关于光伏组件功率衰减分析研究

合集下载

光伏组件光衰减现象及影响因素有哪些

光伏组件光衰减现象及影响因素有哪些

光伏组件光衰减现象及影响因素有哪些1.0绪论太阳能组件制作完成之后,进行功率测试时,组件功率正常,但是客户接收到组件,安装并运营时发现功率衰减较大。

这种现象大多是由于电池片的光致衰减引起的。

本文将系统、简要的阐述光致衰减现象。

2.0光致衰减光伏组件光致衰减可分为两个阶段:初始光致衰减和老化衰减。

1.初始光致衰减初始的光致衰减,即光伏组件的输出功率在刚开始使用的最初几天内发生较大幅度的下降,但随后趋于稳定。

导致这一现象发生的主要原因是P型(掺硼)晶体硅片中的硼氧复合体降低了少子寿命。

通过改变P型掺杂剂,用稼代替硼能有效的减小光致衰减;或者对电池片进行预光照处理,是电池的初始光致衰减发生在组件制造之前,光伏组件的初始光致衰减就能控制在一个很小的范围之内,同时也提高组件的输出稳定性。

光致衰减更多的与电池片厂家有关,对于组件厂商的意义在于选择高质量的电池片来降低光致衰减带来的影响。

2.老化衰减老化衰减是指在长期使用中出现的极缓慢的功率下降,产生的主要原因与电池缓慢衰减有关,也与封装材料的性能退化有关。

其中紫外光的照射时导致组件主材性能退化的主要原因。

紫外线的长期照射,使得EV A及背板(TPE结构)发生老化黄变现象,导致组件透光率下降,进而引起功率下降。

这就要求组件厂商在选择EV A及背板时,必须严格把关,所选材料在耐老化性能方面必须非常优秀,以减小因辅材老化而引起组件功率衰减。

3.0光致衰减机理P型(掺硼)晶体硅太阳电池的早期光致衰减现象是在30多年前观察到的,随后人们对此进行了大量的科学研究。

特别是最近几年,科学研究发现它与硅片中的硼氧浓度有关,大家基本一致的看法是光照或电流注人导致硅片中的硼和氧形成硼氧复合体,从而使少子寿命降低,但经过退火处理,少子寿命又可被恢复,其可能的反应为:据文献报道,含有硼和氧的硅片经过光照后其少子寿命会出现不同程度的衰减,硅片中的硼、氧含量越大,在光照或电流注人条件下在其体内产生的硼氧复合体越多,其少子寿命降低的幅度就越大。

光伏组件功率的衰减分析

光伏组件功率的衰减分析

光伏组件功率的衰减分析
在实际中,光伏组件在制造出来后就一直处于衰减的状态,不过在包装内未见光时衰减非常慢,一旦开始接受太阳光照射后,衰减会急剧加快,衰减一定比例后逐渐稳定下来,如图4-1所示的第一年衰减曲线模型示意图:
图4-1 光伏组件第一年衰减曲线模型
图4-1中第一年3%的总衰减数据取自正泰太阳能多晶硅组件的25年衰减保证当中,其25年衰减保证如图4-2所示,
图4-2 光伏组件衰减曲线
从图4-2中可以看出第一年光伏组件最大衰减值为3%,后面24年每年衰减值为0.7%。

晶体硅光伏组件的衰减研究

晶体硅光伏组件的衰减研究

标称值 42.6 2.82 15.1 3.02 20.8 0.68
2.2 1987 年产单晶硅组件
破损,无明显的腐蚀现象,背板材料平整,
该批组件共计 50 块,由 BP Solar 于 无开裂。由于在市区使用,组件表面污染
1987 年生产,安装与通信基站,后拆除安 严重(包括粘结性积灰和油污),无法清
01 0 2 0.3
04
64
川V1
第 14 届中国光伏大会(CPVC14)论文集
(3)并联内阻 Rsh 对 I-V 的影响 图 5 各项因子对组件 I-V 特性曲线的影响 [8]
表 5 为本文所统计的不同年限组件单 晶硅与多晶硅组件的衰降比例,下面将逐 一分析各种组件的衰降原因。
从表 5 可以看出 Solarex 多晶硅组件衰 减主要来源于短路电流 Isc 和最大功率点 电流 Im 的衰减,而填充因子、Vm 略微上 升和 Voc 相对下降,我们认为是测试带来 的误差或组件在老化过程中带来的一些
2.4 2010 年产多晶硅组件
了逆变器之外采用统一规格组件、统一以
该批组件共计 30 块,由 Kyocera 生产,采 22°倾角安装,安装地址位于广东顺德。截
用了三种安装方式[1-2],分别是:微逆变器 至目前组件外观良好。组件原始标称值如
系统、电源优化器系统和组串式逆变器系 表 4 所示。
统。这三个系统于 2010 年安装至今,除
2009 96 87.7 109.5 90.6 97.7 108 Solarex 144
2014 94.6 86.2 109.9 88.8 98.8 108
BP Solar
2009 91 96.3 94.6 94.6 97.8 98 12

光伏组件热红外衰减-概述说明以及解释

光伏组件热红外衰减-概述说明以及解释

光伏组件热红外衰减-概述说明以及解释1.引言1.1 概述光伏组件热红外衰减是目前光伏发电领域中一个备受关注的重要问题。

对于光伏系统的稳定运行和发电效率的提升,光伏组件在长期使用过程中产生的热红外衰减效应是一个不可忽视的因素。

热红外衰减主要指的是光伏组件在高温环境下,特别是持续高温条件下受到的性能衰减。

随着光照强度的增加和温度的升高,光伏组件的发电效率和输出功率都将逐渐下降,这不仅严重影响了光伏系统的发电效能,也对光伏组件的寿命和稳定性造成了一定的影响。

热红外衰减的主要原因包括光伏组件在高温环境下的光学特性发生变化、载流子复合速率的增加以及材料膨胀系数差异引起的应力漏失等。

这些因素都导致了光伏组件内部电子和光子之间的相互作用发生变化,进而影响了光伏组件的光电转换效率。

为了解决光伏组件热红外衰减问题,研究人员采取了多种策略。

一方面,通过改进光伏组件的材料和结构,可以提高组件的耐高温性能和热稳定性,减小热红外衰减效应。

另一方面,利用散热技术和温度控制手段,可以有效降低光伏组件的工作温度,从而减缓热红外衰减的速度。

总之,光伏组件热红外衰减是一个复杂的问题,涉及到材料学、光学、热学等多个学科领域。

通过研究和解决热红外衰减问题,可以提升光伏系统的发电效率和稳定性,推动光伏发电技术的进一步发展与应用。

在接下来的文章中,我们将深入探讨光伏组件热红外衰减的具体要点及其对光伏系统的影响,提出相应的解决方案与结论。

文章结构部分应该包括对整篇文章的组成和内容的简要概括。

下面是对文章1.2文章结构的参考内容:1.2 文章结构本文将以探讨光伏组件热红外衰减为主题,分为引言、正文和结论三个部分。

引言部分将首先概述光伏组件热红外衰减的背景和重要性。

我们将介绍光伏组件在热红外辐射方面的性能特点,并阐明热红外衰减的意义和挑战。

同时,我们还会说明本文的目的和研究方法。

在正文部分,我们将重点讨论光伏组件热红外衰减的关键要点。

具体而言,2.1节将介绍光伏组件热红外衰减的第一个要点,并通过理论分析和实验验证进行探讨。

光伏电站pid(电势诱导衰减)效应解决方法研究

光伏电站pid(电势诱导衰减)效应解决方法研究

光伏电站pid(电势诱导衰减)效应解决方法研究近年来,随着太阳能光伏发电技术的快速发展,光伏电站的建设和运营成为了热门话题。

然而,在实际运行中,人们逐渐发现光伏电站存在一个普遍的问题,那就是PID效应,即电势诱导衰减效应。

PID效应的出现会大大降低光伏组件的发电效率,影响光伏电站的长期运行。

对于PID效应的解决方法研究成为了当前光伏领域中的一个热点问题。

让我们来深入了解一下PID效应是什么?PID,即电势诱导衰减(Potential Induced Degradation),是指光伏组件在特定条件下在负载电压作用下,表现出功率下降。

主要原因是在逆变器和接地之间形成了一个电位差,导致了电场的形成,从而引发了PID效应。

在实际应用中,PID效应会导致光伏组件的发电效率下降,严重影响光伏电站的发电量和经济效益。

针对PID效应,目前已经有了一些解决方法和研究成果,下面我们将从多个角度来讨论解决PID效应的方法。

1. 结构优化:对于光伏组件的结构进行优化是解决PID效应的一种重要途径。

采用双玻璃封装的光伏组件能够有效降低PID效应的发生,因为双玻璃封装可以阻止湿气和盐雾等物质的渗透,从而减少PID效应的发生。

通过改变电池片的结构设计,增加玻璃、背板和灌封胶的附着力,也可以有效降低PID效应的发生。

2. 地面电位均衡系统:在光伏电站设计中,地面电位均衡系统的应用可以有效减少PID效应的发生。

地面电位均衡系统可以消除组件电势之间的差异,改善组件间的电场分布,从而减少PID效应的影响。

通过在设计阶段合理设置地面电位均衡系统,可以降低PID效应并提高光伏组件的发电效率。

3. 逆变器优化:逆变器在光伏电站中扮演着重要角色,逆变器的参数设置和优化可以对PID效应产生影响。

通过合理设置逆变器的电压、频率和功率因数等参数,可以减小地面与极间的电压差,从而减少PID效应的发生。

逆变器的绝缘设计和材料选择也可以对PID效应产生影响,应选择耐高温、抗紫外线等特性的材料,以减少PID效应的发生。

光伏组件功率衰减标准

光伏组件功率衰减标准

光伏组件功率衰减标准
光伏组件的功率衰减是光伏系统性能的关键参数之一,它直接影响到系统的发电效率和经济性。

国际上通常采用25年寿命期的功率衰减作为评价标准。

1. IEC 61215标准:这是国际电工委员会(IEC)制定的光伏组件性能测试标准,其中规定了光伏组件在25年寿命期内的功率衰减率应小于20%。

2. IEC 61646标准:这是国际电工委员会(IEC)制定的光伏系统性能测试标准,其中规定了光伏系统的最大功率点衰减率应小于30%。

3. ISO 9001标准:这是国际标准化组织(ISO)制定的质量管理标准,其中规定了产品在寿命期内的性能应保持稳定。

4. UL 1703标准:这是美国保险商实验室(UL)制定的光伏组件安全性测试标准,其中规定了光伏组件在25年寿命期内的功率衰减率应小于25%。

以上标准中,IEC 61215和IEC 61646是专门针对光伏组件和光伏系统的性能要求,而ISO 9001和UL 1703则是针对产品的质量要求和安全性要求。

太阳能光伏电池组件的性能及衰减分析

太阳能光伏电池组件的性能及衰减分析太阳能光伏电池是目前可再生能源中应用最广泛的一种。

其组成包括光伏电池板、电池支撑模块、控制器和存储电池等部分。

其中,光伏电池组件作为核心部分,其性能的表现直接影响着整个太阳能发电系统的质量和稳定性。

一、光伏电池组件的性能参数1、输出功率输出功率是指光伏电池组件在标准测试条件(STC)下所发出的最大限定功率。

STC是指:光强为1000W/m²,光谱分布为AM1.5(包括皮尔森分配),温度为25℃的情况下。

同时也要求电池板的取样光照方式、电池基底表面温度、湿度及其他环境条件符合国际标准。

2、最大电压和最大电流有时有些客户会对太阳能光伏电池组件额定输出电压和额定输出电流的概念不是很清楚。

真正的最大电压和电流都分别是太阳能电池组件的电压和电流。

所谓的额定电压和电流,一般是指当太阳能光伏电池组件输出电压和电流动态变化时,满足特定功率的电压和电流。

在实际应用中,一般最大额定电压和最大额定电流都是在最大功率输出情况下测算而来的。

3、充放电效率充放电效率是指电池在充满和放空过程中所损失的能量百分比。

因此,如果充放电效率低,会导致存储电池在充电或者放电的过程中能量损失较大,影响整个发电系统的运行质量。

因此,在选择太阳能光伏电池板的时候,需要特别关注电池板的充放电效率。

二、光伏电池组件的衰减导致太阳能光伏电池板衰减主要有以下几个方面原因:1、光照不均匀因为阳光照射不均匀,而太阳能光伏电池板的每个部分都不可能完全受到相同强度的光照,因此每个部分生成的电流也不相等。

在长时间的运行过程中,如果不同部分的电池受到的光照不同,那么其性能衰减也会发生分异。

2、氧化破裂太阳能光伏电池板中的组件在运行过程中可能会受到潮湿、紫外线和其他气体的腐蚀,导致电池板内部氧化或者因此产生裂缝。

一旦这些情况发生,将会破坏光伏电池板的性能,影响其发电能力。

3、温度高在一些地区,太阳能光伏电池板可能会长时间运行在较高的温度下。

晶科p型330wp组件衰减率

晶科p型330wp组件衰减率研究1、背景介绍晶科是一家专业的太阳能光伏组件制造商,其P型330wp组件作为一种高效的太阳能发电产品,备受市场关注。

然而,随着太阳能组件的运行时间的延长,组件的功率衰减问题也逐渐受到重视。

在实际应用中,太阳能组件的功率衰减率对发电量和投资回报率有着重要的影响。

研究晶科P型330wp组件的衰减率,对于提高太阳能发电系统的性能和可靠性具有重要意义。

2、衰减率概念及影响因素衰减率是衡量组件光电转换效率随时间变化的指标,通常用百分比的形式表示。

太阳能组件的功率衰减主要由光照、温度、湿度、材料老化等因素引起。

光照和温度是影响太阳能组件功率输出的主要因素,光照越强,温度越低,组件的输出功率越高。

而湿度和材料老化则会导致组件表面的光伏材料性能下降,从而影响组件的功率输出。

3、晶科P型330wp组件的衰减率研究现状目前,对于晶科P型330wp组件的衰减率研究还相对较少。

在相关研究中,研究者通常通过搭建实验台或者在实际环境下对组件进行长期监测,以获得组件的实际衰减率数据。

这些实验台通常会模拟太阳能组件在不同光照、温度等环境条件下的工作状态,从而全面地评估组件的衰减情况。

4、晶科P型330wp组件衰减率实验设计及结果分析针对晶科P型330wp组件的衰减率研究,我们设计了一系列实验,并在实验台上对组件进行了长期性能测试。

实验结果显示,晶科P型330wp组件的衰减率在一定程度上受到环境温度和光照强度的影响。

在高温高湿环境下,组件的衰减率较大;而在低温和低湿环境下,组件的衰减率相对较小。

不同安装角度、不同方位组件的衰减率也存在差异,需要考虑到太阳能组件的最佳安装方向和角度,以获得最大化的发电效率。

5、提高P型330wp组件衰减率的策略针对晶科P型330wp组件的衰减率问题,我们提出了一些改善策略。

优化组件的结构设计和材料选择,以提高组件的耐候性和抗老化能力。

提高组件的光电转换效率,减少组件受环境温度和湿度的影响。

【刘工总结】光伏组件问题系列总结——组件功率衰减原因分析

1.0绪论在光伏行业发展形势一片大好情况下,光伏行业也出现了一些问题,其中光伏组件功率衰减幅度较大问题,对电站运营商及组件厂商影响都比较大。

本文试图从多个方面分析组件功率衰减的原因,尽量在生产中避免,提高组件质量,以减少电站运营商的投诉,提高自身声誉。

2.0原因分析目前市场上主流的晶体硅光伏组件是由钢化玻璃、EVA、晶体硅电池片、背板、铝边框、接线盒、硅胶等原辅材通过一定的封装工艺,加工制作而成。

组件功率衰减是指光伏组件随着光照时间的增长,组件输出功率逐渐下降的现象。

导致组件输出功率下降的原因有三大类:第一类为组件的光致衰减及老化衰减;第二类是组件质量问题造成的功率非正常衰减;第三类为外界环境因素导致的破坏性影响,引起组件功率衰减甚至组件损坏。

3.0光致衰减及老化衰减所谓光致衰减是指阳光的照射导致电池片功率下降的现象。

光伏组件光致衰减可分为两个阶段:初始光致衰减和老化衰减。

3.1初始光致衰减初始的光致衰减,即光伏组件的输出功率在刚开始使用的最初几天内发生较大幅度的下降,但随后趋于稳定。

导致这一现象发生的主要原因是P型(掺硼)晶体硅片中的硼氧复合体降低了少子寿命。

通过改变P型掺杂剂,用稼代替硼能有效的减小光致衰减;或者对电池片进行预光照处理,是电池的初始光致衰减发生在组件制造之前,光伏组件的初始光致衰减就能控制在一个很小的范围之内,同时也提高组件的输出稳定性。

光致衰减更多的与电池片厂家有关,对于组件厂商的意义在于选择高质量的电池片来降低光致衰减带来的影响。

3.2老化衰减老化衰减是指在长期使用中出现的极缓慢的功率下降,产生的主要原因与电池缓慢衰减有关,也与封装材料的性能退化有关。

其中紫外光的照射时导致组件主材性能退化的主要原因。

紫外线的长期照射,使得EVA及背板(TPE结构)发生老化黄变现象,导致组件透光率下降,进而引起功率下降。

这就要求组件厂商在选择EVA及背板时,必须严格把关,所选材料在耐老化性能方面必须非常优秀,以减小因辅材老化而引起组件功率衰减。

组件功率衰减原因及优化措施

多晶硅光伏组件功率衰减的原因分析以及优化措施一、多晶硅光伏组件衰减现象的分类近年来,在新能源理念的大力倡导下,太阳能发电装置逐渐在全世界范围得到推广。

多晶硅太阳能组件由于其价格合理、性能良好而在市场上占有一定的份额。

但是与单晶光伏组件、薄膜光伏组传类织,多晶硅组件在使用过程中同样会产生或多或少的功率衰减现象。

影响多晶硅组件功率衰减的主要因素是什么?又该如何降低这些影响因素呢?多晶硅光伏组件(如图一所示)是由玻璃、EVA、电池片、背板、铝边框、接线盒、硅胶等主材,按照一定的生产工艺进行封装,在一定的光照条件下达到一定输出功率和输出电压的光伏器件。

组件功率的衰减是指随着光照时间的增长,组件输出功率逐渐下降的现象。

其衰减现象可大致分为三类:第一类,由于破坏性因素导致的组件功率骤然衰减,破坏性因素主要指组件在焊接过程中焊接不良、封装工艺存在缺胶现象,或者由于组件在搬运、安装过程中操作不当,甚至组件在使用过程中受到冰雹的猛烈撞击而导致组件内部隐裂、电池片严重破碎等现象;第二类,组件初始的光致衰减,即光伏组件的输出功率在刚开始使用的最初几天内发生较大幅度的下降,但随后趋于稳定;第三类,组件的老化衰减,即在长期使用中出现的极缓慢的功率下降现象。

二、多晶硅组件功率衰减的原因分析及试验验证1、第二类衰减现象的研究分析第二类衰减的原因分析、试验对比以及优化措施导致这一现象发生的主要原因是P型(掺硼)晶体硅片中的硼氧复合体降低了少子寿命。

含有硼和氧的硅片经过光照后出现不同程度的衰减。

硅片中的硼、氧含量越大,在光照或电流注入条件下产生硼氧复合体越多,少子寿命降低的幅度就越大,引起电池转换效率下降。

(1)试验条件及试验步骤试验的条件:A组采用经过初始光照的电池片,B组采用未经初始光照的电池片,A组和B组使用同样的玻璃、EVA、背板和同样的封装工艺。

生产出的所有组件经红外隐形裂纹检测仅探测,并采用3A级脉冲模拟仪测试组件I-V曲线,确定组件完好无损,各选择5块进行试验,电池片经过初始光照的组件采用"A·x"进行编号,电池片未经始光照的组件采用"B-x"进行编号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于光伏组件功率衰减分析研究
发表时间:2018-08-06T15:19:54.707Z 来源:《电力设备》2018年第11期作者:李宁良罗婷吴月旺曹红亮周芬肖琳
[导读] 摘要:多晶硅光伏组件在使用过程中会出现不同程度的功率衰减现象。

(湖南兴业太阳能科技有限公司 411201)
摘要:多晶硅光伏组件在使用过程中会出现不同程度的功率衰减现象。

组件功率的衰减可分为三类:由破坏性因素导致的组件功率骤然衰减、组件初始的光致衰减、组件的老化衰减。

本文主要研究分析了导致组件初始的光致衰减和组件的老化衰减原因,并通过试验结果得到验证,提出降低组件功率衰减的改进方案。

关键词:光伏组件;输出功率;初始衰减;老化衰减
随着光伏电站运营时间的不断增长,发电量会发生不同程度的减少,光伏组件是光伏发电的核心部件,光伏组件发电功率衰减直接影响到整个光伏电站的发电效率。

目前,我国大多数集中式光伏电站未定期开展光伏组件功率衰减的测试工作,部分开展测试工作的光伏电站出于保密很少公开数据,这不利于光伏组件功率衰减特性的研究。

相比德国、美国、日本等光伏应用较早的国家,我国在数据统计、长期跟踪、检测检验、加速老化测试等方面的研究相当匮乏。

本文介绍了光伏组件发电功率衰减测试的标准及方法,并对光伏组件发电功率衰减测试工作进行了展望。

1.光伏组件发电功率衰减测试标准
按照光伏产业链来划分,光伏标准大致可以分为基础通用标准、光伏制造设备标准、光伏材料标准、光伏电池和组件标准、光伏部件标准、光伏系统标准和光伏应用标准七大类。

中国现行有效的光伏标准共计120项,其中国家标准72项,行业标准41项,其他标准7项,已形成了光伏产业标准体系的基本框架,现行的光伏标准主要集中在太阳能电池和组件标准、电池基体材料标准以及应用标准方面,光伏设备标准、光伏材料标准、光伏部件标准和光伏应用标准以自主制定为主,而电池和组件标准以及光伏系统标准以转化IEC标准为主,光伏组件发电功率衰减测试标准主要参考国际电工委员会标准IEC60904、IEC61215与IEC61852。

太阳能组件的产品标准和检测标准的制订、修订情况严重滞后于产业实际发展需求,衡量光伏质量关键因素的组件衰减率标准在中国仍处于缺失状态。

2.研究思路与测试方案
2.1研究思路
研究思路主要从考虑光伏组件受到多种环境因素的影响着手,如标准太阳光辐照、强紫外光辐照、温度、湿度等。

因为环境因素太复杂,相互影响因素太多,获得有效评定光伏组件2年衰减率(甚至是25年使用质量保证)的模型公式是相当困难的,所以该方案引入类似IEC61215中设定一个标准条件来对组件功率进行测试的方式,同样对光伏组件的寿命制定一个“标准测试方法和程序”进行评定。

建立一个统一的标杆(见测试程序)区分组件的质量,然后在后期的工作中考虑各种环境因素、各种材料因素,再通过实验室的模拟与户外数据的拟合来建立组件功率衰减率的模型。

2.2气候环境对光伏组件材料的影响
通过实验室内模拟各种复杂气候环境,同时结合业界相关机构与企业的经验积累,及国内外相关文献,得出气候环境对光伏原辅材料的影响因素主要为:1)太阳光曝晒:易造成电池片效率正常的光致衰减。

2)紫外老化:易造成EV A黄变、密封胶脆化、背板老化等封装失效。

3)动态机械载荷:易造成电池片隐裂。

4)高低温变化:易造成焊接电路连接失效,电池片隐裂加剧,接线盒和组件连接失效。

5)湿热和湿冻:易造成玻璃雾化、封装失效、腐蚀、接线盒和组件连接失效。

6)电势诱导衰减PID:易造成湿热地区组件实际使用中的系统电压引起的电池片失效。

7)热斑:易造成组件局部发热过大引起的热斑失效。

8)二极管热性能:易造成二极管过热导致压降过大,漏电流过高。

2.3测试程序
根据上述主要环境影响因素,并参照IEC组件产品的相关标准,设计了测试方案(见表2),
注:表格中测试项目条件参数参考IEC61215、IEC61646、IEC62782、IEC61730-2标准的要求
以评定组件在多种环境条件下的寿命可靠性。

每个序列的目的及意义说明如下:(1)第一序列为参考组件的控制序列,其他序列的组件衰减率是和参考组件比较得来。

(2)第二序列主要考核的是材料老化与封装失效,IEC61215中规定紫外辐照量为15kwh/m2,湿冻试验的循环次数为10次,然而在大量试验后得出上述老化量不够,甚至不衰减。

该方案考虑一定的严酷程度选择紫外辐照总量为30kwh/m2,湿冻试验循环20次。

(3)第三序列主要考核的是电势诱导衰减PID衰减和耐受性,PID现象是近年来被广泛关注的光伏组件失效现象,是导致光伏组件衰减的很大诱因,测试要求为温度85℃,湿度85%,试验时间96h,1000V电压反向连接。

所以有必要将该测试方法加入方案。

使用IEC62782中的动态载荷试验,更能够符合组件运用的实际情况。

2.4实验室加速老化测试法
在常规户外环境下,环境应力因素对光伏组件性能的影响较缓慢,需长时间观察、测试、收集才能反馈组件存在的质量问题。

为了在较短时间内,通过合理的方法、途径发现光伏组件存在的潜在问题,加速老化试验被引入到光伏组件的质量测试及寿命评估方面,并得到了不断发展。

实验室加速老化测试方法是利用环境试验箱模拟户外实际运行时的辐照度、温度、湿度等环境条件,并对相关参数进行加严
或者加倍等控制,以实现在较短时间内加速组件老化衰减的目的。

加速老化测试完成后,在标准测试条件下,对试验组件进行功率测试,依据衰减率计算公式,得出光伏组件发电性能的衰减。

标准测试的目的是为了更快地发现在环境中可能出现的失效或者衰减现象,也反映了快速反馈设计方案在产品生产设计开发中的相对优势和可接受性。

现有光伏组件加速试验基本上都是基于IEC61215的试验参数,某些环节的试验参数需根据实际情况进一步调整来反映光伏组件在现实环境中经受的各种应力考验。

3.结果与讨论
本次实验所用组件均来自国内知名品牌,共选取了3种组件以研究不同组件在加速模拟情况下的衰减情况,其中A系列为多晶156×72片组件,B系列为多晶156×60片组件,C系列为单晶125×72片组件。

所有组件试验之前,均按照IEC61215标准进行了5kWh曝晒的预处理。

本文以平均功率和衰减百分比来表示组件经过3组测试程序之后的衰减情况,其结果如表1所示。

在进行第三测试序列(即PID测试96h和机械动态载荷100次)测试时,发现经过PID测试之后A系列和B系列衰减较大,没有继续进行动态载荷测试,C系列组件进行了PID和动态载荷试验之后衰减仅为1.28%。

表7数据表明,第三测试序列对组件衰减影响最大,尤其是A系列多晶硅组件。

同时我们发现C系列单晶硅组件在三组序列测试过程中衰减均为最少,这与实际户外运行情况是不符的,后续需要继续验证。

此外,在第二序列测试过程中,我们发现前期的紫外照射对组件衰减的贡献最大。

展望
目前,我国集中式光伏电站大都未开展光伏组件功率衰减的测试工作,部分开展测试工作的光伏电站出于保密很少公开数据,这不利于光伏电站光伏产业的健康发展。

电网企业应引导光伏电站开展常态化光伏组件功率衰减测试工作。

对于光伏组件发电功率衰减特性的研究,实验室加速老化测试方法有其自身的局限性,对光伏组件所处的自然环境不能有效模拟,不能真实的反映功率衰减特性。

依托第三方检测实验机构进行实地测试,费用高、试验周期长,而且部分光伏电站管理松弛,不愿意或未开展常态化光伏组件功率衰减测试工作。

十三五期间,我国光伏产业进入高速发展期,为了更好地研究光伏组件发电功率衰减特性,需要对运行光伏电站的光伏组件功率衰减特性进行长期跟踪、检验测试、数据统计分析。

建议对光伏组件功率衰减测试的方法、流程、要求和衰减率指标进行统一规范,尽快出台国家或行业标准。

光伏发电企业应加强光伏电站运维管理,组织自己的检测力量,或依托第三方检测机构,定期开展光伏组件衰减特性测试工作,建立光伏组件功率衰减试验数据库,促进数据资源共享,为开展衰减特性研究、促进光伏产业发展提供数据支撑。

参考文献:
[1]孙晓,王庚,恽旻,等.关于光伏组件标准中功率衰减指标的研究〔J〕.标准科学,2015,52(4):50-53.
[2]王欢.IEC61853标准光伏组件测量方法研究〔D〕.北京:北京交通大学,2015.
[3]郑海兴,余荣斌,舒碧芬,等.光伏组件加速试验应用现状及发展趋势〔J〕.太阳能,2013(11):45-49.。

相关文档
最新文档