会原则C.文化原则D.A+B+CE.A+C [单选]下列哪项不属于高级心肺复苏的措施()A.人工呼吸B.气管插管C.电除颤D.建立静脉通路,维持循环E.药物 [单选]患者男性,65岁,3周前因脑血管意外导致左侧肢体瘫痪。患者神志清楚,说话口齿不清,大小便失禁。护士协助患者更换卧位后,在身体空隙处垫软枕的作用是A.促进局部血液循环B.减少皮肤受摩擦刺激C.降低空隙处所受压强D.降低局部组织所承受的压力E.防止排泄物对局部的直接刺激 [单选]下列各种方法中最常用来普查筛检宫颈癌的是()A.子宫颈刮片细胞学检查B.碘试验C.宫颈锥切术D.阴道镜检查E.宫颈和宫颈管活组织检查 [多选]值班表提醒人们按值班要求值班,它通常用在()。A.值班室B.秘书办公室C.节假日值班办公室D.领导办公室 [填空题]国际单位制规定质量的单位是千克,符号为()。 [多选]金属分类开关设备按主开关与柜体的配合方式可分为()。A.铠装式B.固定式C.间隔式D.移动式 [单选,A2型题,A1/A2型题]一般认为亚急性甲状腺炎的病因与下列哪一项有关()A.细菌B.病毒C.衣原体D.支原体E.以上都不是 [单选]当ECAM控制面板失效时,以下错误的是:()A、CLR(清除)、RCL(重现)、STS(状态)、EMERCANC(紧急取消)、ALL(全部)都失效B、CLR(清除)、RCL(重现)、STS(状态)、EMERCANC(紧急取消)、ALL(全部)仍然有效。C、按压ALL(全部)按钮依次翻看各个系统直到所需页 [单选]某工地实验室做混凝土抗压强度的所有试块尺寸均为100mm×100mm×100mm,经标准养护28d测其抗压强度值,问如何确定其强度等级()。A.必须用标准立方体尺寸150mm&times;150mm&times;150mm重做B.取其所有小试块中的最大强度值C.可乘以尺寸换算系数0.95D.可乘以尺寸换算系数1.05 [单选]上消化道出血是指出血的部位是()A.食管至幽门B.十二指肠以上的消化器官C.屈氏韧带以上的消化器官D.胃以上的消化器官E.食管至空肠 [单选]关于细菌性肝脓肿的处理错误的是()A.非手术治疗适用于多发性肝小脓肿B.大剂量、联合应用抗生素C.经皮肝穿刺脓肿置管引流术适用于多发性肝小脓肿D.全身营养支持治疗E.经皮肝穿刺脓肿置管引流术适合于已液化的单个较大脓肿 [问答题,简答题]给多项式画译码、编码电路。 [单选,B型题]Ⅳ型超敏反应().A.中性粒细胞浸润B.单核-巨噬细胞浸润C.B淋巴细胞浸润D.嗜酸性粒细胞浸润E.Th2型淋巴细胞浸润 [单选]下列法的形式中,由全国人民代表大会及其常务委员会经一定立法程序制定颁布的规范性文件是()。A、宪法B、行政法规C、法律D、行政规章 [单选]站修更换轮对时,同一转向架轮径差不大于()。A、20mmB、25mmC、30mmD、40mm [单选]由婴儿到成人,上颌骨宽度增长约为()。A.1.0倍B.1.6倍C.3.2倍D.0.8倍E.2.0倍 [单选]釉的抗张强度一般为()。A、110~350MpaB、400~700MpaC、5200~7500MpaD、10~1000Mpa [单选,A2型题,A1/A2型题]胸部触诊时语音震颤增强常见于()。A.大叶性肺炎实变期B.胸壁皮下气肿C.肺气肿D.大量胸腔积液E.气胸 [单选]关于尿道恶性肿瘤的临床特点,正确的是()A.发病年龄50~60岁,男性发病率低于女性B.长期慢性炎症刺激是重要的诱因C.病理分为覃状型、环状狭窄型和溃疡型三型D.进行性排尿困难和尿道滴血是两大主要症状E.以上都是 [填空题]流进节点A的电流分别为I1,I2,I3,根据(),流出节点A的电流为() [单选,A2型题,A1/A2型题]()是医务人员先天具有或后天所习得的引发医学道德行为的心理体验。A.医德认识B.医德情感C.医德意志D.医德品质 [单选]目前我国治疗普通型流脑首选的药物是()A.青霉素B.氯霉素C.头孢类抗生素D.磺胺类E.环丙沙星 [名词解释]镜像阶段
相关文档
最新文档