(完整版)大学物理热学习题附答案
历届大学物理热学试题解答

r R2时, T T2
T1
Q
2k
ln
R1
C
T2
Q
2k
ln
R2
C
解得:
Q
2k(T1
T2
)
/
ln
R2 R1
C
T1
(T2
T2
)
ln ln
R1 R2
R1
所以r处的温度为:
ln R1
T
T1
(T1
T2 ) ln
r R2
R1
13.隔板C把绝热材料包裹的容器分为A、B两室。如图所示, A室内充以真实气体,B室为真空。现把C打开,A室气体充 满整个容器,在此过程中,内能应___不__变_____。
(a)由范德瓦尔斯方程
(
p
a V2
)(V
b)
RT
p
RT V b
a V2
所以对外界作的功为
A
V2 pdV
V1
V2 RT dV V1 V b
V2 V1
a V2
dV
RT lnV2 b a( 1 1 ) V1 b V2 V1
(时b)气d一E体摩k 的尔0内气。压体强分子p热i 运Va动2 。的气动体能膨为胀E时k 2pi iR作T 负。功作,等气温体膨分胀
解:x过程曲线向下平移p0后,恰好与温 度为T0的等温曲线重合,由此可给出
( p p0 )V vRT0
p p0
x过程
状态方程为 pV vRT
x过程的过程方程为
大学物理热力学基础习题与解答

1T2 T1
[D]
p a
b b
T1
d c c T2 V
填空题
1. 要使一热力学系统的内能增加,可以通过 做功 或 传热 两种方式,或者两种
方式兼用来完成。理想气体的状态发生变 化时,其内能的增量只决定于
温度的变化 ,而与 过程 无关。
2 .一气缸内储有 10 mol 单原子分子理想气体,
在压缩过程中,外力做功 209 J,气体温度升高 1
大学物理
热力学基础
选择题
1. 有两个相同的容器,容积不变,一个盛有氦气, 另一个盛有氢气(均可看成刚性分子),它们的压 强和温度都相等。现将5J 的热量传给氢气,使氢
气温度升高,如果使氦气也升高同样的温度,则 应向氦气传递的热量是
(A) 6 J (C) 3 J
(B) 5 J (D) 2 J
[C]
ΔQ M mCvΔT
3. 对于室温下的双原子分子理想气体,在等压
膨胀的情况下,系统对外所作的功与从外
界吸收的热量之比W / Q 等于:
(A)1 / 3
(B)1 / 4
(C)2 / 5
(D)2 / 7
(D )
WpΔVmRΔT M
QΔEWm5ΔTmRΔT7mRΔT
M2 M
2M
4.热力学第一定律表明: (A)系统对外所作的功小于吸收的热量; (B)系统内能的增量小于吸收的热量; (C)热机的效率小于1; (D)第一类永动机是不可能实现的。
(P1,V1)开始,经过一个等容过程达到压强为 P1/4 的 b 态,再经过一个等压过程达到状态 c , 最后经过等温过程而完成一个循环。求该循环
过程中系统对外做的功 A 和吸收的热量 Q .
解:设状态 c 的体积为V2 , 由于a , c 两状态的温度相同
(完整版)大学物理热学习题附答案

一、选择题1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B) m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 03.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w都相等 (B) ε相等,w 不相等 (C) w 相等,ε不相等 (D) ε和w 都不相等4.在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 35.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 06.两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同7.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强8.关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。
大学物理-热学习题课和答案解析

2V
D)n 相同,(EK / V )相同,ρ相同。 nm 不同
8、给定理想气体,从标准状态( P0 V0 T0 )开始作绝热膨胀,
体积增大到3倍,膨胀后温度T, 压强P与标准状态时T0 、
P0的关系为:
√ A)T
(1) 3
T0
P
(1) 3
1
P0
B)T
(
1 3
)
1T0
P
(1) 3
P0
C)T
( 1 ) 3
了。则 根据热力学定律可以断定:
① 理想气体系统在此过程中吸了热。
② 在此过程中外界对理想气体系统作了功。 ③ 理想气体系统的内能增加了。 ④ 理想气体系统既从外界吸了热,又对外作了功。
√ A) ① ③ B) ② ③ C) ③ D) ③ ④ E) ④
7、两瓶不同种类的理想气体,它们的温度和压强都相同,但
i RT
2 ( E )
(Q) p Cp,mRT
(Q )T
RT
ln
V2 V1
( A)
Q0
E CV ,mT
pV
RT
CV ,m
iR 2
CP,m
CV ,m
R
i2 2
R
循环过程:
热机效率
卡诺热机效率
A Q吸 Q放 1 Q放
Q吸
Q吸
Q吸
卡 诺
A Q吸
1 Q放 Q吸
1 T2 T1
卡诺致冷系数
2kT m
2RT M mol
平均速率:
v 8kT 8RT
m
M mol
4、能量均分原理: 每一个自由度的平均动能为: 一个分子的总平均动能为: mol 理想气体的内能:
(完整版)大学物理热学习题附答案

一、选择题1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B) m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 03.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w都相等 (B) ε相等,w 不相等 (C) w 相等,ε不相等 (D) ε和w 都不相等4.在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 35.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 06.两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同7.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强8.关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。
大学物理热学部分习题

热学部分大作业选择题:1.如图,一定量的理想气体,由平衡状态A变到平衡状态B (p A= p B),则无论经过的是什么过程,系统必然对外作正功.(B) 内能增加.(A)(C) 从外界吸热.(D) 向外界放热.2.设有以下一些过程:(1) 两种不同气体在等温下互相混合.(2) 理想气体在定体下降温.(3) 液体在等温下汽化.(4) 理想气体在等温下压缩.(5) 理想气体绝热自由膨胀.在这些过程中,使系统的熵增加的过程是:(A) (1)、(2)、(3). (B) (2)、(3)、(4).(C) (3)、(4)、(5). (D) (1)、(3)、(5).3.一容器贮有某种理想气体,其分子平均自由程为0λ,若气体的热力学温度降到原来的一半,但体积不变,分子作用球半径不变,则此时平均自由程为(A) 02λ.(B)λ.(C) 2/λ.(D)λ/ 2.4.如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是(A) p0.(B) p0 / 2.(C)2γp0.(D) p0 / 2γ.(=γCp/C V)5.一绝热容器,用质量可忽略的绝热板分成体积相等的两部分.两边分别装入质量相等、温度相同的H2气和O2气.开始时绝热板P固定.然后释放之,板P将发生移动(绝热板与容器壁之间不漏气且摩擦可以忽略不计),在达到新的平衡位置后,若比较两边温度的高低,则结果是:(A) H2气比O2气温度高.(B) O2气比H2气温度高.(C)两边温度相等且等于原来的温度.(D) 两边温度相等但比原来的温度降低了.6.人设计一台卡诺热机(可逆的).每循环一次可从400 K的高温热源吸热1800 J,向300 K的低温热源放热800 J.同时对外作功1000 J,这样的设计是(A) 可以的,符合热力学第一定律.(B) 可以的,符合热力学第二定律.(C) 不行的,卡诺循环所作的功不能大于向低温热源放出的热量.(D) 不行的,这个热机的效率超过理论值.7. 1 mol刚性双原子分子理想气体,当温度为T时,其内能为(A)RT23.(B)kT23.(C) RT 25. (D) kT 25.(式中R 为普适气体常量,k 为玻尔兹曼常量)8. 理想气体经历如图所示的abc 平衡过程,则该系统对外作功W ,从外界吸收的热量Q 和内能的增量E ∆的正负情况如下: (A) ΔE >0,Q >0,W <0.(B) ΔE >0,Q >0,W >0. (C) ΔE >0,Q <0,W <0.(D) ΔE <0,Q<0,W <0. 9. 某理想气体状态变化时,内能随体积的变化关系如图中AB 直线所示.A →B 表示的过程是 (A) 等压过程. (B) 等体过程.(C) 等温过程. (D) 绝热过程.10. 一定量理想气体经历的循环过程用V -T 曲线表示如图.在此循环过程中,气体从外界吸热的过程是 (A) A →B . (B) B →C .(D) B →C 和B →C .T ,气体分子的质量为m .根据理想气x 方向的分量平方的平均值(A) m kT x 32=v . (B) m kT x 3312=v . (C) m kT x /32=v . (D) m kT x /2=v .12. 玻尔兹曼分布律表明:在某一温度的平衡态,(1) 分布在某一区间(坐标区间和速度区间)的分子数,与该区间粒子的能量成正比.(2) 在同样大小的各区间(坐标区间和速度区间)中,能量较大的分子数较少;能量较小的分子数较多.(3) 在大小相等的各区间(坐标区间和速度区间)中比较,分子总是处于低能态的概率大些.(4) 分布在某一坐标区间内、具有各种速度的分子总数只与坐标区间的间隔成正比,与粒子能量无关.以上四种说法中,(A) 只有(1)、(2)是正确的.(B) 只有(2)、(3)是正确的.(C) 只有(1)、(2)、(3)是正确的.(D) 全部是正确的.13. 两个完全相同的气缸内盛有同种气体,设其初始状态相同,今使它们分别作绝热压缩至相同的体积,其中气缸1内的压缩过程是非准静态过程,而气缸2内的压缩过程则是准静态过程.比较这两种情况的温度变化:(A) 气缸1和2内气体的温度变化相同.(B) 气缸1内的气体较气缸2内的气体的温度变化大.(C) 气缸1内的气体较气缸2内的气体的温度变化小.(D) 气缸1和2内的气体的温度无变化.14. 根据热力学第二定律判断下列哪种说法是正确的.(A) 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体.(B) 功可以全部变为热,但热不能全部变为功.(C) 气体能够自由膨胀,但不能自动收缩.(D) 有规则运动的能量能够变为无规则运动的能量,但无规则 pO V a b c V O pOV b1 2 ac运动的能量不能变为有规则运动的能量.15. 如图,bca 为理想气体绝热过程,b 1a 和b 2a 是任意过程,则上述两过程中气体作功与吸收热量的情况是:(A) b 1a 过程放热,作负功;b 2a 过程放热,作负功.(B) b 1a 过程吸热,作负功;b 2a 过程放热,作负功.(C) b 1a 过程吸热,作正功;b 2a 过程吸热,作负功.(D) b 1a 过程放热,作正功;b 2a 过程吸热,作正功.16. 热力学第二定律表明:(A) 不可能从单一热源吸收热量使之全部变为有用的功.(B) 在一个可逆过程中,工作物质净吸热等于对外作的功.(C) 摩擦生热的过程是不可逆的.(D) 热量不可能从温度低的物体传到温度高的物体.17. 设有下列过程:(1) 用活塞缓慢地压缩绝热容器中的理想气体.(设活塞与器壁无摩擦)(2) 用缓慢地旋转的叶片使绝热容器中的水温上升.(3) 一滴墨水在水杯中缓慢弥散开.(4) 一个不受空气阻力及其它摩擦力作用的单摆的摆动.其中是可逆过程的为(A) (1)、(2)、(4).(B) (1)、(2)、(3).(C) (1)、(3)、(4).(D) (1)、(4).18. 某理想气体分别进行了如图所示的两个卡诺循环:Ⅰ(abcda )和Ⅱ(a'b'c'd'a'),且两个循环曲线所围面积相等.设循环I的效率为η,每次循环在高温热源处吸的热量为Q ,循环Ⅱ的效率为η′,每次循环在高温热源处吸的热量为Q ′,则(A) η < η′, Q < Q ′. (B) η < η′, Q > Q ′.(C) η > η′, Q < Q ′. (D) η > η′, Q > Q ′.19. 一物质系统从外界吸收一定的热量,则(A) 系统的内能一定增加.(B) 系统的内能一定减少.(C) 系统的内能一定保持不变.(D) 系统的内能可能增加,也可能减少或保持不变.20. 一定量的理想气体,从p -V 图上初态a 经历(1)或(2)过程到达末态b ,已知a 、b 两态处于同一条绝热线上(图中虚线是绝热线),则气体在(A) (1)过程中吸热,(2) 过程中放热. (B) (1)过程中放热,(2) 过程中吸热. (C) 两种过程中都吸热.(D) 两种过程中都放热.21. 气缸中有一定量的氮气(视为刚性分子理想气体),经过绝热压缩,使其压强变为原来的2倍,问气体分子的平均速率变为原来的几倍?(A) 22/5. (B) 22/7.(C) 21/5. (D) 21/7.填空题1. 已知f (v )为麦克斯韦速率分布函数,N 为总分子数,则(1) 速率v > 100 m ·s -1的分子数占总分子数的百分比的表达式为_________; V p O a b cda 'b 'c 'd 'p V(2) 速率v > 100 m ·s -1的分子数的表达式为__________________.2. 当理想气体处于平衡态时,若气体分子速率分布函数为f (v ),则分子速率处于最概然速率v p 至∞范围内的概率△N / N =________________.3. 如图,温度为T 0,2 T 0,3 T 0三条等温线与两条绝热线围成三个卡诺循环:(1) abcda ,(2) dcefd ,(3) abefa ,其效率分别为 η1____________,η2____________,η 3 ____________.4. 1 mol 的单原子分子理想气体,在1 atm 的恒定压强下,从0℃加热到100℃,则气体的内能改变了_______________J .(普适气体常量R =8.31 J ·mol -1·K -1 )5. 如图所示,一定量的理想气体经历a →b →c 过程,在此过程中气体从外界吸收热量Q ,系统内能变化∆E ,请在以下空格内填上>0或<0或= 0:Q _____________,∆E ___________. 6. 一定量理想气体,从同一状态开始使其体积由V 1膨胀到2V 1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程.其中:__________过程气体对外作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.7. 一热机从温度为 727℃的高温热源吸热,向温度为 527℃的低温热源放热.若热机在最大效率下工作,且每一循环吸热2000 J ,则此热机每一循环作功_________________ J .8. 在推导理想气体压强公式中,体现统计意义的两条假设是(1) ______________________________________________________;(2) ______________________________________________________.9. 有一卡诺热机,用290 g 空气为工作物质,工作在27℃的高温热源与 -73℃的低温热源之间,此热机的效率η=______________.若在等温膨胀的过程中气缸体积增大到2.718倍,则此热机每一循环所作的功为_________________.(空气的摩尔质量为29×10-3kg/mol ,普适气体常量R =8.31 11K mol J --⋅⋅)10. 从分子动理论导出的压强公式来看, 气体作用在器壁上的压强, 决定于______________________和_______________________.11. 已知一定量的理想气体经历p -T 图上所示的循环过程,图中各过程的吸热、放热情况为:(1) 过程1-2中,气体__________.(2) 过程2-3中,气体__________.(3) 过程3-1中,气体__________. 计算题 1. 容器内有11 kg 二氧化碳和2 kg 氢气(两种气体均视为刚性分子的理想气体),已知混合气体的内能是8.1×106 J .求:(1) 混合气体的温度;(2) 两种气体分子的平均动能.(二氧化碳的M mol =44×10-3 kg ·mol -1 ,玻尔兹曼常量k =1.38×10-23 J ·K -1摩尔气体常量R =8.31 J ·mol -1·K -1 )[ T =300 K ; kT252=ε=1.04×10-20 J ]2. 一定量的刚性双原子分子理想气体,开始时处于压强为 p 0 = 1.0×105 Pa ,体积为V 0 =4×10-3 m 3,温度为T 0 = 300 K 的初态,后经等压膨胀过程温度上升到T 1 = 450 K ,再经绝热过程温度降回到T 2 = 300 K ,求气体在整个过程中对外作的功.[ W =700 J . ] p O3T 02T 0T 0f a d b c e p V p T O 1 2 33. 温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍. (普适气体常量R =8.31 1--⋅⋅K mol J 1,ln 3=1.0986)(1) 计算这个过程中气体对外所作的功.(2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少?[W= 2.72×103 J ; W =2.20×103 J ]4. 容器内有M = 2.66 kg 氧气,已知其气体分子的平动动能总和是E K =4.14×105 J ,求:(1) 气体分子的平均平动动能;(2) 气体温度.(阿伏伽德罗常量N A =6.02×1023 /mol ,玻尔兹曼常量k =1.38×10-23 J ·K -1 )[ 211027.8-⨯=w J ;k wT 32== 400 K ] 5. 一定量的某种理想气体,开始时处于压强、体积、温度分别为p 0=1.2×106 Pa ,V 0=8.31×10-3m 3,T 0 =300 K 的初态,后经过一等体过程,温度升高到T 1 =450 K ,再经过一等温过程,压强降到p = p 0的末态.已知该理想气体的等压摩尔热容与等体摩尔热容之比C p /C V =5/3.求:(1) 该理想气体的等压摩尔热容C p 和等体摩尔热容C V .(2) 气体从始态变到末态的全过程中从外界吸收的热量.(普适气体常量R = 8.31 J·mol -1·K -1) [ R C p 25= 和 RC V 23= ; Q = △E +W =1.35×104 J .]6. 理想气体作卡诺循环,高温热源的热力学温度是低温热源的热力学温度的n 倍,求气体在一个循环中将由高温热源所得热量的多大部分交给了低温热源. [ n Q Q 112= ] 7. 一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol氧气吸收而用于增加其内能,则氧气的温度升高了多少?(氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 )[ ∆T =4.81 K . ]8. 1 kg 某种理想气体,分子平动动能总和是1.86×106 J ,已知每个分子的质量是3.34×10-27 kg ,试求气体的温度.(玻尔兹曼常量 k =1.38×10-23 J ·K -1)[k w T 32== 300 K ] 9. 有ν 摩尔的刚性双原子分子理想气体,原来处在平衡态,当它从外界吸收热量Q 并对外作功A 后,又达到一新的平衡态.试求分子的平均平动动能增加了多少.(用ν、Q 、A和阿伏伽德罗常数N A 表示)[23=∆w k ∆T =3(Q -A ) / (5ν N A ) 式中N A 为阿伏伽德罗常数. ] 10. 容积V =1 m 3的容器内混有N 1=1.0×1025个氢气分子和N 2=4.0×1025个氧气分子,混合气体的温度为 400 K ,求:(1) 气体分子的平动动能总和.(2) 混合气体的压强. (普适气体常量R =8.31 J ·mol -1·K -1 ) 【 51014.4⨯=K E J ; p = n kT =2.76×105 Pa 】11. 以氢(视为刚性分子的理想气体)为工作物质进行卡诺循环,如果在绝热膨胀时末态的压强p 2是初态压强p 1的一半,求循环的效率.[ %18112=-=T T η ]12. 将1 kg 氦气和M kg 氢气混合,平衡后混合气体的内能是2.45×106 J ,氦分子平均动能是 6×10-21 J ,求氢气质量M . [ 51.02H =M kg ]热学部分习题解答一、选择题:1. B2. D3. B4. B5. B6. D7. C8. B9. A 10. A 11. D 12. B 13. B14. C 15. B 16. C 17. D 18. B 19. D 20. B 21. D二、填空题:1. [ (1) ⎰∞100d )(vv f (2) ⎰∞100d )(vv Nf] 2. [⎰∞p f v v v d )(]3. [33.3% ; 50% ;66.7% ]4. [1.25×103J]5. [>0; >0]6. [等压;等压;等压]7. [400J ]8. [(1) 沿空间各方向运动的分子数目相等; (2) 222zy x v v v == ] 9. [ 33.3% ; 8.31×103 J ]10. [单位体积内的分子数n ; 分子的平均平动动能 ]11. [ 吸热 ; 放热 ; 放热 ]三、计算题:1. 解:(1) RTM M i RT M M i E 2mol 221mol 1122+= RM M i M M i E/T ⎪⎪⎭⎫ ⎝⎛+=2mol 221mol 1122=300 K(2) kT 261=ε=1.24×10-20 JkT 252=ε=1.04×10-20 J2. 解:等压过程末态的体积 1001T T V V =等压过程气体对外作功)1()(01000101-=-=T T V p V V p W =200 J根据热力学第一定律,绝热过程气体对外作的功为W 2 =-△E =-νC V (T 2-T 1)这里 000RT V p =ν,R C V 25=,则 500)(25120002==--=T T T V p W J气体在整个过程中对外作的功为 W = W 1+W 2 =700 J .3. 解:(1) 等温过程气体对外作功为⎰⎰===000333ln d d V V V V RT V V RT V p W 2分=8.31×298×1.0986 J = 2.72×103 J 2分 (2) 绝热过程气体对外作功为V V V p V p W V V V V d d 00003003⎰⎰-==γγRT V p 1311131001--=--=--γγγγ2分 =2.20×103 J2分 4. 解:(1) M / M mol =N / N A∴ N =MN A / M mol21A mol 1027.8-⨯===MN E M N E w K k J3分 (2) k wT 32== 400 K2分 5. 解:(1) 由 35=V p C C 和 R C C V p =-可解得 R C p 25= 和 R C V 23= 2分(2) 该理想气体的摩尔数 ==000RT V p ν 4 mol在全过程中气体内能的改变量为 △E =ν C V (T 1-T 2)=7.48×103 J2分 全过程中气体对外作的功为 011lnp p RT W ν= 式中 p 1 ∕p 0=T 1 ∕T 0则 30111006.6ln ⨯==T T RT W ν J . 2分 全过程中气体从外界吸的热量为 Q = △E +W =1.35×104 J . 2分6. 解:理想气体卡诺循环的效率 121T T T -=η1分 ∵ 21nT T = n 11-=η1分 又据 n Q Q 11112-=-=η1分得 n Q Q 112= 2分7. 解: A = Pt = T iR v ∆21, 2分∴ ∆T = 2Pt /(v iR )=4.81 K . 3分8. 解: N = M / m =0.30×1027 个 1分==N E w K / 6.2×10-21 J 1分k wT 32== 300 K 3分 9. 解:设两个平衡态的温度差为∆T ,则Q -A =∆E =25νR ∆T =25ν N A k ∆T 3分∴23=∆w k ∆T =3(Q -A ) / (5ν N A ) 2分式中N A 为阿伏伽德罗常数. 10. 解:(1) 211028.823-⨯==kT w J()5211014.423⨯=+==kT N N w N E K J (2) p = n kT =2.76×105 Pa 11. 解:根据卡诺循环的效率121T T -=η 1分 由绝热方程:212111T p T p --=γγ 1分 得 γγ11212)(-=p p T T氢为双原子分子, 40.1=γ, 由2112=p p 1分 得82.012=T T 1分 %18112=-=T T η 1分12. 解:kT w 23= 29032==k w T K5m o l He He 1004.923⨯==RT M M E J2分而 6He H 1055.12⨯=-=E E E J 又RT M ME mol H 252= ∴ 51.02H =M kg 3分。
大学物理热学练习题及答案

大学物理热学练习题及答案第一题:一个物体的质量是1 kg,温度从20°C升高到30°C,如果物体的比热容是4200 J/(kg·°C),求物体吸收的热量。
解答:根据热量公式Q = mcΔθ,其中 Q 表示吸收的热量,m 表示物体的质量,c 表示比热容,Δθ 表示温度变化。
代入数据得:Q = 1 kg × 4200 J/(kg·°C) × (30°C - 20°C)= 1 kg × 4200 J/(kg·°C) × 10°C= 42,000 J所以物体吸收的热量为42,000 J。
第二题:一块金属材料的质量是0.5 kg,它的比热容是400 J/(kg·°C),经过加热后,材料的温度升高了60°C。
求该金属材料所吸收的热量。
解答:根据热量公式Q = mcΔθ,其中 Q 表示吸收的热量,m 表示物体的质量,c 表示比热容,Δθ 表示温度变化。
代入数据得:Q = 0.5 kg × 400 J/(kg·°C) × 60°C= 12,000 J所以金属材料吸收的热量为12,000 J。
第三题:一个热容为300 J/(kg·°C)的物体,吸收了500 J的热量后,温度升高了多少摄氏度?解答:根据热量公式Q = mcΔθ,其中 Q 表示吸收的热量,m 表示物体的质量,c 表示比热容,Δθ 表示温度变化。
将已知数据代入公式:500 J = m × 300 J/(kg·°C) × Δθ解方程得:Δθ = 500 J / (m × 300 J/(kg·°C))= 500 J / (m/(kg·°C)) × (kg·°C/300 J)= (500/300) °C≈ 1.67°C所以温度升高了约1.67°C。
《大学物理》热力学基础练习题及答案解析

《大学物理》热力学基础练习题及答案解析一、简答题:1、什么是准静态过程?答案:一热力学系统开始时处于某一平衡态,经过一系列状态变化后到达另一平衡态,若中间过程进行是无限缓慢的,每一个中间态都可近似看作是平衡态,那么系统的这个状态变化的过程称为准静态过程。
2、从增加内能来说,做功和热传递是等效的。
但又如何理解它们在本质上的差别呢?答:做功是机械能转换为热能,热传递是热能的传递而不是不同能量的转换。
3、一系统能否吸收热量,仅使其内能变化? 一系统能否吸收热量,而不使其内能变化?答:可以吸热仅使其内能变化,只要不对外做功。
比如加热固体,吸收的热量全部转换为内能升高温度;不能吸热使内能不变,否则违反了热力学第二定律。
4、有人认为:“在任意的绝热过程中,只要系统与外界之间没有热量传递,系统的温度就不会改变。
”此说法对吗? 为什么?答:不对。
对外做功,则内能减少,温度降低。
5、分别在Vp-图、Tp-图上,画出等体、等压、等温和绝热过程的曲线。
V-图和T6、 比较摩尔定体热容和摩尔定压热容的异同。
答案:相同点:都表示1摩尔气体温度升高1摄氏度时气体所吸收的热量。
不同点:摩尔定体热容是1摩尔气体,在体积不变的过程中,温度升高1摄氏度时气体所吸收的热量。
摩尔定压热容是1摩尔气体,在压强不变的过程中,温度升高1摄氏度时气体所吸收的热量。
两者之间的关系为R C C v p +=7、什么是可逆过程与不可逆过程答案:可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而且不引起其它变化;不可逆过程:在系统状态变化过程中,如果逆过程能不重复正过程的每一状态,或者重复正过程时必然引起其它变化。
8、简述热力学第二定律的两种表述。
答案:开尔文表述:不可能制成一种循环工作的热机,它只从单一热源吸收热量,并使其全部变为有用功而不引起其他变化。
克劳修斯表述:热量不可能自动地由低温物体传向高温物体而不引起其他变化。
9、什么是第一类永动机与第二类永动机?答案:违背热力学第一定律(即能量转化与守恒定律)的叫第一类永动机,不违背热力学第一定律但违背热力学第二定律的叫第二类永动机。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
、选择题1.一定量的理想气体贮于某一容器中,温度为 T ,气体分子的质量为 m 。
根据理想气体的分子模型和统计假设,分子速度在 x 方向的分量平方的平均值2.一定量的理想气体贮于某一容器中,温度为 T ,气体分子的质量为 m 。
根据理想气体分子模型和统计假设,分子速度在 x 方向的分量的平均值都相等 (B) 相等, w 不相等 (C) w 相等, 不相等 4.在标准状态下,若氧气 (视为刚性双原子分子的理想气体 比 E 1 / E 2 为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 35.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(A) 66.7%(B) 50%(C) 25%(D) 06.两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数 n ,单位体积内的气体分子的总平动动能 (E K /V),单位体积内的气体质量 ,分别有如下关系:(A) n 不同, (E K /V)不同, 不同 (B) n 不同,(E K /V)不同, 相同 (C) n 相同, (E K /V)相同, 不同(D) n 相同, (E K /V)相同, 相同7.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同 (C) 温度相同,但氦气的压强大于氮气的压强 (D) 温度相同,但氦气的压强小于氮气的压强8.关于温度的意义,有下列几种说法: (1) 气体的温度是分子平均平动动能的量度; (2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义; (3) 温度的高低反映物质内部分子运动剧烈程度的不 同; (4) 从微观上看,气体的温度表示每个气体分子的冷热程度。
这些说法中正确的是(A) (1)(2)(4) ; (B) (1)(2)(3) ; (C) (2)(3)(4);(D) (1)(3) (4); 9.设声波通过理想气体的速率正比于气体分子的热运动平均速率,则声波通过具有相同温度的氧气和氢气的速率之比vO 2/v H2 为(A) 1(B) 1/2(C) 1/3 (D) 1/410.设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令 v p O 2和vp H 2分别(A)vx3k m T2 1 3kTvx2(B) 3 m (C) vx3kT/m2 (D) vxkT /m1 8kT 8kT8kT 1 8kT v x v x(A) m (B) 3 m (C) 3 m3.温度、压强相同的氦气和氧气,它们分子的平均动v x(D) v x 0和平均平动动能 w 有如下关系: (A) 和 w(D) 和w 都不相等)和氦气的体积比 V 1 / V 2=1 / 2 ,则其内能之(不计振动自由度和化学能 )?表示氧气和氢气的最概然速率,则:(A) 图中a表示氧气分子的速率分布曲线;v p O2 /v p H2=4(B) 图中a表示氧气分子的速率分布曲线;v p O2 / v p H2 =1/4(C) 图中b表示氧气分子的速率分布曲线;v p O2 / v p H2 =1/4(D) 图中b表示氧气分子的速率分布曲线;v p O2 / v p H2 =411.图(a)、(b)、(c)各表示联接在一起的两个循环过程,其中(c)图是两个半径相等的圆构成的两个循环过程,图(a)和(b)则为半径不等的两个圆。
那么:(A) 图(a)总净功为负。
图(b)总净功为正。
图(c)总净功为零(B) 图(a)总净功为负。
图(b)总净功为负。
图(c)总净功为正(C) 图(a)总净功为负。
图(b)总净功为负。
图(c)总净功为零(D) 图(a)总净功为正。
图(b)总净功为正。
图(c)总净功为负12.关于可逆过程和不可逆过程的判断:(1) 可逆热力学过程一定是准静态过程;(2) 准静态过程一定是可逆过程;(3) 不可逆过程就是不能向相反方向进行的过程;(4) 凡有摩擦的过程,一定是不可逆过程。
以上四种判断,其中正确的是(A) (1)(2)(3) (B) (1)(2)(4) (C) (2)(4) (D) (1)(4) 13.质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加一倍。
那么气体温度的改变(绝对值)在(A) 绝热过程中最大,等压过程中最小(B) 绝热过程中最大,等温过程中最小(C) 等压过程中最大,绝热过程中最小(D) 等压过程中最大,等温过程中最小14.有两个相同的容器,容积固定不变,一个盛有氨气,另一个盛有氢气(看成刚性分子的理想气体) 它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氨气也升高同样的温度,则应向氨气传递热量是:(A) 6 J (B) 5 J (C) 3 J (D) 2 J15.1mol的单原子分子理想气体从状态A变为状态B,如果不知是什么气体,变化过程也不知道,但A、B两态的压强、体积和温度都知道,则可求出:(A) 气体所作的功(B) 气体内能的变化(C) 气体传给外界的热量(D) 气体的质量16.一定量的理想气体经历acb过程时吸热500 J。
则经历acbda过程时,吸热为17.一定量的某种理想气体起始温度为T,体积为V,该气体在下面循环过程中经过三个平衡过程:(1) 绝热膨胀到体积为2V,(2)等体变化使温度恢复为T,(3) 等温压缩到原来体积V,则此整个循环过程中(A) 气体向外界放热(B) 气体对外界作正功(C) 气体内能增加(D) 气体内能减少18.一定量理想气体经历的循环过程用V-T 曲线表示如图。
在此循环过程中,气体从外界吸热的过程是19.两个卡诺热机的循环曲线如图所示,一个工作在温度为T1 与T3 的两个热源之间,另一个工作在温度为T2 与T3 的两个热源之间,已知这两个循环曲线所包围的面积相等。
由此可知:(A) –1200 J (B) –700 J (C) –400 J(A) A→B (B) B→C (C) C→A (D) B→C 和B→C(D) 700 J(A) 12,W 1W 2(B) 12,W 1W 2(C) 1 2,W 1W 2(A) 两个热机的效率一定相等(B) 两个热机从高温热源所吸收的热量一定相等 (C) 两个热机向低温热源所放出的热量一定相等(D) 两个热机吸收的热量与放出的热量(绝对值)的差值一定相等20.如果卡诺热机的循环曲线所包围的面积从图中的 abcda 增大为 ab c da ,那么循环 abcda 与ab cda 所 作的净功和热机效率变化情况是:(A) 净功增大,效率提高 (B) 净功增大,效率降低 (C) 净功和效率都不变(D) 净功增大,效率不变21.在温度分别为 327℃和 27℃的高温热源和低温热源之间工作的热机,理论上的最大效率为(A) 25% (B) 50% (C) 75% (D) 91.74%22.设高温热源的热力学温度是低温热源的热力学温度的 n 倍,则理想气体在一次卡诺循环中,传给低温热源的热量是从高温热源吸取热量的1 n 1(A) n 倍 (B) n -1 倍 (C) n 倍 (D) n 倍23.有人设计一台卡诺热机 (可逆的)。
每循环一次可从 400 K 的高温热源吸热 1800 J ,向300 K 的低温热源放热 800 J 。
同时对外作功 1000 J ,这样的设计是(A) 可以的,符合热力学第一定律 (B) 可以的,符合热力学第二定律(C) 不行的,卡诺循环所作的功不能大于向低温热源放出的热量 (D) 不行的,这个热机的效率超过理论值24.如图表示的两个卡诺循环, 第一个沿 ABCDA 进行,第二个沿 ABCD A 进行,这两个循环的效率 1和2的关系及这两个循环所作的净功 W 1和 W 2的关系是(D) 1 2 ,W1 W2(A) Z 和 都增大一倍(B) Z 和 都减为原来的一半29.某理想气体状态变化时,内能随体积的变化关系如图中 AB 直线所示。
A →B 表示的过程是(A) 等压过程 (B) 等体过程30.若理想气体的体积为 V ,压强为 p ,温度为T , 兹曼常量, R 为普适气体常量,则该理想气体的(A) pV / m (B) pV / (kT) (C) pV / (RT)(D) pV / (mT)31.气缸内盛有一定量的氢气 (可视作理想气体 ),当温度不变而压强增大一倍时,氢气分子的平均碰撞频率Z 和平均自由程 的变化情况是:25.根据热力学第二定律可知: (A) (B) 功可以全部转换为热,但热不能全部转换为功热可以从高温物体传到低温物体,但不能从低温物体传到高温物体(C) 不可逆过程就是不能向相反方向进行的过程(D) 一切自发过程都是不可逆的26.根据热力学第二定律判断下列哪种说法是正确的 (A) (B)热量能从高温物体传到低温物体,但不能从低温物体传到高温物体功可以全部变为热,但热不能全部变为功(C) (D) 气体能够自由膨胀,但不能自动收缩有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能变为有规则运动的能27.胀, 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体。
若把隔板抽出,气体将进行自由膨 达到平衡后(A) 温度不变,熵增加 (C) 温度降低,熵增加(B) 温度升高,熵增加(D) 温度不变,熵不理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外作功。
评论,哪种是正确的?28. ”对此说法,有如下几种(A) (B) 不违反热力学第一定律, 不违反热力学第但违反热力学第二定律但违反热力学第一定律(C) 也不违反热力学第二定律 (D) 不违反热力学第一定律,违反热力学第一定律,也违反热力学第二定律 (C) 等温过程 (D) 绝热过程分子数为:一个分子的质量为 m , k 为玻尔(C) Z 增大一倍而减为原来的一半(D) Z 减为原来的一半而增大一倍32.在一封闭容器中盛有 1 mol氦气(视作理想气体),这时分子无规则运动的平均自由程仅决定于:(A)压强p (B)体积V (C)温度T (D)平均碰撞频率Z 33.容积恒定的容器内盛有一定量某种理想气体,其分子热运动的平均自由程为0,平均碰撞频率为Z0,若气体的热力学温度降低为原来的1/4倍,则此时分子平均自由程和平均碰撞频率Z 分别为:1(A) =0 ,Z =Z0(B)=0,Z=2 Z0(C) =2 0,Z =2Z0(D)=21 0,Z=2Z0、填空题若某种理想气体分子的方均根速率1/22v450m / s,气体压强为p=7×104 Pa,则该气体的密度为2.一定量的理想气体贮于某一容器中,温度为T,气体分子的质量为m。