微分积分电路实验报告

合集下载

积分电路和微分电路实验报告

积分电路和微分电路实验报告

竭诚为您提供优质文档/双击可除积分电路和微分电路实验报告篇一:实验6积分与微分电路实验6积分与微分电路1.实验目的学习使用运放组成积分和微分电路。

2.实验仪器双踪示波器、信号发生器、交流毫伏表、数字万用表。

3.预习内容1)阅读op07的“数据手册”,了解op07的性能。

2)复习关于积分和微分电路的理论知识。

3)阅读本次实验的教材。

4.实验内容1)积分电路如图5.1。

在理想条件下,为零时,则dV(t)Vi(t)??co,当c两端的初始电压RdtVo(t)??1tVi(t)dtRc?o因此而得名为积分电路。

(1)取运放直流偏置为?12V,输入幅值Vi=-1V的阶跃电压,测量输出饱和电压和有效积分时间。

若输入为幅值Vi=-1V阶跃电压时,输出为Vo(t)??Vi1tVdt??t,(1)iRc?oRc这时输出电压将随时间增长而线性上升。

通常运放存在输入直流失调电压,图6.1所示电路运放直流开路,运放以开环放大倍数放大输入直流失调电压,往往使运放输出限幅,即输出电压接近直流电源电压,输出饱和,运放不能正常工作。

在op07的“数据手册”中,其输入直流失调电压的典型值为30μV;开环增益约为112db,即4×105。

据此可以估算,当Vi=0V时,Vo=30μV×4×105=12V。

电路实际输出接近直流偏置电压,已无法正常工作。

建议用以下方法。

按图6.1接好电路后,将直流信号源输出端与此同时Vi相接,调整直流信号源,使其输出为-1V,将输出Vo接示波器输入,用示波器可观察到积分电路输出饱和。

保持电路状态,关闭直流偏置电源,示波器x轴扫描速度置0.2sec/div,Y轴输入电压灵敏度置2V/div,将扫描线移至示波器屏的下方。

等待至电容上的电荷放尽。

当扫描光点在示波器屏的左下方时,即时打开直流偏置电源,示波器屏上积分电路的输出为线性上升的直线,大约1秒后,积分电路输出由线性上升的直线变为水平直线,即积分电路已饱和,立即按下示波器的“stop”键。

实验6_积分微分电路

实验6_积分微分电路

实验内容二
• 测量积分电路的幅频特性曲线。 • 输入信号Vi为VPP=1V的 正弦波 , • 频率测量范围为1HZ-20KHZ。
频率 20lg|AV/AVo| -20dB -10dB -3dB 0dB -3dB -10dB -20dB
实验内容三
• 1)取输入信号Vi的峰峰值1V、占空比为50%的方波, 方波的频率分别为10HZ,100HZ,1KHZ,10KHZ,观察 并记录输入输出波形 • 2)测量输出三角波的幅度分别为输入方波的一半、 相等、两倍时的频率
积分电路还可用于非正弦信号产生电路、显示器扫描 电路、模数转换电路等等
• 电路运放直流开路,运放以开环放大倍数放大输入直流失 调电压,往往使运放输出限幅,即输出电压接近直流电源 电压,输出饱和,运放不能正常工作。 • 在OP07的 “数据手册”中,其输入直流失调电压的典型 值为30μV;开环增益约为112dB,即4×105。据此可以 估算,当Vi=0V时,Vo=30μV×4×105=12V。 • 电路实际输出接近直流偏置电压,已无法正常工作。
uI Ui O uO O
t0
t1 t
t
例2:设vo初始电压为0,输入信号为方波时:
1 t v o (t) v i d t v o (t1 ) RC t1
2103 vi (t t1) vo (t1)
当t=1ms时,vo=6V; 当t=3ms时,vo=-6V; 当t=5ms时,vo=6V;依次类推
• 取Vi为占空比为50%、高电平为0.1V、低电平为-0.1V的 方波,方波频率分别为10H、100Hz、1kHz,输入到图所 示的电路,记录输出波形
实验六 积分与微分电路
• 实验目的 学习使用运放组成积分和微分电路。

积分电路和微分电路实验报告

积分电路和微分电路实验报告

积分电路和微分电路实验报告篇一:积分电路与微分电路实验报告四、积分电路与微分电路目的及要求:(1)进一步掌握微分电路和积分电路的相关知识。

(2)学会用运算放大器组成积分微分电路。

(3)设计一个RC微分电路,将方波变换成尖脉冲波。

(4)设计一个RC积分电路,将方波变换成三角波。

(5)进一步学习和熟悉Multisim软件的使用。

(6)得出结论进行分析并写出仿真体会。

一.积分电路与微分电路1. 积分电路及其产生波形1.1运算放大器组成的积分电路及其波形设计电路图如图所示:图 1.1积分电路其工作原理为:积分电路主要用于产生三角波,输出电压对时间的变化率与输入阶跃电压的负值成正比,与积分时间常数成反比,即?U0?t??UinR1C式中,R1C积分时间常数,Uin为输入阶跃电压。

反馈电阻Rf的主要作用是防止运算放大器LM741饱和。

C为加速电容,当输入电压为方波时,输入端U01的高电平等于正电源?Vcc,低电平等于负电源电压?Vdd,比较器的U??U??0时,比较器翻转,输入U01从高电平跳到低电平?Vdd。

输出的是一个上升速度与下降速度相等的三角波形。

图1.2积分电路产生的波形1.2微分电路及其产生波形2. 运算放大器组成的微分电路及其波形设计的微分电路图:图2.1微分电路其工作原理为:将积分电路中的电阻与电容对换位子,并选用比较小的时间常数RC,便得到了微分电路。

微分电路中,输出电压与输入电压对时间的变化率的负值成正比,与微分时间常数成反比,所以RinU0??RfC?U?tin的主要作用是防止运放LM741产生自激振荡。

v0??RCdV/dt,输出电压正比与输入电压对时间的微商,符号表示相位相反,当输入电压为方波时,当t?o时输出电压为一个有限制。

随着C的充电,输出电压v0将逐渐衰减,最后趋于零,就回形成尖顶脉冲波。

微分电路中用信号发生器输入方波信号,经过微分电路就会产生输出脉冲波信号。

结论与体会:通过此设计学会了用运算放大器组成的积分电路和微分电路,还学会了Multisim 软件的应用和使用方法。

微分电路积分电路分析

微分电路积分电路分析

微分电路积分电路分析姓名:王雨辰班级:072143 学号:20141000502一、实验目的1、测定RC一阶电路的积分、微分电路2、掌握有关微分电路和积分电路的概念二、实验器材示波器、信号发生器、电阻箱三、实验原理1、微分电路图1 RC微分电路图2 微分电路的Ui与U0波形在图1所示电路中,激励源U1为一矩形脉冲信号,响应是从电阻两端取出的电压,即U0=Ut,电路时间常数小于脉冲信号的脉宽,通常取τ=t0/10。

因为t<0时,Uc(0_)=0v,而在t = 0 时,U1突变到Us,且在0< t < t1期间有:U1=Us ,相当于在RC串联电路上接了一个恒压源。

由于U(c0+)=0v ,则由图1电路可知U1=Uc+U0。

所以U(0+)=Us ,即:输出电压产生了突变,从0 V突跳到Us。

因为τ=t0/10,所以电容充电极快。

当t=3τ时,有Uc(3τ)=Us ,则U0(3τ)=0v。

故在0<t<t1期间内,电阻两端就输出一个正的尖脉冲信号,如图2所示。

在t=t1时刻,U1又突变到0 V,且在t1<t<t2期间有:U1= 0 V,相当于将RC串联电路短接。

由于t=t1时,Uc(t1)=U0,故U0(t1)=Uc(t1)。

因为τ=t0/10,所以电容放电过程极快。

当t=3τ时,有Uc(3τ)=0v ,使U0(τ)=0v。

故在0<t<t1期间内,电阻两端就输出一个正的尖脉冲信号,如图2 所示。

由于U1为一周期性的矩形脉冲波信号,则U0也就为同一周期正负尖脉冲波信号,如图4-18所示。

尖脉冲信号的用途十分广泛,在数字电路中常用作触发器的触发信号;在变流技术中常用作可控硅的触发信号。

这种输出的尖脉冲波反映了输入矩形脉冲微分的结果,故称这种电路为微分电路。

微分电路应满足三个条件:①激励必须为一周期性的矩形脉冲;②响应必须是从电阻两端取出的电压;③电路时间常数远小于脉冲宽度,即τ《t1。

积分电路和微分电路 实验报告书

积分电路和微分电路 实验报告书

积分电路和微分电路实验报告书学号:姓名:学习中心:(1)按如图连接电路(2)设置信号发生器的输出频率为1HZ,幅值为5V的方波,如图(3)激活仿真电路双击示波器图标弹出示波器面板,观察并分析示波器波形(4)按表1给出的电路参数依次设置R和C的取值,分别激活仿真运行,双击示波器图标,弹出示波器面板,给出输入/输出信号的波形图,并说明R和C的取值对输出信号的影响表1 实验电路参数序号输入为方波信号电路参数频率/HZ幅值/V R/KO C/uF1 1 5 100 12 1 5 100 23 1 5 100 4.72.微分电路实验(1)按图连接电路(2)设置R和C(3)激活电路仿真运行,(4)双击示波器的面板,给出输入/输出信号的波形图(5)说明R和C的取值对输出信号的影响表2 实验电路参数序号输入为方波信号电路参数频率/HZ幅值/V R/KO C/uF1 1 5 100 12 1 5 100 23 1 5 100 4.7三、实验过程原始数据(数据、图表、计算等)1.积分电路实验R=100KO,C=1uFR=100 KO C=2UFR=100KO C=4.7uF2.微分电路实验R=100KO,C=1uFR=100 KO C=2UFR=100KO C=4.7uF四、实验结果及分析积分电路实验由积分电路的特点:时间常数t远大于输入信号的周期T,在此条件下Uc(t)<<UR(t)因此i(t)=UR(t)/R=Ui(t)/RU0(t)=Uc(t)=1/C(i(t)dt=1/RC(ui(t)dt即输出电压与输入电压的积分成正比,若输出电压为周期方波,则输出电压为周期三角波由实验数据知道,随着C的增大,积分方波越明显微分电路实验由微分电路的特点:Uo(t)=UR(t)=RC*duc(t)/dt=RC*dui(t)/dt即输出电压与输入电压的微分成正比;若输入为周期方波,则输出电压为周期窄脉冲;从实验数据知道:随着C的增大,微分脉冲越明显如有侵权请联系告知删除,感谢你们的配合!。

积分电路和微分电路实验报告

积分电路和微分电路实验报告

竭诚为您提供优质文档/双击可除积分电路和微分电路实验报告篇一:实验6积分与微分电路实验6积分与微分电路1.实验目的学习使用运放组成积分和微分电路。

2.实验仪器双踪示波器、信号发生器、交流毫伏表、数字万用表。

3.预习内容1)阅读op07的“数据手册”,了解op07的性能。

2)复习关于积分和微分电路的理论知识。

3)阅读本次实验的教材。

4.实验内容1)积分电路如图5.1。

在理想条件下,为零时,则dV(t)Vi(t)??co,当c两端的初始电压RdtVo(t)??1tVi(t)dtRc?o因此而得名为积分电路。

(1)取运放直流偏置为?12V,输入幅值Vi=-1V的阶跃电压,测量输出饱和电压和有效积分时间。

若输入为幅值Vi=-1V阶跃电压时,输出为Vo(t)??Vi1tVdt??t,(1)iRc?oRc这时输出电压将随时间增长而线性上升。

通常运放存在输入直流失调电压,图6.1所示电路运放直流开路,运放以开环放大倍数放大输入直流失调电压,往往使运放输出限幅,即输出电压接近直流电源电压,输出饱和,运放不能正常工作。

在op07的“数据手册”中,其输入直流失调电压的典型值为30μV;开环增益约为112db,即4×105。

据此可以估算,当Vi=0V时,Vo=30μV×4×105=12V。

电路实际输出接近直流偏置电压,已无法正常工作。

建议用以下方法。

按图6.1接好电路后,将直流信号源输出端与此同时Vi相接,调整直流信号源,使其输出为-1V,将输出Vo接示波器输入,用示波器可观察到积分电路输出饱和。

保持电路状态,关闭直流偏置电源,示波器x轴扫描速度置0.2sec/div,Y轴输入电压灵敏度置2V/div,将扫描线移至示波器屏的下方。

等待至电容上的电荷放尽。

当扫描光点在示波器屏的左下方时,即时打开直流偏置电源,示波器屏上积分电路的输出为线性上升的直线,大约1秒后,积分电路输出由线性上升的直线变为水平直线,即积分电路已饱和,立即按下示波器的“stop”键。

积分电路和微分电路的设计实验报告

积分电路和微分电路的设计实验报告

积分电路和微分电路的设计实验报告一、实验目的本实验旨在通过设计积分电路和微分电路,掌握基本的积分和微分电路的原理、设计方法和实验技能,加深对模拟电子技术的理解。

二、实验器材1.双踪示波器2.函数信号发生器3.直流稳压电源4.万用表5.集成运放(LM741)三、积分电路设计实验1.原理简介:积分电路是一种能够将输入信号进行积分运算的电路,通常由一个运放、一个电容和一个反馈电阻组成。

在输入信号为正弦波时,输出信号为余弦波,并且幅度随时间增加而增大。

2.设计步骤:(1)选择合适的运放:本次实验选用LM741运放。

(2)确定反馈电阻Rf:根据公式Rf=1/(2πfC),其中f为输入信号频率,C为选定的电容值。

本次实验选用C=0.01μF,当输入频率为1kHz时,计算得到Rf=15.92kΩ。

(3)确定输入阻抗Rin:为了保证输入信号不被积分电路影响,需要满足Rin>>Rf。

本次实验选用Rin=1MΩ。

(4)确定电源电压:根据运放数据手册,LM741的最大工作电压为±18V。

本次实验选用±15V的直流稳压电源。

3.实验步骤:(1)按照上述设计步骤连接电路图,并接通电源。

(2)调节函数信号发生器输出正弦波信号,频率为1kHz,幅度为2V。

(3)使用双踪示波器观察输入和输出信号波形,并记录数据。

(4)更改输入信号频率和幅度,重复步骤(2)和(3),记录数据。

4.实验结果分析:根据实验记录的数据,可以得到输入和输出信号的波形图。

当输入为正弦波时,输出为余弦波,并且幅度随时间增加而增大。

当输入频率增加时,输出幅度也相应增加;当输入幅度增加时,输出幅度也相应增加。

五、微分电路设计实验1.原理简介:微分电路是一种能够将输入信号进行微分运算的电路,通常由一个运放、一个电阻和一个反馈电容组成。

在输入信号为正弦波时,输出信号为余弦波,并且幅度随时间减小而减小。

2.设计步骤:(1)选择合适的运放:本次实验选用LM741运放。

积分与微分电路实验报告

积分与微分电路实验报告

积分与微分电路实验报告这次的实验其实说起来也不复杂,就是做一个积分电路和微分电路,听起来很高大上对吧?不过,做起来其实没那么神秘,反而有点像做菜,材料准备好,步骤走一遍,最后成果就出来了。

先说说积分电路吧,这玩意儿简单得很,就是通过运算放大器来实现输入信号的积分。

其实就是把电压信号“积”在电容上,输出一个跟输入信号积分相关的结果。

你可以想象成,输入信号就像下雨,电容就像一个大水桶,输入信号越大,积累的水越多,输出的电压就越高。

真有点像这小雨变大雨的感觉!做这个电路的时候,最重要的就是把电容和电阻选对了,不然信号一来,电路就“崩了”,啥也没有。

然后说微分电路,哎,这个就有点儿像是小汽车的刹车系统了,输入信号一来,它立马做出反应,把信号的变化量放大输出。

微分电路的关键就是把输入信号变化的速度抓住,简而言之就是“快、狠、准”!只要一有信号的突变,输出信号就会像火箭一样飞出去,这就有点像看到路口红灯时,车子猛地刹车的感觉。

如果把积分电路比作“慢慢积累”,那微分电路就是“迅速反应”。

不过,微分电路也有点难搞,稍微电路设计得不对,输出信号就容易出现“尖刺”——噼里啪啦乱响的那种,简直是让人抓狂。

实验做的时候,我一开始有点儿紧张,毕竟这些电路在书本上看着简单,可一旦自己动手弄,事情就复杂了。

记得第一次接好电路后,开机的时候,心里那是忐忑不安的,简直像是在做某个高难度的挑战。

输入信号一开始就不对,整个人都傻眼了。

那个波形一看,心想:哎呀妈呀,咋回事啊?完全不像书上的样子嘛!不过,再一看,发现是电容接错了,真是晕了。

于是,我又赶紧换了下接线,结果,哇塞,居然成功了!看到输出信号渐渐符合预期,心里那个小激动,简直快要跳起来。

做电路嘛,最终的目的就是“问题解决”!当你看到那个波形对上了,真是像突然得到了人生的答案,所有的辛苦和焦虑都值了。

说到这里,你可能会想,积分电路和微分电路做起来有啥不一样?其实不瞒你说,差别还真不小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微分积分电路实验报告
微分积分电路实验报告
引言:
微分积分电路是电子工程中常见的电路之一,它具有对信号进行微分和积分运算的功能。

在本实验中,我们将通过搭建微分积分电路并进行实验,来深入了解微分积分电路的原理和应用。

一、实验目的:
本实验的目的是通过搭建微分积分电路,了解微分和积分运算的原理和特点,掌握微分积分电路的设计和调试方法。

二、实验原理:
1. 微分运算:
微分运算是对输入信号进行求导的操作,可以用来检测信号的变化率。

微分电路通常由一个电容和一个电阻组成。

当输入信号通过电容和电阻时,电容会对信号进行积分操作,而电阻则对积分后的信号进行微分操作,从而实现微分运算。

2. 积分运算:
积分运算是对输入信号进行积分的操作,可以用来求解信号的面积或累计值。

积分电路通常由一个电阻和一个电容组成。

当输入信号通过电阻和电容时,电阻会对信号进行微分操作,而电容则对微分后的信号进行积分操作,从而实现积分运算。

三、实验器材和元件:
1. 函数信号发生器:用于产生输入信号。

2. 示波器:用于观察输入信号和输出信号的波形。

3. 电阻、电容:用于搭建微分积分电路。

4. 万用表:用于测量电阻和电容的数值。

四、实验步骤:
1. 搭建微分电路:
a. 连接一个电容和一个电阻,将函数信号发生器的输出接到电容上。

b. 将示波器的探头分别接到函数信号发生器的输出端和电阻上。

c. 调节函数信号发生器的频率和幅度,观察示波器上的波形变化。

2. 搭建积分电路:
a. 连接一个电阻和一个电容,将函数信号发生器的输出接到电阻上。

b. 将示波器的探头分别接到函数信号发生器的输出端和电容上。

c. 调节函数信号发生器的频率和幅度,观察示波器上的波形变化。

3. 进行微分积分运算:
a. 将微分电路和积分电路连接在一起,形成一个微分积分电路。

b. 将函数信号发生器的输出接到微分积分电路的输入端。

c. 将示波器的探头接到微分积分电路的输出端。

d. 调节函数信号发生器的频率和幅度,观察示波器上的波形变化。

五、实验结果与分析:
通过观察示波器上的波形,我们可以发现微分电路对输入信号进行了微分运算,输出信号的斜率与输入信号的变化率成正比。

而积分电路则对输入信号进行了
积分运算,输出信号的幅度与输入信号的面积成正比。

六、实验总结:
通过本次实验,我们深入了解了微分积分电路的原理和应用。

微分积分电路在电子工程中具有广泛的应用,例如在控制系统中用于信号处理和滤波,以及在通信系统中用于信号解调和调制等。

掌握微分积分电路的设计和调试方法对于电子工程师来说是非常重要的。

总之,通过本次实验,我们对微分积分电路有了更深入的理解,掌握了微分积分电路的设计和调试方法。

希望通过这次实验,能够对电子工程的学习和实践有所帮助。

相关文档
最新文档