实验六 曝气充氧实验

合集下载

曝气设备充氧能力的测定实验数据处理

曝气设备充氧能力的测定实验数据处理
8.4
8.6
8.8
8.9
亏氧值Cs-C
2.2
2.0
1.8
1.7
ln(Cs-C)
0.79
0.69
0.59
0.53
2
溶氧量(mg/L)
7.8
8.0
8.1
8.2
8.3
8.5
8.6
8.7
8.7
8.8
8.9
9.0
亏氧值Cs-C
2.8
2.6
2.5
2.4
2.3
2.1
2.0
1.9
1.9
1.8
1.7
1.6
ln(Cs-C)
1.03
0.96
0.92
0.88
0.83
0.74
0.69
0.64
0.64
0.59
0.53
0.47
3
溶氧量(mg/L)
8.7
8.8
8.9
9.0
9.1
9.2
9.3
9.4
9.5
9.5
9.6
9.6
亏氧值Cs-C
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.1
1.0
1.0
ln(Cs-C)
0.64
0.59
8.3
8.4
8.6
亏氧值Cs-C
4.5
4.1
3.9
3.6
3.3
3.1
2.9
2.7
2.5
2.3
2.2
2.0
ln(Cs-C)
1.5
1.4
1.4

曝气设备充氧能力实验

曝气设备充氧能力实验

曝气设备充氧能力实验
曝气设备充氧能力实验是一项使用曝气设备进行测试其充氧效能的实验,是生物氧化反应保证平稳进行所必需的实验步骤。

曝气设备充氧能力实验的目的是通过对曝气装置进行试验来测量其充氧效能,以确定该装置是否具有足够的氧气供应量。

曝气设备充氧能力实验主要分为三个主要部分:对样品进行前处理以及参数优化、测量曝气系统的充氧能力和测量耗气率。

在样品的前处理部分,首先要用冻干机将样品体积减少到最低,从而获得最佳的参数,以确保曝气系统的容积足够大以及放入的样品充分混合。

接下来,使用曝气设备将样品均匀地注入实验管中,以确保样品的一致性。

然后进入曝气设备充氧能力测试阶段,这一阶段主要为测量曝气系统吸入的气体浓度,并通过检测不同参数,如气体流量、气温、气体压力,以确定曝气系统最佳工作状态,以及持续运行时间。

最后,当曝气系统达到其最佳运行状态时,通过对样品含氧量的测量来评估其效能。

最后是测量曝气设备的耗气率。

在这一部分,测量设备的耗气情况,包括给定负载时的气体流量和气体温度,以及曝气设备在不同负载和工作条件下的耗气量。

综上所述,曝气设备充氧能力实验可以通过对曝气系统进行测试,从而评估其充氧效能以及对样品的生物氧化反应的影响。

曝气设备充氧能力的测定实验

曝气设备充氧能力的测定实验

曝气设备充氧能力的测定实验步骤一、实验准备1、打开JPSJ-605型溶解氧测定仪(或HI964400型溶解氧测定仪),将氧电极在安全处垂直放置20 min以上,以极化活化电极。

2、按讲义计算CoC12和Na2SO3的需要量(以10 L水量计,注意讲义上Na2SO3是有7个结晶水的,而实验室提供的可能是无水Na2SO3,要注意换算)。

二、清水充氧实验1、在曝气池中放人自来水10L,取出—部分曝气池中的水溶解Na2SO3和CoC12,一定要溶解完全,可加热(混凝组的磁力搅拌器具有加热功能),并将溶液倒入曝气池中,使其迅速扩散(可用机械搅拌机慢速搅拌,但不允许混入空气)。

2、确定曝气池内测定点(或取样点)位置。

在平面上测定点为曝气池中心点,在立面上布置在水深一半处。

以下是JPSJ-605型溶解氧测定仪的步骤:取下电极保护套,将电极放入无氧水中测定点并淹没测温探头,按“零氧”键,轻轻扰动电极2-3 min,待仪器显示读数趋于“0.00”并稳定后,按“确定”键,仪器即完成零氧校准并返回测定工作状态。

以下是HI964400型溶解氧测定仪的步骤:取下电极保护套,将电极放入水中测定点并淹没测温探头,按“CAL(校正)”键,轻轻扰动电极2-3min,“BUF(缓冲)”开始闪烁直到读数稳定。

待“CFM (确认)”闪烁时,按“CFM”键,完成0% DO定位(即调零),并显示100%,进入下面的100% DO定位。

3、以下是JPSJ-605型溶解氧测定仪的步骤:拿出电极,用大量纯水反复冲洗电极头,用滤纸吸干电极头,按“满度”键,将电极在空气中轻扰2-3 min(电极头朝下),待仪器显示读数趋于稳定后,按“确定”键,仪器即完成满度校准并返回测定工作状态。

本实验不需要校准“盐度”和“气压”。

以下是HI964400型溶解氧测定仪的步骤:拿出电极,用大量纯水反复冲洗电极头,用滤纸吸干电极头,在空气中轻扰2-3min(电极头朝下),待“CFM”闪烁时,按“CFM”键,完成100% DO定位。

曝气充氧实验报告

曝气充氧实验报告

曝气充氧实验报告曝气充氧实验报告实验目的本实验旨在熟悉和掌握曝气充氧装置的使用方法,学习操作曝气充氧装置调节液体充氧度的知识,掌握曝气充氧对液体影响的规律,弄清液体充氧度的变化规律。

实验原理曝气充氧装置利用液体在气体充氧过程中的极性分离,即液体中的有关物质会吸附气体,而泡沫的发生则是由于液体中的有机物沉积造成的。

气体的充氧会使液体中的有机物沉淀,从而使液体中的氧含量增加,液体中的有机物也会随着气体的充氧而沉淀在液体中。

实验材料及仪器材料:用来曝气充氧的水、洗衣服用的氯化钠、肥皂泡、温度计。

仪器:用于曝气充氧的装置、液位仪、温度仪、仪表箱、水位计、热泵、减压阀、放气阀。

实验步骤1.将液位仪调整到正常位置;2.接水管时,把水管钩上,把热泵把温度调节在室温以上;3.把减压阀的压力调整到2-3kg,连接水管;4.把放气阀放气到常压,试验开始;5.在装置内加入所需要的水,加入洗衣服用的氯化钠,加上肥皂泡,在装置内封闭;6.调节恒温,调节氧气流量,控制水温在25℃,等待曝气充氧过程结束;7.开启放气阀,控制压力,使液体中的氯化钠逐渐溶解;8.观察液体中的水温度,氧气流量,和液体中的充氧度,观察水位变化,记录实验数据;9.把放气阀关闭,重新调节氧气流量,持续控制水温在25℃,再次观察液体中的氯化钠溶解度,观察液佪的变化,记录实验数据。

实验结果实验经过以上步骤,可以观察到,曝气充氧对液体的影响是把液体中的有机物沉积,使液体的充氧度增加,水温升高,液体的水位也会随着气体的充氧而上升。

结论通过本实验,熟悉和掌握了曝气充氧装置的使用方法,学习操作曝气充氧装置调节液体充氧度的知识,掌握了曝气充氧对液体影响的规律,弄清了液体充氧度的变化规律。

曝气充氧实验

曝气充氧实验

4.0
4.5
溶解氧浓度 (mg/L)
5
……
……
1.6 实验结果整理
1. 计算氧总转移系数KLa(T)。
t – t0
Ct
(min) (mg/L)
氧总转移系数KLa(T)计算表
Cs- Ct (mg/L)
Cs Cs- Ct
ln Cs tgα= 1
Cs- Ct
t- t0
KLa(T) (min)-1
2. 计算温度修正系数K,根据KLa(T),求氧总转移系数KLa(20)。
K=1.024(20-T) KLa(20)=K·KLa(T)= 1.024(20-T)× KLa(T)
1.6 实验结果整理
3. 计算充氧设备充氧能量EL。 EL= KLa(20)·Cs kgO2/h·m3
式中: Cs—1atm下,20℃时溶解氧饱和值,Cs=9.17mg/L
4. 计算曝气设备动力效率Ep。
EL·V Ep= N
kg/kW·h
式中:N—理论功率,只计算曝气充氧所耗有用功;
V——曝气池有效体积。
5. 计算曝气设备氧利用率EA。
EA=
EL·V Q×0.28
×100%
1.7 思考题
1. 曝气充氧原理及其影响因素是什么? 2. 温度修正、压力修正系数的意义如何? 3.氧总转移系数KLa的意义是什么?
4. 每隔1min(前三个间隔)和0.5min(后几个间隔)测定池内溶解 氧值,直至池内溶解氧值不再增长(饱和)为止。随后关闭曝气 装置。
实验记录
原始实验记录
水样体积V: L; 水温: ℃; 初始溶解氧浓度C0, mg/L
无水亚硫酸钠用量: g;氯化钴用量:
g
测量时间 (min)

曝气设备充氧能力实验报告

曝气设备充氧能力实验报告

曝气设备充氧能力实验报告实验报告,曝气设备充氧能力实验一、实验目的本实验主要旨在通过曝气设备充氧能力的实验,研究曝气设备在不同条件下的充氧效果,并探讨影响曝气设备充氧能力的因素。

二、实验原理曝气设备是一种常用的水处理设备,常用于水体增氧以提高水质。

其工作原理是通过气泡的运动将空气中的氧气溶解在水中。

曝气设备一般由气泵、气管和曝气装置等组成。

曝气装置通常采用气泡产生器,气泡产生器内有大量小孔,通过气泵将气体推入气泡产生器,气体从小孔中逸出形成气泡进入水中。

气泡进入水后会随着水流的带动移动,从而增加水中氧气的含量。

三、实验步骤1.搭建实验装置:将曝气装置与气泵相连,连接气管后将气泵的出气口置于曝气装置的进气孔上。

2.准备实验样品:准备一定量的水样,并测定水样的初始溶解氧含量。

3.开始实验:打开气泵,使气泡进入水中。

根据需要,可调整气泡的密度和大小。

4.定时测定溶解氧含量:在一定时间间隔内,取样并测定水样中的溶解氧含量。

5.数据记录与分析:将实验数据记录下来,并进行数据分析和处理。

四、实验结果根据实验数据统计和分析,我们得到了以下结果:1.气泡密度对充氧能力的影响:实验中通过调节气泡的密度,发现气泡密度较大时,充氧效果更好,溶解氧含量也相应增加。

2.气泡大小对充氧能力的影响:实验中通过调节气泡的大小,发现气泡较大时,充氧效果较好,溶解氧含量也相对较高。

3.曝气时间对充氧能力的影响:实验中通过调节曝气时间,发现曝气时间越长,充氧效果越好,溶解氧含量也随之增加。

五、实验结论通过以上实验结果的分析,我们得出以下结论:1.曝气设备的充氧能力与气泡的密度、大小和曝气时间有关。

气泡密度较大、气泡较大且曝气时间较长时,充氧效果更好。

2.曝气设备的充氧能力受到环境条件的影响。

例如水的温度、压力、溶解氧初始含量等都会对充氧效果产生影响。

3.在实际应用中,需要根据实际情况调节曝气设备的工作参数,以达到最佳的充氧效果。

六、实验心得通过本次实验,我们深入了解了曝气设备充氧能力的影响因素,并通过实验数据分析和处理,得到了一些有价值的结论。

曝气设备充氧能力实验报告word精品

曝气设备充氧能力实验报告word精品

1实验目的(1)掌握测定曝气设备的和充氧能力a、p的实验方法及计算Q s:(2)评价充氧设备充氧能力的好坏:(3)裳握曝气设备充氧性能的测定方法。

2实验原理活性污泥处理过程中曝气设备的作用是使氧气、活性污泥、营养物三者充分混合,使污泥处于悬浮状态,促使氧气从气相转移到液相,从液相转移到活性污泥上,保证微生物有足够的氧进行物质代谢。

由于氧的供给是保证生化处理过程正常进行的主要因素,因此工程设计人员通常通过实验來评价曝气设备的供氧能力。

在现场用自来水实验时,先用N 32S(h(或N?)进行脱氧,然后在溶解氧等于或接近零的状态下再曝气,使溶解氧升高趋丁•饱和水平。

假定整个液体是完全泯合的,符合一级反应此时水中溶解氣的变化可以用以下式子表示:d c= KLa (Cs — C) dt式中:de©——氧转移速率,mg/(L-h);K La——氧的总传递系数,L/11;C$—实验室的温度和圧力下,自来水的溶解氧饱和浓度,mg/L;C——相应某一时刻t的溶解氧浓度,mg/L。

将上式积分,得ln(Cs—C) = —K“t+ 常数由于溶解氧饱和浓度、温度、污水性质和混乱程度等因素影响氣的传递速率,因此应进行温度、压力校正,并测定校正废水性质影响的修正系数a、Po所采用的公式如下:K“(T) = K La(2O°C)1.O24T_203实验内容3.1实验设备与试剂 (1) 溶解氧测定仪 (2) 空压机。

(3) 曝气筒。

(4) 搅拌器。

(5) 秒表。

(6) 分析天平 (7) 饶杯。

(8) 亚硫酸钠(Na 2SO 3) (9) 氯化钻(C O C12-6H 20)O 3.2实验装置实验装置如图3・1所示。

充氧能力为Cs (校正) = Cs (实验)XQs =de标准大气压(kPa) 实验时的大气斥(kPa)废水的K“ 门來水的心 废水的Cs 白來水的0• V = (20°C). C s (SEiE) - V(kg/h)图01曜气设备充氧能力实验装置简图3.3实验步骤(1) 向曝气筒内注入20L H 來水,测定水样体积V(L)和水温t(°C):(2) 由实验测出水样溶解氧饱和值G ,并根据c$和V 求投药量,然后投药脱氧:a) 脱氧剂亚硫酸钠(Na 3SO 3)的用臺计算。

曝气充氧实验报告

曝气充氧实验报告

曝气充氧实验报告实验名称:曝气充氧实验报告实验日期:[实验日期]实验地点:[实验地点]实验目的:通过曝气充氧实验,检验不同气体对水体中溶解氧含量的影响。

实验器材:1. 水槽2. 气泵3. 氧气气缸4. 二氧化碳气缸5. pH计6. 溶解氧测试仪7. 温度计8. 支架9. 导管10. 水样收集瓶实验步骤:1. 准备实验器材,并将水槽装满水。

2. 将氧气气缸连接到气泵,并将导管放入水槽底部。

3. 打开氧气气缸和气泵,使气体通过导管进入水槽底部,实现曝气充氧。

4. 使用溶解氧测试仪,测量不同时间段水体中溶解氧的含量。

5. 在规定时间段后,关闭氧气气缸和气泵。

6. 重复实验步骤2-5,使用二氧化碳气缸进行实验。

7. 在实验过程中,记录水体温度和pH值的变化。

实验数据记录:- 实验组1:应用氧气曝气充氧时间(分钟) | 溶解氧含量(mg/L)-------------------------------------0 | 2.55 | 4.010 | 5.515 | 6.020 | 6.225 | 6.5- 实验组2:应用二氧化碳曝气充氧时间(分钟) | 溶解氧含量(mg/L)-------------------------------------0 | 2.55 | 3.010 | 3.515 | 4.020 | 4.225 | 4.5实验结果分析:从实验数据可以看出,应用氧气曝气充氧的实验组中,随着时间的增加,水体中溶解氧的含量呈递增趋势,并达到了6.5 mg/L。

而应用二氧化碳曝气充氧的实验组中,水体中溶解氧的含量也随着时间的增加而递增,但最终只达到了4.5 mg/L。

因此,可以得出结论:氧气具有更强的充氧能力,能够更有效地提高水体中溶解氧的含量。

同时,实验过程中观察到水体温度基本保持不变,pH值也没有明显变化,说明实验中的气体曝气并未对水体的温度和酸碱性产生重大影响。

结论:通过本实验的曝气充氧实验,发现氧气可以更有效地提高水体中溶解氧的含量,相比之下,二氧化碳的充氧效果较差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六曝气充氧实验
一、实验目的
活性污泥法处理过程中曝气设备的作用是使空气、活性污泥和污染物三者充分混合,使活性污泥处于悬浮状态,促使氧气从气相转移到液相,从液相转移到活性污泥上,保证微生物有足够的氧对有机污染物进行氧化降解。

由于氧的供给是保证生化处理过程正常进行的主要因素之一,因而需通过实验测定氧的总传递系数KLa,评价曝气设备的供氧能力和动力效率,为合理的选择曝气设备提供理论依据。

通过本实验希望达到以下目的:
1、加深理解曝气充氧机理及影响因素;
2、掌握测定曝气设备的氧总传递系数和充氧能力的方法;
3、了解各种测试方法和数据整理的方法。

二、实验原理
所谓曝气就是人为的通过一些设备,加速向水中传递氧的一种过程。

现行通过曝气方法主要有三种,即鼓风曝气、机械曝气、鼓风机械曝气。

鼓风曝气是将由鼓风机送出的压缩空气通过管道系统送到安装在曝气池池底的空气扩散装置(曝气器),然后以微小气泡的形式逸出,在上升的过程中与混合液接触、扩散,使气泡中氧转移到混合液中支。

机械曝气则是利用安装在水面的叶轮的高速转动,剧烈搅动水面,产生水跃,使液面与空气接触的表面不断更新,使空气中的氧转移到混合液中去。

曝气的机理可用若干传质理论来加以解释,但水处理界比较公认的是刘易斯(Lewis)于怀特曼(Whitman)创建的双膜理论。

双膜理论是基于在气液两相界面存在着两层膜(气膜和液膜)的物理模型。

它的内容是:在气液两相接触界面两侧存在着气膜和液膜,它们处于层流状态,气体分子从气相主体以分子扩散的方式经过气膜和液膜进入液相主题,氧转移的动力为气膜中的氧分压梯度和液膜中的氧的浓度梯度,传递的阻力存在于气膜和液膜中,而且主要存在于液膜中。

如图所示:
氧扩散方向
P C P
液相主体 气相主体 P C
气 G 膜
双膜理论模型
影响氧转移的因素主要有温度、污水性质、氧分压、水的紊流成都、气液之间接触时间和面积等。

氧转移的基本方程式为
()C C K dt
dc
S La -= V X A D K f L La /•=
式中
dt
dc
——液相主体中氧转移速度[mg/(l ·min)] Cs ——液膜处报和溶解氧浓度(mg/L ) C ——液相主体中溶解氧浓度(mg/L ) K La ——为氧总转移系数
D L ——氧分子在液膜中的扩散系数 A ——气液两相接触界面面积(m 2) X f ——液膜厚度(m ) V ——曝气液体容积(L )
由于液膜厚度X f 及两相接触界面面积很难确定,因而用氧总转移系数K La 值代替。

K La 值与温度、水紊动性、气液接触面面积等有关。

它指的是在单位传质动力下,单位时间内向单位曝气液体中充氧量,它是反映氧转移速度的重要指标。

t
s o s t t a o ρρρρ---=
ln 1KL 式中: KLa —氧总转移系数,l/min ;
t 、t0—曝气时间,min;
ρ0—曝气开始时烧杯内溶解氧浓度(t0=0时,C0=?mg/L),mg/L;
ρs —烧杯内溶液饱和溶解氧值,mg/L;
ρt —曝气某时刻t 时,烧杯内溶液溶解氧浓度,mg/L
评价曝气设备充氧能力的方法有两种:⑴不稳定状态下的曝气试验,即试验过程中溶解氧浓度是变化的,由零增加到饱和浓度;⑵稳定状态下的试验,即试验过程中溶解氧浓度保持不变。

本实验仅进行在实验室条件下进行的清水和污水在不稳定状态下的曝气试验。

三、实验设备及仪器
1、实验装置如图
2、卷尺
3、溶解氧测定仪
4、烧杯(100mL)配玻棒
5、计时表
6、无水亚硫酸钠
7、催化剂:氯化钴
8、电子天平
四、实验步骤
1、向模型曝气池注入自来水至曝气叶轮表面稍高处,用卷尺测出模型曝气池内水的高度H(m)和模型曝气池的直径D(m),进而计算出模型曝气池的容积(V,m3或L)。

注意:注水时水的流速不能过大,应避免模型曝气池中注入的原水含有气泡。

2、认真预习溶氧仪的使用方法,用胶带将极化校正过的溶氧仪探头捆绑在大玻棒上,并将探头伸入水下1/2处。

注意:在实验过程中,探头伸入水下的深度应尽量保持一致,并要避免溶氧仪探头与曝气头相接触。

3、启动曝气叶轮,使其缓慢转动(注意:仅使水流流动,不能产生气泡),用溶氧仪测定自来水水温和水中溶解氧值,当溶氧仪数值稳定时记录其为初始溶解氧浓度ρ0。

4、根据ρ0计算实验所需要的消氧剂Na2SO3和催化剂CoCl2的量,并称取。

Na2SO3+1/2O2=Na2SO4
1)脱氧剂(无水亚硫酸钠)用量:
从上面的反应式可以知道,每去除1mg溶解氧,需要7.9mgNa2SO3。

根据池子的容积和自来水的溶解氧浓度,可以算出Na2SO3的理论需要量。

实际投加量应为理论值的150%-200%。

计算方法如下:W1=V×ρ0×7.9×(150%-200%)
式中W1为Na2SO3的实际投加量,mg。

2)催化剂(氯化钴)用量:
催化剂氯化钴的投加量按维持池子中的钴离子浓度为0.05-0.5mg/L左右计算。

计算方法如下:W2=V×0.5×129.9/58.9
式中W2为CoCl2的实际投加量,mg。

5、将Na2SO3和CoCl2用蒸馏水样溶解后投放在曝气叶轮处。

注意:因Na2SO3和CoCl2称取量较少,应多次冲洗称量瓶,并将冲洗水倒入模型池内。

6、待溶解氧读数为零时,加快叶轮转速,使模型池内呈现曝气充氧状态,此时开始计时,每隔1min测定池内溶解氧值,直至溶解氧值不再增长为止,此时即为饱和溶解氧浓度ρs。

随后关闭曝气装置。

注意:因记录时间间隔较短,两人应充分合作。

一人控制溶解氧探头,避免溶氧仪探头和曝气盘接触,一人记录。

五、实验数据及结果整理
1、测定并记录实验基本参数,记录格式如下:
实验日期年月日
模型曝气池内径D= m,高度H= m
实验条件下自来水的ρs= mg/L
表1原始实验记录表
水样体积V : L ; 水温: ℃;初始溶解氧浓度ρ0: mg/L 无水亚硫酸钠用量: g ;氯化钴用量: g 测量时间 t (min ) 1 2 3 3.5 4.0 4.5 5 …… 溶解氧浓度 ρ(mg/L ) …… ρs - ρ (mg/L )
2、数据整理。

1) 以溶解氧浓度ρ为纵坐标、时间t 为横坐标,作ρ与t 的关系曲线。

2) 根据ρ-t 曲线计算相应于不同ρ值的d ρ/dt ,记录于表2中。

表2 不同ρ值的d ρ/dt
ρ(mg/L ) …… d ρ /dt (mg/(L ·min ))
3)以d ρ/dt 为纵坐标、ρs-ρ为横坐标,绘制出d ρ/dt 与ρ的关系曲线,得到直线的斜率为所求的KLa 。

(或充氧时间t 为横坐标,水中溶解氧浓度变化Ct
Cs Cs
ln 为纵坐标,作图绘
制充氧曲线,所得直线的斜率即为KLa 。


4)计算温度修正系数K ,根据KLa (T ),求氧总转移系数KLa (20)
K=1.024(20-T )
KLa (20)=K· KLa (T )= 1.024
(20-T )
× KLa (T )
5)计算充氧设备充氧能力OC :单位时间内转移到液体中的氧量。

表面曝气时OC= KLa (20)·ρs·V kgO 2/h 式中:ρs —1atm 下,20℃时溶解氧饱和值,ρs=9.17mg/L V —曝气池有效体积,m 3. 6)计算曝气设备动力效率Ep 。

N
OC
Ep kg/kW·h 式中:N —理论功率,只计算曝气充氧所耗有用功;
V ——曝气池有效体积。

六、实验结果分析与小结
对整理得到的实验结果进行分析,并对本次实验进行小结(体会、心得)。

七、思考题
1. 简述曝气在活性污泥生物处理法中的作用
2. 简述曝气充氧原理及影响氧转移因素
3. 氧总转移系数KLa 的意义是什么?。

相关文档
最新文档