正比例函数复习1
《正比例函数与一次函数》知识点归纳

《正比例函数与一次函数》知识点归纳《正比例函数》知识点表达式:y=kx (心0的常数)图像:正比例函数y=kx的图像是:一条经过(0,0)和(1,说明:正比例函数y=kx的图像也叫做“直线y=kX';性质特征:1、图像经过的象限:k>0时,直线过原点,在一、三象限;k<0时,直线过原点,在二、四象限;增减性及图像走向:k>0时,y随x增大而增大k<0时,y随x增大而减小,直线从左往右由高降低;,直线从左往右由低升高;1、y与x成正比例:y=kx (k工0);2、y 与x+ a 成正比例:y=k(x + a)(k 工0);3、y + a与x成正比例:y + a=kx (k工0);4、y + a 与x+ b 成正比例:y + a= k(x + b)(k 工0);《一次函数》知识点表达式:y=kx+b (心0, k, b为常数)注意:(1)k M0,自变量x的最高次项的系数为1 ;(2)当b=0时,y=kx,y叫x的正比例函数。
四、成正比例关系的几种表达形式:的直线;2、、图像:一次函数y=kx+b (k丰0, b丰0)的图像是:一条经过(」,0)和k (0, b)的直线。
说明:(1)一次函数y=kx+b (k工0, b工0)的图像也叫做“直线y=kx+b” ;(2)直线y=kx+b与x轴的交点坐标是:(-丄,0);k直线y=kx+b与y轴的交点坐标是:(0,b).三、性质特征:1、图像经过的象限:(1)、k>0, b>0时,直线经过一、二、三象限;(2)、k>0, b< 0时,直线经过一、三、四象限;(3)、k < 0,b>0时,直线经过一、二、四象限;(4)、k < 0, b < 0时,直线经过二、三、四象限;b/02、增减性及图像走向:k>0时,y随x增大而增大,直线从左往右由高降低;k<0时,y随x增大而减小,直线从左往右由低升高;3、一次函数y=kx+b (k工0, b工0)中“ k和b的作用”:(1)k的作用:k决定函数的增减性和图像的走向k>0时,y随x增大而增大,直线从左往右由高降低;k<0时,y随x增大而减小,直线从左往右由低升高;(2)I k I的作用:l k I决定直线的倾斜程度I k I越大,直线越陡,直线越靠近y轴,与x轴的夹角越大;I k I 越小,直线越平缓,直线越远离 y 轴,与x 轴的夹角越小;(3) b 的作用:b 决定直线与y 轴的交点位置b>0时,直线与y 轴正半轴相交(或与y 轴的交点在x 轴的上方);b <0时,直线与y 轴负半轴相交(或与y 轴的交点在x 轴的下方);(4) k 和b 的共同作用:k 和b 共同决定直线所经过的象限四、 直线的平移规律:直线y=kx+b 可以由直线y=kx 平移得到当b>0时,将直线y=kx :向上平移b 个单位得到直线y=kx+b ;当b < 0时,将直线y=kx :向下平移I b I 个单位得到直线y=kx+b ;五、 两条直线平行和垂直: 直线 m y=ax+b;直线n: y=cx+d(1)当a=c , b M d 时,直线m//直线n,反之也成立;例如:直线y=2x+3与直线y=2x-5都与直线y=2x 平行。
正比例函数知识点整理

正比例函数知识点整理一、正比例函数的定义。
1. 定义形式。
- 一般地,形如y = kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数。
例如y = 2x,y=(1)/(3)x都是正比例函数,这里k = 2和k=(1)/(3)分别是它们的比例系数。
2. 对定义的理解。
- 函数表达式必须是y = kx这种形式,x的次数为1,且不能有其他项。
比如y = 2x+1就不是正比例函数,因为它多了常数项1;y=x^2也不是,因为x的次数是2。
- k不能为0,如果k = 0,那么函数y = 0× x=0,它是一个常数函数,而不是正比例函数。
二、正比例函数的图象与性质。
1. 图象。
- 正比例函数y = kx(k≠0)的图象是一条经过原点(0,0)的直线。
- 当k>0时,例如y = 2x,图象经过一、三象限,从左向右上升;当k < 0时,比如y=-2x,图象经过二、四象限,从左向右下降。
2. 性质。
- 增减性。
- 当k>0时,y随x的增大而增大。
例如在y = 3x中,如果x_1 = 1,y_1 = 3×1 = 3;当x_2=2时,y_2 = 3×2 = 6,因为2>1且6 > 3,所以y随x增大而增大。
- 当k < 0时,y随x的增大而减小。
例如在y=-2x中,若x_1 = 1,y_1=-2×1=-2;当x_2 = 2时,y_2=-2×2=-4,因为2 > 1且-4<-2,所以y随x增大而减小。
- 倾斜程度。
- | k|越大,直线越靠近y轴,即直线越陡。
例如y = 5x比y = 2x的图象更陡,因为|5|>|2|;y=-5x比y=-2x的图象更陡,同样是因为| - 5|>|-2|。
三、正比例函数解析式的确定。
1. 方法。
- 因为正比例函数y = kx(k≠0),只需要知道一个点的坐标(除原点外)就可以确定k的值,从而确定函数解析式。
第4讲 函数的复习(讲义)原卷版

第4讲 函数的复习模块一:正反比例函数知识精讲1、正比例函数:y =kx (k ≠0);图像是一条直线,与坐标轴仅有一个交点;k >0时,随着x 的逐渐增大,函数值y 的值越来越大;k <0时,随着x 的逐渐增大,函数值y 的值越来 越小.2、反比例函数:k y x=(k ≠0),图像是双曲线,与坐标轴无交点;k >0时,在每一象限内, 随着x 的逐渐增大,函数值y 的值越来越小;k <0时,在每一象限内,随着x 的逐渐增 大,函数值y 的值越来越大.例题解析例1.下列函数(其中x 是自变量)中,是正比例函数的是( )A .y=2xB .y=(xC .D .y=1x例2.如果()2(3)9y k x k =-+-是正比例函数,那么k =______. 例3(1)正方形的周长c 与正方形的对角线长a _______正比例(填“成”或“不成”);(2)已知正比例函数的自变量x 减少2时,对应函数的值增加3,则这个函数的解析式为________________.例4(1)如果y =kx +2k +x 是正比例函数,求k 的值;(2)如果253(1)mm y m x -+=-是反比例函数,求m 的值.例5(1)正比例函数2231()mm y m m x -+=-经过第___________象限,y 随x 增大而_________; (2)反比例函数2231()mm y m m x -+=-经过第___________象限,在同一象限内,y 随x 增大而_________.例6.已知正比例函数y =k 1x ,函数值y 随着x 的增大而减小,反比例函数y =2k x (k 2<0),它们在同一直角坐标系中的图象大致是().例7.已知12y y y =-,1y 与x 成正比例,2y 与()2x -成反比例,当2x =-时,7y =-;3x =时,13y =.求:y 关于x 的函数解析式例8.已知正比例函数的图像上一点P 的横坐标是2,作PD ⊥x 轴(O 是坐标原点,D 是垂足),∆OPD 的面积是6,求这个正比例函数的解析式.例9.已知如图,点A ,B 是反比例函数y =3x图像上的点,分别经过A ,B 两点向x 轴、y 轴做垂线段,若121s s s =+=阴影,则_________(12s s ,指的是空白矩形的面积).例10.已知A (0,4)、B (6,4)、C (6,0)三点,经过原点的一条直线把矩形OABC 的面积分成1:2两部分,求这条直线的函数解析式.例11.在平面直角坐标系中,O 为坐标原点,点A 的坐标为(1,0),在直线y =上取一点P ,使得∆OAP 是等腰三角形,求所有满足条件的点P 的坐标.例12.已知如图,矩形OABC 的顶点B (m ,2)在正比例函数12y x =的图像上,点A 在x 轴上,点C 在y 轴上,反比例函数的图像过BC 边上点M ,与AB 边交于点N ,且BM =3CM ,求此反比例函数的解析式及点N 的坐标.例13.正比例函数1y k x =的图像与反比例函数2k y x=的图像相交于点A 、B (如图),点A 在第一象限,且点A 的横坐标为1,作AD x ⊥轴,垂足为D 点,1AOD S ∆=.(1)求点A 的坐标;(2)求这两个函数的解析式;(3)如果OAC ∆是以OA 为腰的等腰三角形,且点C 在x 轴上,求点C 的坐标.例14.如图所示,已知正方形ABCD 的边长是3厘米,动点P 从点B 出发,沿BCDA 方向运动至点A 停止.点P 的运动的路程为x 厘米,∆ABP 的面积为y 平方厘米.(1)当点P在BC上运动时,求y关于x的解析式及定义域;(2)当点P在CD上运动时,求y关于x的解析式及其定义域;(3)当x取何值时,∆ABP的面积为1.5平方厘米?模块二:一次函数知识精讲1.函数的概念和图像及性质(1)定义:解析式形如 (0)y kx b k=+≠的函数叫做一次函数.(2)一次函数的图象满足:①形状是一条直线;②始终经过(0,b)和(bk-,0)两点;(3)定义:直线 (0)y kx b k=+≠与y轴的交点坐标是( 0 , )b,截距是b;(4)一次函数 (0)y kx b k=+≠,当0k>时,函数值y随自变量x的值增大而增大;当0k<时,函数值y随自变量x的值增大而减小.2.函数的应用(1)实际问题;(2)数形结合类.例题解析例1(1)已知一次函数y kx b =+,当x =-3时,y =1;当x =2时,y =-6,求这个一次函数的解析式;(2)已知一次函数y =f (x ),且f (-1)=-3,f (1)=1,求函数f (x )的解析式.例2(1)若一次函数y =k (1-x )+3的图像在y 轴上的截距是-5,求这个函数解析式;(2)若一次函数2(2)(4)y k x k =-+-的图像经过原点,求k 的值.例3(1)若直线y =kx +b 与直线y =-2x +4无交点,且直线y =kx +b 与x 轴的交点是 (3,0),求此函数解析式;(2)已知一次函数的图像经过点(1,-2)、(-2,1).求这个一次函数的解析式.例4(1)若把函数13y x =-的图像向下平移4个单位,再向右平移2个单位,求平移 后的函数解析式;(2)若一次函数的图像向下平移4个单位,再向右平移2个单位得到的函数解析式是13y x =-,求平移前的函数解析式.例5.已知直线y =kx +4经过点P (1,m ),且平行于直线y =-2x +1,它与x 轴相交于点A ,求∆OPA 的面积.例 6.已知一次函数y kx b =+的自变量的取值范围是26x -≤≤,相应的函数值的范围是119y -≤≤,求这个函数的解析式.例7.已知直线l 过点(-2,4),且与两坐标轴围成一个等腰三角形,(1)求这个一次函数的解析式;(2)所得三角形的周长及面积.例8.某中学初二年级准备购买10只米奇品牌的笔袋,每只笔袋配x (x ≥3)支水笔作为奖品.已知A 、B 两家超市都有这个牌子的笔袋和水笔出售,而且每只笔袋的标价都为20元,每只水笔的标价都为1元,现两家超市正在促销,A 超市所有商品均打九折销售,而B 超市买1只笔袋送3支水笔,若仅考虑购买笔袋和水笔的费用,请解答下列的问题:(1) 如果只在某一家超市购买所需笔袋和水笔,那么去哪家超市购买更合算?(2) 当x =12时,请设计最省钱的购买方案.例9.若直线y kx b =+过35y x =-与210y x =-+的交点A ,y kx b =+与y 轴于B ,210y x =-+交x 轴于C ,若=12ABC S ∆,求直线y =y kx b =+的解析式.模块三:综合例题解析例1.已知反比例函数(0)k y k x=≠和一次函数21y x =-,其中一次函数的图像经过点(k ,5).(1) 试求反比例函数的解析式;(2) 若点A 在第一象限,且同时在上述两个函数的图像上,求点A 的坐标.例2.如图,一次函数(0)y kx b k =+≠的图像与x 轴、y 轴分别交于点A 、B 两点,且与反比例函数(0)m y m x=≠的图像在第一象限交于C 点,CD 垂直于x 轴,垂足为D .若OA =OB =OD =1.(1) 求点A 、B 、D 的坐标;(2) 求一次函数和反比例函数的解析式.例3.如图,一次函数(0)y kx b k=+≠的图像与与反比例函数8yx=-的图像交于A、B两点,且点A的横坐标和点B的纵坐标都是-2,求:(1)一次函数的解析式;(2)∆AOB的面积.例4.已知点A(m,2m)(其中m>0)在双曲线8yx=上,直线y=kx+b过点A,并且与坐标轴正方向所围成的三角形的面积是18,求直线的解析式.例5.已知一次函数与反比例函数的图像交于点P(-3,2)、Q(2,-3).(1)求这两个函数的函数解析式;(2)在给定的直角坐标系中,画出这两个函数的大致图像;(3)当x为何值时,一次函数的值大于反比例函数的值?当x为何值时,一次函数的值小于反比例函数的值?例6.已知一次函数(2)23=-+-;y m x m(1)求证:无论m取何实数,函数的图像恒过一定点;(2)当x在12≤≤内变化时,y在45x≤≤内变化,求m的值.y随堂检测1.(1)y与x成正比例,且x=4时,y=-4,那么y与x之间的函数关系式为__________;(2)y +1与z 成正比例,比例系数为2,z 与x -1成正比例,当x =-1时,y =7,那么y与x 的函数关系式为____________ 2.已知y -3与x 成正比例,且x =2时,y =7.(1) 写出y 与x 的函数关系式;(2) 计算x =4时y 的值;(3) 计算y =4时x 的值.3.已知正比例函数(0)y kx k =>的图像上有两点且11(,)A x y ,22(,)B x y ,且x 1>x 2,则y 1与y 2的大小关系是( )A .12y y <B .12y y >C .12y y =D .不能确定.4.下列四个函数中,是一次函数的是( )A .21y x =+B .y x =C .21y x =+D .1y =5.下列函数中,y 随x 的增大而减少的函数是( )A .y =-2xB .y =1xC .y =1x -D .y =2x6.已知正比例函数1y k x =中,y 随x 的值的增大而减小;反比例函数2k y x=中,在每一个象限内,y 随x 的值的增大而增大,那么这两个函数在同一坐标系内的大致图像可能是( )A .B .C .D .7.在一次函数y=ax-a 中,y 随x 的增大而减小,则其图像可能是( )A .B .C .D .8.一次函数y mx n =+的图像如图所示,那么下列说法正确的是( )A .当0x >时,2y >-B .当1x ≥时,0y ≤C .当1x <时,0y >D .当0x <时,20y -<<二、填空题9.平面直角坐标系中,点A 坐标为(2),将点A 沿x 轴向左平移m 个单位后恰好落在正比例函数y =﹣的图象上,则m 的值为_____.10.已知函数2y mx m m =++为正比例函数,则常数m 的值为______. 11.如果正比例函数的图像经过点(4,2)-,则它的解析式为___________.12.正比例函数()21y k x =+的图像经过第二、四象限,则k ______.13.直线y kx b =+与直线5y x =-平行,并且直线与y 轴交点到原点的距离是2,则这条直线的解析式为____.14.如图,已知正比例函数图像经过点A (2,3),B (m ,6).(1)求正比例函数的解析式及m 的值;(2)分别过点A 与点B 作y 轴的平行线,与反比例函数在第一象限内的分支分别交于点C 、D (点C .D 均在点A 、B 下方),若BD =5AC .求反比例函数的解析式.15.如图,一次函数y kx b =+的图像与反比例函数m y x=的图像相交于()2,2A 、()1,4B --两点.(1)求出两函数解析式;(2)根据图像回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值?(3)连接AO 、BO ,试求AOB ∆的面积.16.如图,在梯形ΑBCD 中,ΑB =CD =5,ΑD =7,BC =13,E 为ΑD 上一定点,ΑE =4, 动点P 从D 出发沿着DC 向C 点移动,设点P 移动的距离为x ,∆ΑPE 的面积为y , 求y 与x 的函数解析式,并画出图象.17.在平面直角坐标系中,函数y =2x +12的图像分别交x 轴、y 轴于A 、B 两点.过 点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.A B CDE PM N(1) 求直线AM 的解析式;(2) 试在直线AM 上找一点P ,使得ABP AOB S S ∆∆=,求出点P 的坐标.18.如图,在直角梯形COAB 中,CB ∥OA ,以O 为原点建立直角坐标系,A 、C 的坐标分别为A (10,0)、C (0,8),CB =4,D 为OA 中点,动点P 自A 点出发沿A →B →C →O 的线路移动,速度为1个单位/秒,移动时间为t 秒.(1)求AB 的长,并求当PD 将梯形COAB 的周长平分时t 的值,并指出此时点P 在哪条边上;(2)动点P 在从A 到B 的移动过程中,设△APD 的面积为S ,试写出S 与t 的函数关系式,并指出t 的取值范围;(3)几秒后线段PD 将梯形COAB 的面积分成1:3的两部分?求出此时t 的值?。
19.2.1 正比例函数

19.2.1正比例函数知识要点基础练知识点1正比例函数的定义1.下列式子中,表示y是x的正比例函数的是(B)A.y=x-1B.y=2xC.y=2x2D.y2=2x2.若y=x+2-b是正比例函数,则b的值是(C)A.0B.-2C.2D.-0.53.若y关于x的函数y=(m-2)x+n是正比例函数,则m,n应满足的条件是(A)A.m≠2且n=0B.m=2且n=0C.m≠2D.n=0知识点2正比例函数的图象4.函数y=3x的图象经过(A)A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限5.已知正比例函数y=mx的图象经过点(3,4),则它一定经过(B)A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限知识点3正比例函数的性质6.如图,三个正比例函数的图象对应的解析式为:①y=ax,②y=bx,③y=cx,则a,b,c的大小关系是(B)A.a>b>cB.c>b>aC.b>a>cD.b>c>a7.已知关于x的正比例函数y=(m+2)x,若y随x的增大而增大,则m的取值范围是m>-2.综合能力提升练8.已知正比例函数y=kx,当x每增加3,y就减小4,则k的值为(D)A.34B.-34C.43D.-439.已知函数y=(a-1)x的图象过第一、三象限,那么a的取值范围是(A)A.a>1B.a<1C.a>0D.a<010.关于函数y=2x,下列结论中正确的是(C)A.函数图象经过点(2,1)B.函数图象经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>011.如果y=(1-m)x m2-2是正比例函数,且y随x的增大而减小,则m的值为(B)A.m=-√3B.m=√3C.m=3D.m=-312.结合函数y=-2x的图象回答,当x<-1时,y的取值范围是y>2.13.若点A(m,n)在直线y=kx(k≠0)上,当-1≤m≤1时,-1≤n≤1,则这条直线的函数解析式为y=x或y=-x.14.已知正比例函数y=kx的图象经过点(3,-6).(1)求这个函数的解析式;(2)判断点A(4,-2)是否在这个函数图象上;(3)图象上有两点B(x1,y1),C(x2,y2),如果x1>x2,比较y1,y2的大小.解:(1)∵正比例函数y=kx经过点(3,-6),∴-6=3k, 解得k=-2,∴这个正比例函数的解析式为y=-2x.(2)将x=4代入y=-2x得y=-8≠-2,∴点A(4,-2)不在这个函数图象上.(3)∵k=-2<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.拓展探究突破练(k为非零的常数),y2与x2成正比例.求证:y与x也成正比例.15.已知y=y1y2,其中y1=kx证明:∵y2与x2成正比例,∴y2=k2x2.∵y=y1y2,∴y=k×k2x2=kk2x,且kk2≠0,即y与x也成正比例.x。
正比例函数和反比例函数复习一、二、三

y =5,求当 x =5 时 y 的值。
3、如图所示,在反比例函数图像上有一的点 A,AB⊥X 轴,三角形 AOB 的 面积为 10,求反比例函数的解析式.
y A B O x
4、 如图所示的双曲线是函数 y= 3)是图象上一点。 (1)求这个函数解析式
k (k 0) 在第一象限内的图像,A(4, x
0
C
A E x B D F y C
5
3、如图,已知:在△ABC 中,∠C= 90
, B 30 , AC 6 ,点 D、E、F 分别在边 BC、AC、AB 上(点 E、
F 与△ABC 顶点不重合) ,AD 平分∠CAB,EF⊥AD,垂足为 H. (3 分)(1)求证:AE=AF; (3 分) (2)设 CE=x,BF=y,求 y 与 x 的函数解析式,并写出定义域; (4 分) (3)当△DEF,是直角三角形时,求出 BF 的长.
A F E
B
D
C
课后练习 1.解方程: x
2
6 x 18 0
2.解方程:
(3 x ) 2 x 2 9
3.解不等式: 2 x
10 > 5 x 2
6
4.已知正比例函数的图像经过点( 2 ,8) ,经过图像上一点 A 作 求: (1)点 A 坐标(2) AOB 的面积。
3. 已知在 y=
8 x
(x>0)反比例函数的图象上有不重合的两点 A、
B,且 A 点的纵坐标是 2,B 点的横坐标为 2,且 AB⊥OB,CD⊥OD, 求(1)双曲线的函数解析式; (2)△OAB 的面积; (3)△OAC 的面积。
4、 上海磁悬浮列车在一次运行中速度 V(千米/小时)关于时间 t(分钟)的函数图像如图,回答下列问 题。 (1) (2) (3) (4) 列车共运行了_______分钟 列车开动后,第 3 分钟的速度是__________千米/小时。 列车的速度从 0 千米/小时加速到 300 千米/小时,共用了_________分钟。 列车从___________分钟开始减速。
正比例反比例函数复习

正比例函数和反比例函数一、知识要点1.如果变量y是自变量x的函数,对于x在定义域内取定的一个值a ,变量y的对应值叫做当x=a时的函数值。
(为了深入研究函数,我们把“y是x的函数”用记号y=f(x)表示,这里括号里的x表示自变量,括号外的字母f表示y随x变化而变化的规律。
f(a)表示当x=a时的函数值)2.函数的自变量允许取值范围,叫做这个函数的定义域。
3.正、反比例函数的解析式、定义域、图像、性质4.函数的表示法有三种:列表法,图像法,解析法。
二、课堂练习1.油箱中有油60升,油从管道中匀速流出,1小时流完,求油箱中剩余油量Q(升)与流出时间t(分钟)间的函数关系式为__________________,•自变量的范围是_____________.当Q=10升时,t=_______________。
2.在函数xxy+-=12中,自变量x的取值范围是。
3.一棵小树苗长10cm,从发芽起每年长高3cm,则x年后其高度y关于x的函数解析式为_________,y___(填“是”或“不是”)x的正比例函数.4.观察下图中各正方形图案,每条边上有n(n≥2)个圆圈,每个图案中圆圈的总数是s。
按此规律推断出s与n的关系式为。
正比例函数反比例函数解析式y=kx(k≠0)y=xk(k≠0)图像经过(0,0)与(1,k)两点的直线经过(1,k)与(k,1)两点的双曲线经过象限当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。
当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。
增减性当k>0时,y随着x的增大而增大;当k<0时,y随着x的增大而减小。
当k>0时,在每个象限内,y随着x的增大而减小;当k<0时,在每个象限内,y随着x的增大而增大。
5. 已知等腰三角形的周长为12,设腰长为x ,底边长为y ,则y 关于x 的函数解析式,及自变量x 的取值范围__________________6. 若点P(3,8)在正比例函数y=kx 的图像上,则此正比例函数解析式是________________。
人教版八年级下册数学《正比例函数》一次函数教学说课复习课件(第1课时正比例函数的概念)

(2)如果y=kxk-1是y关于x的正比例函数,则
k=____.
2
(3)如果y=3x+k-4是y关于x的正比例函数,则
k=_____.
4
(4)若 y (m 2) xm 3 是关于x的正比例函数,
2
m= -2
.
3.若y关于x成正比例函数,当x=2时,y=-6.
(1)求出y与x的解析式;
1
2
直线y=- x,y=-4x向右逐
渐 下降 ,即y的值随x的增
大而减小.
归纳
当k>0时,直线y=kx经过第一、第三象限,
从左向右上升,即随着x的增大y也增大;
当k<0时,直线y=kx经过第二、第四象限,从
左向右下降,即随着x的增大y反而减小.
例3 已知函数 y= 2x, 点A(3,y1)和点B (6,y2)在函
数图象上,则y1 < y2(填“>”或“<”).
变式练习:已知函数 y= 2x ,点A(1 ,1 )和点B (2 , 2 )
在函数图象上,若1 < 2 ,则1
2 (填“>”或
“<”).
<
想一想
(1)正比例函数y=x和y=3x中,随着x值的增大y的
值都增加了,其中哪一个增加得更快?你能说
D
2.对于正比例函数y =kx,当x 增大时,y 随x 的增大而增大,则
k的取值范围 ( C )
A.k<0
B.k≤0
C.k>0
D.k≥0
3、函数y=-7x的图象在 第二、第四象限内,从左向右 下降 ,
y随x的增大而 减少 .
函数y=7x的图象在 第一、第三象限内,从左向右 上升 ,
《19.2正比例函数》同步复习资料【含解析】.doc

《19・2正比例函数》同步复习资料一. 选择题(共10小题)1.下列问题屮,是正比例函数的是( )A. 矩形而积固定,长和宽的关系B. 正方形面积和边长之间的关系C. 三角形的面积一定,底边和底边上的高之间的关系D. 匀速运动中,速度固定时,路程和时间的关系 2.已知函数尸3m ) x 是正比例函数,且y 随x 的增大而增大,那么m 的取值范围是( )6.已知正比例函数y 二kx (kHO ),当x=- 1时,y=-2,则它的图象大致是()A. 第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限设正比例函数y=mx 的图象经过点A(m, 4), 且y 的值随x 值的增大而减小,则m=(A- 2 B ・-2 C. 4 D. - 49.若正比例函数的图象经过点(2,・3),则这个图象必经过点()A. ( - 3, - 2)B. (2, 3) C ・(3, - 2) D. ( - 2, 3) 10.对于函数y= - k 2x (k 是常数,kHO )的图象,下列说法不正确的是()A.是一条直线B.过点(丄,-k )kC.经过一、三象限或二、四象限D. y 随着x 增大而减小A. m>—B. m<— 3 3C. m>l D ・ mVl7. 一次函数y=-x 的图象平分( )3. 4. 5. 若y= (m - 2) x+ (m 2 - 4)是正比例函数,则m 的取值是()A. 2B. - 2C. ±2 D ・任意实数若函数y= (3・m ) x ^-8是正比例函数,则m 的值是()A.・ 3B. 3C. 土3 D ・・ 1如图:三个正比例函数的图彖分别对应的解析式是①y=ax,②y=bx,③y 二ex,A. a>b>cB. c>b>aC. b>a>cD. b>c>a8・ )二.填空题(共10小题)11.已知函数x m2-3是正比例函数,且图彖在第二、四彖限内,则m的值是_・12.已知正比例函数y= (1-m) x m'21,且y随x的增大而减小,则m的值是—.13.若点P (1, n), Q (3, n+6)在正比例函数y二kx的图彖上,则心__________ .14.已知正比例函数y= (5m-3) x,如果y随着x的增大而减小,那么m的取值范围为_.15.某函数具有下列两条性质:(1)它的图彖是经过原点(0, 0)的一条直线;(2)y的值随着x值的增大而减小,请你举出一个满足上述两个条件的函数(用关系式表示)—.16.已知点A (1, -2),若A, B两点关于x轴对称,则B点的坐标为_.若点(3, n)在函数y= - 2x的图象上,则n=____ ・17.已知y与x成正比例,当且x=・JL时,y二・6,则y与x之间的函数关系式是_・18.已知y与x+1成正比例,且x=l时,y=2.则x= - 1时,y的值是_______ .19.如果点Pi (・a, 3)和P2 (1, b)关于y轴对称,则经过原点和点A (a, b)的直线的函数关系式为 _______________ .20.已知正比例函数图象上的点到x轴的距离与到y轴距离的比为2: 3,则函数的解析式为—.三.解答题(共10小题)21.已知y-2与x成正比例,且x=2时,尸-6.求:(1)y与x的函数关系式;(2)当y=14时,x的值.22."与x+l成正比例,丫2与x - 1成正比例,y=yi+y2»当x=2时,y=9;当x=3时,y=14;求y与x的函数解析式.23.己知正比例函数丫=1^的图象过点P (3, -3).(1)写出这个正比例函数的函数解析式;(2)已知点A (a, 2)在这个正比例函数的图象上,求a的值.24.将正比例函数图象y= - —X向右移动4个单位,求解析式;再作它关于直线y=5的对称图,写出解析式. 325.己知,正比例函数的图象经过点(-2, 1).(1)求这个正比例函数的解析式;(2)点A在函数图象上,过A作AB丄x轴,垂足为B,若S UOB=4,求点A的坐标.26.已知正比例函数y=kx (k是常数,kHO), 口当・3WxWl时,对应的y值的取值范围是・10寻,求k的值.27.已知正比例函数y二kx图象经过点(3, - 6),求:(1)这个函数的解析式;(2)判断点A (4,・2)是否在这个函数图象上;(3)图象上两点B(Xi,y1)^ C(X2,丫2),如果Xi>x2»比较%,丫2的大小.28.已知:如图,正比例函数的图象经过点P和点Q (・m, m+3),求m的值.29.某正比例函数的图象经过点M ( -2, 4).(1)求此正比例函数的关系式;(2)在平面直角坐标系上作出此函数的图象;(3)若点C (a, 3), D(V2,b)都在此直线上,试分别求a, b的值.30.已知正比例函数图象上一个点A在x轴的下侧,y轴的右侧,距离x轴4个单位长度,距离y轴2个单位长度,求该正比例函数的表达式.«19.1正比例函数》同步复习资料参考答案与试题解析一.选择题(共10小题)1.(2016春•扶沟县期末)下列问题中,是正比例函数的是()A.矩形面积固定,长和宽的关系B.正方形面积和边长Z间的关系C.三角形的面积一定,底边和底边上的高之间的关系D.匀速运动中,速度固定时,路程和时间的关系【解答】解:A、TSFb,・・・矩形的长和宽成反比例,故本选项错误;B、V S=a2, A正方形面积和边长是二次函数,故本选项错误;C、TS二丄ah,・・・三角形的面积一定,底边和底边上的高是反比例关系,故本选项错误;2D、V S=vt, 速度固定吋,路程和吋间是正比例关系,故本选项正确.故选D.2.(2016春•乐亭县期末)己知函数y= (l-3m) x是正比例函数,且y随x的增大而增大,那么m的取值范圉是()A. m>丄B. mV丄C. m>l D・3 3【解答】解:・・•正比例函数尸(l-3m) x中,y随x的增大而增大,Al - 3m>0,解得mV丄.3故选:B.3.(2014春•房山区校级期中)若尸(m-2) x+ (m2-4)是正比例函数,则m的取值是()A. 2B. - 2C. ±2D.任意实数【解答】解:根据题意得:[註-4二0;5-2工0得:m= - 2.故选B.4.(2014春•江岸区校级月考)若函数尸(3-m)x^-8是正比例函数,则m的值是()【解答】解:・・•函数y= (3-m ) -8是正比例函数,m 2 - 8=1,解得:mmi=3, m 2= - 3;且 3 - mHO,・*.m= - 3. 故答案选:A.5. (2005*湖州)如图:三个正比例函数的图象分别对应的解析式是®y=ax, @y=bx, (3)y=cx,则a 、b 、c 的大小【解答】解:首先根据图象经过的象限,得a>0, b>0, c<0, 再根据直线越陡,|k|越大,则b>a>c.故选:C.【解答】解:将x=-l, y=-2代入正比例函数尸kx (kHO )得,-2= - k, k=2>0,・••函数图象过原点和一、三象限, 故选C.7. (2009秋•罗湖区期末)一次函数y=-x 的图象平分( )A. - 3B. 3C. ±3D. -1D. b>c>aC. b>a>c6. (2013秋•江西校级期末)已知正比例函数y 二kx (kHO ),当时,y= - 2,则它的图象大致是( )A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四彖限【解答】解:•・•!<=:・1<0,・••一次函数y=-x的图象经过二、四象限,・・・一次函数y=-x的图象平分二、四象限.故选D.8.(2015*陕西)设正比例函数y=mx的图象经过点A (m, 4),且y的值随x值的增大而减小,则m二()A. 2B. - 2C. 4D. - 4【解答】解:把x=m, y=4代入y=mx中,可得:m二±2,因为y的值随x值的增大而减小,所以m= - 2,故选B9.(2015>杭州模拟)若正比例函数的图彖经过点(2,・3),则这个图彖必经过点()A. ( - 3,・2)B. (2, 3)C. (3,・ 2)D.(・ 2, 3)【解答】解:设正比例函数的解析式为尸kx (kHO),因为正比例函数尸kx的图象经过点(2, -3),所以-3=2k,解得:k■丄,2所以y= - —x,2把这四个选项中的点的坐标分别代入y=-^-x中,等号成立的点就在正比例函数y=-玄的图象上,2 2所以这个图象必经过点(-2, 3).故选D.10.(2014>宁津县模拟)对于幣数y= - k2x (k是常数,kHO)的图象,下列说法不正确的是()A.是一条直线B.过点(丄,-k)kC.经过一、三象限或二、四象限D. y随着x增大而减小【解答】解:・・・kHO・•・-k2>0・•・-k2<0・・・函数y= - k2x (k是常数,kHO)图象为直线,且经过二、四象限,如图,・・・y随x的增大而减小,・・・c错误.故选c.二.填空题(共10小题)11.(2015秋•扬中市期末)已知函数尸(m+1) x m:-3是正比例函数,且图象在第二、四彖限内,则m的值是.2 .【解答】解:•・•函数y=(m+l) x m2_3是正比例函数,m2 - 3=1 且m+JLHO,解得m=±2.又・・•函数图象经过第二、四象限,/. m+l<0,解得m<・1,•e. m= - 2.故答案是:~ 2.12.(2015春•建瓯市校级月考)已知正比例函数y= (1-m) x m'21,且y随x的增大而减小,则m的值是【解答】解:・・•此函数是正比例函数,.f|m-2|=l解得m=3, 故答案为:3.13.(2012秋•江东区期末)若点P (1, n), Q (3, n+6)在正比例函数y二kx的图彖上,贝lj k= 3 .【解答】解:将点P ( 1, n), Q (3, n+6)代入y二kx得:(k=n(3k二n+6解得:k=3, 故答案为:3.14.(2014秋•松江区校级期屮)已知正比例函数y= (5m-3) x,如果y随着x的增大而减小,那么m的取值范围为m<—.色―【解答】解:当5m-3<0时,y随着x的增大而减小,解得m<l.5故答案为m<l.515.(2012秋•磐石市校级期末)某函数具有下列两条性质:(1)它的图象是经过原点(0, 0)的一条直线;(2)y的值随着x值的增大而减小,请你举出一个满足上述两个条件的函数(用关系式表示)尸-X (答案不唯…).【解答】解:・・•函数的图彖经过原点(0, 0)的一条直线,・••该函数是正比例函数,Vy的值随着x值的增大而减小,・・・k<0,・・・函数的解析式可以为y=-x,故答案为:尸・x (答案不唯一).16.(2010秋•蒙阴县期末)己知点A (1, - 2),若A, B两点关于x轴对称,则B点的坐标为(1, 2).若点(3, n)在函数y=-2x的图象上,则n= - 6 .【解答】解:TA, B两点关于x轴对称,・・・B点的坐标为(1, 2);若点(3, n)在函数y= - 2x的图象上,则n= - 6.故答案为:(1, 2), - 6.17.(2015秋•蒙城县校级月考)已知y与x成正比例,当且x=・1时,y二・6,则v与x之间的函数关系式是尸6x 【解答】解:设尸kx (k是常数,且kHO).把x= - 1时,y= - 6代入,得-6= - k,解得k=6.则该一次函数的解析式为:y=6x・故答案是:y=6x.18.(2015春•山西校级月考)已知y与x+1成正比例,Ilx=l时,y=2.则x=・1时,v的值是0【解答】解:Ty与x+1成正比例,・°•设y二k (x+1),Tx=l 吋,y=2,A2=kX2,即k=l,所以y=x+l.则当x= - 1 时,y= - 1+1=0.故答案为0.19.(2013秋•吉州区期末)如果点Pi (・a, 3)和P?(1, b)关于y轴对称,则经过原点和点A (a, b)的直线的函数关系式为V与x・【解答】解:设正比例函数的解析式为尸kx (kHO),・・•点Pi ( -a, 3)和P2 (1, b)关于y轴对称,Aa=l, b=3,・・・A点坐标为(1, 3),把A (1, 3 )代入y=kx 得k=3,・・・所求的直线解析式为y=3x.故答案为y=3x.20.(2014秋•闸北区校级期中)已知正比例函数图彖上的点到x轴的距离与到y轴距离的比为2: 3,则函数的解析式为V=—X或y= - —X .2—-2—【解答】解:设正比例函数解析式为y=kx,・・•正比例函数图象上的点到x轴的距离与到y轴距离的比为2: 3,・••正比例函数图象上的点的坐标可设为(3a, 2a)或(3a, -2a),k*3a=2a 或k*3a= - 2a・・.k=Z或3 3・・・正比例函数解析式为y=2x或y= - Zx.3 3故答案为y=—x或y= - —x・3 3三.解答题(共10小题)21.(2013秋•桐乡市校级期末)已知y・2与x成正比例,且x=2时,y=・6.求:(1)y与x的函数关系式;(2)当y=14时,x的值.【解答】解:(1)设y - 2=kx (kHO),贝!1 - 6 - 2=2k, k= - 4,•'•y与x的函数关系式是:y= - 4x+2;(2)当y"4 时,JL4=・4x+2, 解得x= - 3.22.(2008秋•抚州校级月考)yi与x+1成正比例,y?与x - 1成正比例,y二力+丫2,当x=2时,y=9;当x=3时,y=14;求y与x的函数解析式.【解答】解:•・・“与x+1成正比例,/.yi=ki (x+1),Vy2-^ x - 1成正比例,「•y2=1<2 (x - 1),Vy=yi+y2,y=ki (x+i) +i<2 (x -1),*.* 当x=2 时,y=9;当x=3 时,y=14,・・・y与x的函数解析式为:y=2 (x+1) +3 (x- 1) =5x・1.23.(2012秋•姜堰市期末)已知正比例函数y二kx的图象过点P (3, - 3).(1)写出这个正比例函数的函数解析式;(2)已知点A (a, 2)在这个正比例函数的图象上,求a的值.【解答】解:(1)把P(3, -3)代入正比例函数y=kx,得3k= - 3,k= - 1,所以正比例函数的函数解析式为y= - x;(2)把点A (a, 2)代入y=・x 得,-a=2ra= - 2.24. 将正比例函数图象尸■寺向右移动4个单位,求解析式;再作它关于直线y=5的对称图,写出解析式.【解答】解:直线叶寻向右移动4个单位后得到直线I 的解析式为:y 送(…), 令口’则沪爭令宀则呼 ・・・直线I 与直线y=5的交点为(丄,5), ・••关于直线y=5的对称图的解析式y=2x+丄^3 325. 已知,正比例函数的图象经过点(-2, 1).(1) 求这个正比例函数的解析式;(2) 点A 在函数图象上,过A 作AB 丄X 轴,垂足为B,若S MOB =4,求点A 的坐标.【解答】解:(1)设这个正比例函数的解析式为y=kx,正比例函数的图象经过点(・2, 1),-2k=l,解得k= ■丄, 2故这个正比例函数的解析式y= - lx ; 2(2)设A 点坐标是(x, y ),由三角形面积、函数解析式,得1尸px与y 轴的交点为(0,丄§). 3 ・••点(0,丄2)关于直线尸5的对称为 (0,•••对称图经过 (T 5), (0,炉…解得 去+b 二 5k4||x||y|=4,解得产4 ,或产-4,1尸-2 1尸2则A点坐标是(4, -2)或(-4, 2).26.已知正比例函数y=kx (k是常数,kHO),且当・3WxWl时,对应的y值的取值范围是・iWyW丄,求k的3值.【解答】解:(1)当k>0吋,y随x的增大而增大,・••当x=・3时,y= - 1,代入正比例函数y二kx得:・1二・3k解得k=l,3(2)当kVO时,y随x的增大而减小,・••当x=・3时,y=—,代入正比例函数y二kx得:—=-3k,3 3解得k= ■丄.927.己知正比例函数尸kx图象经过点(3, -6),求:(1)这个函数的解析式;(2)判断点A (4, - 2)是否在这个函数图象上;(3)图象上两点B (Xp “)、C(X2,丫2),如果Xi>x2,比较力,巾的大小.【解答】解:(1)J正比例函数y=kx经过点(3,・6),・•・・6=3*k,解得:k= - 2,・・・这个正比例函数的解析式为:y「2x;(2)习各x=4代入y二・2x得:y=・8H・2,・••点A (4,・2)不在这个函数图彖上;(3)Vk= - 2<0,Ay随x的增大而减小,*.* Xi>X2,•'•yi<y2-28.(2006秋•浦东新区期末)己知:如图,正比例函数的图象经过点P和点Q (m+3),求m的值.【解答】解:设正比例函数的解析式为尸kx (kHO).•・•它图象经过点P (・1, 2),2= - k,即k= - 2.・••正比例函数的解析式为y= - 2x.又T它图彖经过点Q ( - m, m+3),•I m+3=2m.m=3.29.某正比例函数的图象经过点M (-2, 4).(1)求此正比例函数的关系式;(2)在平面直角坐标系上作出此函数的图象;(3)若点C (a, 3), D(V2,b)都在此直线上,试分别求a, b的值.【解答】解:(1)设正比例函数解析式为y=kx,把M (-2,4)代入得:4= - 2k,即k= - 2,则正比例函数解析式为y= - 2x;(2)如图所示:(3)由题意把x=a, y=3 代入y= - 2x 得:3= - 2a,即a= - 1.5;30.(2016秋•蓝田县期中)已知正比例函数图象上一个点A在x轴的下侧,y轴的右侧,距离x轴4个单位长度, 距离y轴2个单位长度,求该正比例函数的表达式.【解答】解:・・•点A在x轴的下侧,y轴的右侧,距离x轴4个单位长度,距离y轴2个单位长度, ・••点A 的坐标为(2,・4).设正比例函数的表达式为尸kx (kHO),将点(2, - 4)代入y二kx中,-4=2k,解得:k= - 2,・・・该正比例函数的表达式为y= - 2x・。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正比例函数 y=kx
k>0 k<0
反比例函数 k y= x
k>0 k<0
图像所在象限 一,三 二,四 一,三 二,四
增减性
复习2
老师给出一个函数,甲乙各指出这个 函数的一个性质: 甲:第一,三象限有它的图像; 已:在每个象限内,y随X的增大 而减小。
请你写出一个满足上述性质的 函数关系式?
y
n x
3的图像具有以下
特征:在同一象限内,y随x的增大而增大。
• (1)求n的取值范围:
• (2)点(2,a),(-1,b),(-2,c)都 在这个反比例函数图像上,比较a,b,c的大 小。
• 3.已知反比例函数
y k x
与一次函
• 数 ymxb的图像交于P(-2,1) 和Q(1,n)两点。
• (1)求k,n的值
⑵求常数m的取值范围?
⑶点(-3,y1),B(-1,y2),C(2,
y3)都在这个反比例函数的图像上,
比较y1,y2和y3的大小。
y
0
x
• 练一练
• 1.对于反比例函数 y
k x
(k>0),当
• x1<0 <x2 <x3时。其对应的值y1,y2,y3的大 小关系是__________.
•
2.已知反比例函数
• (2)求一次函数 ymxb
• 的解析式
• (3)求△POQ的面积
反比例函数的图像和性质(3)
例1 点(-2,y1),(-1,y2),
(1,y,3),在反比例函数y=-Fra bibliotek4 x
的图
像上,比较y1,y2,y3的大小。
思考:比较y1,y2,y3的大小有哪些方法? 代入法、 图像法、 增减性法
例2如图,是反比例函数 y 2 m 的图
像的一支
x
⑴函数图像的另一支在第几象限?