越野车ANSYS模态分析

合集下载

ansys模态-响应-分析步骤

ansys模态-响应-分析步骤

模态分析步骤:1、将模型导出为.cdb文件,并输入到ANSYS。

2、进行模态分析时,首先应定义分析类型为模态分析,GUI方式为Main Menu >Solution >Analysis Type >New Analysis如图1所示。

图1 定义分析类型为modal3、设置模态分析求解选项,GUI方式为Main Menu >Solution >Analysis Type >Analysis Option,提取并扩展20阶模态,如图2所示。

图2 Modal Analysis对话框4、设置B lock lanczos(分块蓝索斯)方法求解选项。

单击图2中的OK按钮,弹出Block Lanczos Method 对话框,将起始频率改为1,单击OK按钮,如图3所示。

图3 Block Lanczos Method对话框5、求解并查看结果。

采用GUI方式提交求解:Main Menu >Solution>Solve>Current LS。

(注意:下面的模态图下面标明是第。

阶模态振型)谐响应分析的基本步骤:1.将模型导出为.cdb文件,并输入到ANSYS中。

2.模态分析由于峰值响应发生在激励的频率和结构的固有频率相等之时,所以在进行谐响应分析之前,应首先进行模态分析,以确定结构的固有频率,计算前20阶模态频率。

3.完成模态分析后,退出后处理器,GUI方式为Main Menu>Finish。

4.定义分析类型为谐响应分析,GUI方式为Main Menu>Solution>Analysis Type>New Analysis,如图4所示。

图4 定义分析类型为Harmonic5、设置谐响应分析求解选项,GUI方式为Main Menu>Solution>Analysis Type>Analysis Options,保持默认选项,采用完全法,如图5所示。

图5 Harmonic Analysis对话框6、单击图5中的OK按钮,弹出Full Harmonic Analysis对话框,保持默认设置,单击OK按钮,如图6所示。

ANSYS模态分析教程及实例讲解

ANSYS模态分析教程及实例讲解

ANSYS模态分析教程及实例讲解ANSYS是一款常用的有限元分析软件,可以用于执行结构分析、热分析、流体分析等多种工程分析。

模态分析是其中的一项重要功能,用于计算和分析结构的固有振动特性,包括固有频率、振型和振动模态,可以帮助工程师了解和优化结构的动态响应。

以下是一份ANSYS模态分析教程及实例讲解,包含了基本步骤和常用命令,帮助读者快速上手模态分析。

1.创建模型:首先需要创建模型,在ANSYS界面中构建出待分析的结构模型,包括几何形状、材料属性和边界条件等。

可以使用ANSYS的建模工具,也可以导入外部CAD模型。

2.网格划分:在模型创建完毕后,需要进行网格划分,将结构划分为小的单元,使用ANSYS的网格划分功能生成有限元网格。

网格划分的细腻程度会影响分析结果的准确性和计算时间,需要根据分析需要进行合理选择。

3.设置材料属性:在模型和网格创建完毕后,需要设置材料属性,包括弹性模量、密度和材料类型等。

可以通过ANSYS的材料库选择已有的材料属性,也可以自定义材料属性。

4.定义边界条件:在模型、网格和材料属性设置完毕后,需要定义结构的边界条件,包括约束和加载条件。

约束条件是指结构受限的自由度,例如固定支撑或限制位移;加载条件是指施加到结构上的载荷,例如重力或外部力。

5.运行模态分析:完成前面几个步骤后,就可以执行模态分析了。

在ANSYS中,可以使用MODAL命令来进行模态分析。

MODAL命令需要指定求解器和控制选项,例如求解的模态数量、频率范围和收敛准则等。

6.分析结果:模态分析完成后,ANSYS会输出结构的振动特性,包括固有频率、振型和振动模态。

可以使用POST命令查看和分析分析结果,例如绘制振动模态或振动模态的频率响应。

下面是一个实际的案例,将使用ANSYS执行模态分析并分析分析结果。

案例:矩形板的模态分析1.创建模型:在ANSYS界面中创建一个矩形板结构模型,包括矩形板的几何形状和材料属性等。

ANSYS模态分析

ANSYS模态分析

ANSYS模态分析ANSYS模态分析是一种用于计算和研究结构的振动和模态的仿真方法。

它可以帮助工程师和设计师了解结构在自由振动模态下的响应,从而优化设计和改进结构的性能。

本文将对ANSYS模态分析的原理和应用进行详细介绍。

ANSYS模态分析基于动力学理论和有限元分析。

在模态分析中,结构被建模为一个连续的弹性体,通过求解结构的固有频率和模态形状来研究其振动行为。

固有频率是结构在没有外力作用下自由振动的频率,而模态形状则是结构在每个固有频率下的振动形态。

模态分析可以帮助工程师了解结构在特定频率下的振动行为。

通过分析结构的固有频率,可以评估结构的动态稳定性。

如果结构的固有频率与外部激励频率非常接近,可能会导致共振现象,从而对结构造成破坏。

此外,模态分析还可以帮助识别结构的振动模态,并评估可能的振动问题和改进设计。

1.准备工作:首先,需要创建结构的几何模型,并进行必要的网格划分。

在几何模型上设置适当的约束条件和边界条件。

选择合适的材料属性和材料模型。

然后设置分析类型为模态分析。

2.计算固有频率:在模态分析中,需要计算结构的固有频率。

通过求解结构的特征值问题,可以得到结构的固有频率和模态形状。

通常使用特征值求解器来求解特征值问题。

3.分析结果:一旦得到结构的固有频率和模态形状,可以进行进一步的分析和评估。

在ANSYS中,可以通过模态形状的可视化来观察结构的振动模态。

此外,还可以对模态形状进行分析,如计算应力、变形和应变等。

ANSYS模态分析在许多领域都有广泛的应用。

在航空航天工程中,模态分析可以用于评估飞机结构的稳定性和航空器的振动特性。

在汽车工程中,可以使用模态分析来优化车身结构和减少共振噪音。

在建筑工程中,可以使用模态分析来评估楼房结构的稳定性和地震响应。

总之,ANSYS模态分析是一种重要的结构动力学仿真方法,可以帮助工程师和设计师了解结构的振动特性和改善设计。

通过模态分析,可以预测共振问题、优化结构设计、提高结构的稳定性和性能。

ANSYS-模态分析 介绍

ANSYS-模态分析 介绍

模态分析总论
• 运动学基本方程: }+ [C]{u }+ [K ]{u} = {F(t )} [M ]{ u • 假定自由振动并忽略阻尼:
}+ [K ]{u} = {0} [M ]{ u
2
Training Manual
DYNAMICS 11.0
• 假定谐波形式响应 (u = U sin( ωt ) )
其它分析选项
• 集中质量矩阵:
– –
Training Manual
DYNAMICS 11.0
主要用于细长梁或薄壳,或者波传播问题; 对 PowerDynamics 法,自动选择集中质量矩阵。 用于计算具有预应力结构的模态(以后讨论)。 阻尼仅在选用阻尼模态提取法时使用; 可以使用阻尼比α阻尼和β阻尼; 对BEAM4 和 PIPE16 单元,允许使用陀螺阻尼。
Training Manual
第二章 模态分析
模态分析总论
Training Manual
DYNAMICS 11.0
• 模态分析用来确定结构的振动特性的一种技术:
– 固有频率 – 振型 – 模态参与因子(结构振型在给定方向的参与程度)
• 是其他动力学分析的起点和基础.
模态分析总论
• 模态分析工程应用
DYNAMICS 11.0
子空间法
Training Manual
DYNAMICS 11.0
• 子空间法 :比较适合于提取类似中型到大型 模型的较少的振型 (<40)
– 需要相对较少的内存; – 实体单元和壳单元应当具有较好的单元形状,要对 任何关于单元形状的警告信息予以注意; – 在具有刚体振型时可能会出现收敛问题; – 建议在具有约束方程时不要用此方法。

ANSYS模态分析

ANSYS模态分析

10.2 模态分析的方法 图10-1 模态分析方法
10.2 模态分析的方法
➢ (1)分块Lanczos法(Block Lanczos) • 分块Lanczos法特征值求解器是ANSYS默认的求解器。采用 Lanczos 算法,Lanczos 算法是用一组向量来实现
Lanczos 递归计算。分块Lanczos法采用的是稀疏矩阵方程求解器。 • 当计算某系统特征值谱所包含一定范围的固有频率时,采用分块Block Lanczos法提取模态特别有效。计算时,求解
10.3 矩阵缩减技术和主自由度选择准则
• ANSYS程序采用的矩阵缩减基础理论是Guyan缩减法计算缩减矩阵。Guyan缩减法的一个关键假设是:对于较低的 频率,从自由度(被缩减的自由度)上的惯性力和从主自由度传递过来的弹性力相比是可以忽略的。因此,结构的总 质量只分配到主自由度上。最终结果是缩减的刚度矩阵是精确的,而缩减的质量和阻尼矩阵是近似的。
10.4 模态分析过程
➢ GUI:【Main Menu】/【Solution】/【Analysis Type】/【Analysis Options】 • 1)Mode extraction method 模态提取方法
对于非对称法和阻尼法,应当提取比必要的阶数更多的模态以降低丢失模态的可能性,但求解的时间会加长。 • 2)No. of modes to extract 模态提取阶数
10.2 模态分析的方法
➢ (4)阻尼法(Damped) • Damped 法用于阻尼不可忽略的问题,例如轴承问题。阻尼法使用完整的刚度矩阵[K]、质量矩阵[M]、阻尼阵[C]。
采用Lanczos算法并计算得到复数特征值和特征向量。阻尼法也不能不进行Sturm序列检查,因此有可能遗漏一些高 频端模态。 • 特征值的实部代表系统的稳定性,虚部代表系统的稳态角频率。如果实部小于零,系统的位移幅度将EXP指数规律递 减,稳定响应;如果实部大于零,位移幅度将按指数规律递减,不稳定响应。如果不存在阻尼,特征值的实部将为零 。

基于ANSYS Workbench的某越野车车架有限元分析

基于ANSYS Workbench的某越野车车架有限元分析

基于ANSYS Workbench的某越野车车架有限元分析任杰锶;董小瑞【摘要】针对越野车复杂的行驶条件对车架结构苛刻的要求,以越野车车架为研究对象,采用ANSYS软件建立了与某越野车车架结构充分近似的车架三维模型,并根据模态分析理论对其进行了有限元模态分析,获得了该车架的前六阶模态参数.理论值与实验值比较表明,车架能够在一定程度上避免共振现象,模型建立准确,为结构车架的动态设计提供了理论依据.同时对车架进行刚度和静强度分析,由位移、应力云图获得了车架发生应力集中区域.结果表明:第3根横梁和第4根横梁之间的连接处应力值远低于屈服极限,可以考虑梁变细或者钢板缩减壁厚,而在第2,第3根横梁与纵梁相接处应力值大于许用应力值,可以使横梁应加粗或连接处使用加厚焊.实验研究分析为车架的改进和优化提供了参考依据.【期刊名称】《中北大学学报(自然科学版)》【年(卷),期】2015(036)004【总页数】8页(P428-434,457)【关键词】越野车车架;有限元分析;ANSYS软件;模态分析;刚强度分析【作者】任杰锶;董小瑞【作者单位】中北大学机械与动力工程学院,山西太原030051;中北大学机械与动力工程学院,山西太原030051【正文语种】中文【中图分类】U463.320 引言汽车车架是整个汽车的基础,车架性能的可靠程度直接影响到整车的工作质量和状态.对于非全承载式越野汽车,车架的要求更为严格[1-2].哈尔滨工业大学张进国等利用ANSYS软件建立了车架结构的几何模型和以体单元solid92为基本单元的车架有限元分析计算模型,对该车架在载荷作用下的应力和变形进行了计算,为车架的结构改进提供了依据[3];南昌大学汪伟等以某越野车车架为例,利用Hyperworks建立以壳单元为基本单元的车架有限元分析模型,应用Optistuct求解器进行了模态分析,得到该车架自由状态下的前10阶固有频率及振型特性,为该车的结构改进提供了理论依据[4];合肥工业大学朱昌发等利用HYPERMESH 建立某型特种越野车车架的有限元分析模型,再用ABAQUS软件对该特种越野车车架进行强度及模态分析,得出该车架的强度和振动特性,并提出了优化设计方案[5].随着越野汽车性能和工作要求的不断提升,车架面临更大的挑战,不仅需要经常在崎岖不平的道路上行驶,而且经常出现在无路地带,这样对刚度和强度的要求就显得异常苛刻.由于在重载、高速行驶时其振动问题也非常凸出,车架的共振现象会给整车,甚至是驾驶员、乘员带来严重的影响.因此在汽车的设计初期需要同时对车架进行静力学分析和模态分析,综合分析数据,为车架的优化和改进提供参考[5-6].本文综合采用Hyperworks和ANSYS软件,建立了与某越野车车架结构充分近似的车架三维模型,对其进行了静力学和有限元模态分析,找出其薄弱环节,给出了优化建议.1 车架结构及参数该车架主要由2根纵梁和8根横梁,以及均布的10个悬置点组成.车架结构如图1所示.图1 车架结构二维图纸 Fig.1 The 2D blueprint of off-road vehicle frame structure车架形态描述:车架前部翘起,这样拥有更多的前轮摆动空间,增加接近角.车架中部第4,5根横梁下凹,适当地降低了底盘的高度,降低了车身重心,增大了车辆在行驶中的稳定性;相比直梁车架,提高了乘坐舒适性.越野车辆行驶过程中,除在正常的路面行驶之外,更多的是在条件复杂或极端恶劣的土地、山坡、凹凸不平和通过性差的路面行驶,这是对车架抗拉伸和抗弯扭性的严峻考验.所以采用高强度的结构钢作为车架材料,采用拥有优秀抗弯扭性能的箱形断面梁作为纵梁形式,横梁材料主要采用空心圆柱体,部分为箱形断面梁.所有的横纵梁均为冲压焊接而成[7].该越野车主要性能参数如表1所示.表1 越野车主要性能参数 Tab.1 Main performance parameters of the off-road vehicle?2 建立车架有限元模型目前合肥工业大学尹安东和龚竞等分别利用Hyperworks对越野车车架进行了多工况静强度和动强度分析,并加入了简单的模态分析,虽得出了车架性能评估[8-9],但因模型建立依据不明确,失去了分析研究的针对性,结论适用性不大.本文依据该越野车原厂的二维图纸,将CATIA中建立好的实体模型转到iges格式导入到Hyperworks软件中,利用hypermesh的中面提取功能Midsurface提取中面,并进行模型几何清理,通过消除损坏、空缺、叠加等模型问题,尽可能得到合格的网格质量[8].模型高度简化后,可采用高密度自由网格划分,选取网格尺寸最大为5 mm,最小为0.2 mm.在划分结束后,对部分悬置点、以及有可能产生应力、应变的关键处进行网格细化处理.南京理工大学杨海平等将Hypermesh作为前处理软件,进行了车架螺栓、铆钉和焊点连接的模拟,采用cweld单元进行焊点模拟,虽建立有限元模型发生错误概率较小,但建立时间较长,分析效率不高[10].本文考虑到车架为不规则物体,采用混合单元类型更能够真实地反映各个关键点处的应力、应变形态.所使用的六种单元类型如表2所示.经过网格划分后得到的有限元模型如图2所示,得到1 701 310个节点以及312 429个单元.图2 车架的有限元模型 Fig.2 Finite element model of frame表2 单元类型摘要 Tab.2 Element type summary?根据车架的设计和实际使用情况,设定材料参数为:16Mn钢材料密度为7 850 kg/m3,泊松比为0.28,弹性模量E=2.1×1011 Pa,屈服极限为400 MPa [10].3 有限元模态分析3.1 模态分析理论有限元模态分析通常可分为自由模态分析和约束状态下的模态分析两种.车架模态分析的原理是将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,然后求解出车架系统的模态频率等模态参数.根据模态振动理论,系统运动微分方程为式中:[M],[C],[K]分别为质量矩阵、阻尼矩阵以及刚度矩阵;{u}为位移向量.由于是无阻尼自由振动,则可省略阻尼项,即微分方程可简化如下系统的特征方程为求解特征方程即可获得系统模态参数,包括模态频率λi=ω2i和模态振型[11-13].3.2 模态分析结果将Hypermesh中建好的越野车车架有限元模型导入到ANSYS中,进行自由模态分析,得到车架自由模态的前20阶频率及振型.其中前6阶模态频率小于1.77 Hz,这是由于车架在自由状态下会出现6个刚体模态[8],它们对应的固有频率几乎为零,所以实际上是以第7阶自由模态为第1阶振型.图3 车架的前6阶模态振型 Fig.3 The first six order modal shape of frame目前国内研究只停留在对车架简单的模态分析,获得前10阶固有频率,以得出车架的共振情况,未对实验值的正确性进行理论验证,故实验分析值和结论的可靠度不高[4].文中经有限元模态分析的理论计算值与实验模态分析结果相比较,如表3所示.由表3可看出:ANSYS理论计算值与实验模态分析的结果比较一致,相对误差不大,说明实验值准确,分析模型合适,分析结果可靠,可以作为实际设计参考.表3 车架模态分析结果与理论计算结果比较 Tab.3 Comparing frame modal analysis the results with theoretical calculations?由于越野车长期工作在条件苛刻的路面上,因此路面激励是引起车架产生共振主要因素.此外发动机转速激励也是引起车架产生共振重要原因.对于车架来讲,应通过以下四点作为评价指标:①车架固有频率应避开发动机怠速时的振动频率;②车架在行驶过程中应避开发动机常工作工况下的激振频率范围;③应避开平路及条件不佳的路面对车架的激振频率范围;④车架振动频率增长变化尽量平稳,不能出现频率突变[10].3.3 模态分析结论1)一般情况下,路面给予车架的激励应当处于1~20 Hz之间,且悬架的偏振频率大致为1~1.9 Hz,根据发动机怠速时的转速为900 r/min,计算得到车架在怠速时的振动频率为28.334~31.667 Hz之间[14-15].模态分析结果得出的车架最低阶振动频率为18.532 Hz,一定程度上可以避免由道路载荷和车轮不平衡而引起的共振;2)车辆的非簧载质量的固有频率一般6~15 Hz之间,对于车架更重要的应该是前3阶模态.根据对该车架的分析,该车架的前3阶固有频率为18.532 Hz,22.89 Hz,24.178 Hz,均大于15 Hz,所以,车架与非簧载部件发生共振的可能性很小.4 静力学分析越野车在行驶中的载荷主要来源于弯曲工况和扭转工况.其中弯曲载荷主要是车身、车载设备等负载产生的,而扭转载荷多为车辆在受到路面给予的多方向非对称激励导致的.本文所用的越野车架主要受到这两方面的影响,因此分析时所加的载荷是一致的,通过改变约束的位置和方向而达到求解静刚度、强度的应力和应变值[10].4.1 静强度分析该车架所受的主要静载荷如表4所示.加载方式分别为:10个悬置点集中加载,发动机动力总成按照三点悬置集中加载.表4 车架的主要静载荷 Tab.4 Main strength of frame?研究静强度所加约束根据实际情况添加:车架与左前悬架连接处约束平动自由度UZ,车架与右前悬架连接处约束平动自由度UZ,UY,车架与左后悬架连接处与车架与右后悬架连接处分别约束平动自由度UX,UZ和平动自由的UX,UY,UZ.得到Von Mises等效应力云图如图4所示[9,16].在ANSYS后处理中看到车架的结构强度,在弯曲工况下,车架的最大应力发生在第3根横梁和第4根横梁之间的连接处,这段梁为变截面多向纵梁,达到了66.449 MPa,而材料许用应力值为340 MPa,远远低于许用应力.则此处可以进行结构优化,减少材料使用量,可以考虑梁变细或者缩减壁厚.图4 静强度等效应力云图 Fig.4 Equivalent stress drawing of strength4.2 刚度分析4.2.1 弯曲刚度分析车架的弯曲刚度可以用车架在垂直载荷作用下产生的挠度来描述.弯曲刚度所加约束根据实际情况添加:车架与左前悬架连接处约束平动自由度UZ,车架与右前悬架连接处约束平动自由度UZ,UY,车架与左后悬架连接处约束平动自由度UX,UZ,以及车架约束与右后悬架连接处平动自由度UX,UY,UZ.在车架第5根横梁外加600 N的力,使车架发生弯曲变形.得到Von Mises等效应力云图如图5所示[9,16].图5 弯曲刚度等效应力云图 Fig.5 Equivalent stress drawing of bending rigidity由弯曲刚度公式得[17]式中:EI为弯曲刚度,轴距a=3 060 mm,加载力F=600 N,由ANSYS分析的挠度f=0.7 mm.将以上数值代入式(1)中,求解得出弯曲刚度EI=5.1×105 N·m2.4.2.2 扭转刚度分析车架的扭转刚度可以用车架在扭转载荷作用下产生的扭转角来描述.扭转刚度所加约束根据实际情况添加:车架与右前悬架连接处约束平动自由度UZ,约束车架与左后悬架连接处UX,UZ,车架与右后悬架连接处约束平动自由度UX,UY,UZ,并在车架左纵梁悬架与车身连接点施加1 000 N的力,使车架发生扭转情况,因此得到Von Mises等效应力云图如图6所示.扭转工况等效应力云图表明,最大应力值为449 MPa,大于许用应力出现此应力集中的位置是在第2,第3根横梁与纵梁相接处.此处横梁应加粗,与纵梁应使用加厚焊[9,16].由扭转刚度公式得[17]式中:CT为扭转刚度,MN·m2/rad;F=1 000 N为加载的集中载荷;L=800 mm为集中力产生的力矩;h=2.7 mm为载荷作用点处的挠度;a=3 060 mm为车架的轴距.将以上数值代入公式(2)中计算得到CT=7.25×105 MN·m2/rad.图6 扭转刚度等效应力云图 Fig.6 Equivalent stress drawing of torsional rigidity由于各种车型结构上的差别,还不能够合理地给出车架弯曲和扭转工况下的刚度定论,仍然需要对车架实施实际测试,这里只能给出大致的比较参数,为车架的优化和改进提供参考.5 结论1)进行有限元模态分析,获得了无阻尼自由振动下的前6阶振动频率,以及各个振动频率对应的振型.将有限元理论计算值与实验模态分析数据相比较,结果证明能在一定程度上避免共振现象发生,数据比较一致,误差较小,所构建的车架结构模型比较准确.与未经过正确性判定的实验值数据相比分析结果更为可靠,更能够直接作为车架动态设计的参考.2)求解计算得出车架的刚度和静强度分析,分析时间少,效率相对较高.分析应力应变云图可发现,车架的最大位移量和最大应力发生位置,对应力值远远小于屈服极限位置,可以采用减薄壁厚,节省材料;对应力超于许用应力值的位置,可以进行钢板加厚等措施,改善车架缺陷.综合以上分析结果,本文为车架的改进和优化提供了参考依据.参考文献:[1]Filho RRP,Rezende JCC,Leal MF,et al.Automotive frameoptimization[C].12th International Mobility,2003:013702.[2]周折,李岳林,廖伯荣,等.基于有限元法的某微型卡车车架模态分析[J].公路与汽运,2015,167(2):31-33.Zhou Zhe,Li Yuelin,Liao Borong,et al.Model analysis of a certain truck frame based on finite element method[J].Highways ffAutomotive Applications,2015,167(2):31-33.(in Chinese)[3]张进国,程晓辉,孙敬宜.基于ANSYS的汽车车架结构有限元分析[J].拖拉机与农用运输车,2006,33(5):63-64.Zhang Jinguo,Cheng Xiaohui,Sun Jingyi.Finite element analysis of vehicle frame based on ANSYS[J].TractorffFarm Transporter,2006,33(5):63-64.(in Chinese)[4]汪伟,辛勇.车架有限元建模及模态分析[J].机械设计与制造,2009(11):53-54.Wang Wei,Xin Yong.Finite element modeling and analysis for the modals of vehicle's frame[J].Machinery Design ffManufacture,2009(11):53-54.(in Chinese)[5]朱昌发,杨森,钱立军.特种越野车车架强度及模态分析与结构优化[J].车辆与动力技术,2011,124(4):22-25.Zhu Changfa,Yang Sen,Qian Lijun.Frame strength and modal analysis and structure optimization of offroad vehicle[J].Vehicle ffPower Technology,2011,124(4):22-25.(in Chinese)[6]刘胜乾,顾力强,吕文汇.军用某型牵引车车架静动态特性分析[J].机械,2006,33(4):10-12.Liu Shengqian,Gu Liqiang,LüWenhui.The static and dynamic characteristic analysis of tractor vehicle frame[J].Machinery,2006,33(4):10-12.(in Chinese)[7]蒋鸣累,郑士振,郭伟.基于ANSYS的越野车车架有限元分析[J].冶金自动化,2012,36(4):57-60.Jiang Minglei,Zheng Shizhen,GuoWei.Analysis of finite element of off-road trailers based on ANSYS[J].Metallurgical Industry Automation,2012,36(4):57-60.(in Chinese)[8]尹安东,龚来智,王欢,等.基于Hyperworks的电动汽车车架有限元分析[J].合肥工业大学学报(自然科学版),2014,37(1):6-9.Yin Andong,Gong Laizhi,Wang Huan,et al.Finite element analysis of electric vehicle frame based on Hyperworks[J].Journal of HEFEI University of technology (Natural Science Edition),2014,37(1):6-9.(in Chinese)[9]龚竞,丁玲,李秋实.基于CAE技术某越野车车架结构有限元分析[J].农业装备与车辆工程,2012,50(10):28-34.Gong Jing,Ding Ling,Li Qiushi.Finite element analysis of a certain off-road frame structure basedon CAE technology[J].Agricultural equipment ffvehicle engineering,2012,50(10):28-34.(in Chinese)[10]杨海平,王良模,彭曙兮,等.基于CAE技术的某越野车车架分析[J].机械科学与技术,2011,30(6):1001-1006.Yang Haiping,Wang Liangmo,Peng Shuxi,et al.The analysis of a certain off-road vehicle frame based on technology of CAE[J].Mechanical Science and Technology for Aerospace Engineering,2011,30(6):1001-1006.(in Chinese)[11]曹妍妍,赵登峰.有限元模态分析理论及其应用[J].机械工程与自动化,2007,2(1):73-74.Cao Yanyan,Zhao Dengfeng.Finite element modal analysis theory and application[J].Mechanical engineering ffAutomation,2007,2(1):73-74.(in Chinese)[12]Mitchell M R,Wetzel R M.Cumulative fatigue damage analysis of alight truck frame[J].SAE Paper,2011:750966.[13]王吉昌,赵耀虹.全地形车车架结构分析[J].中北大学学报(自然科学版),2007,28(3):45-47.Wang Jichang,Zhao Yaohong.Analysis of ATV frame[J].Journal of North University of China(Natural Science Edition),2007,28(3):45-47.(in Chinese)[14]徐丰,崔国华,麻林川,等.FSAE赛车车架有限元分析与结构优化[J].河北工程大学学报(自然科学版),2014,31(4):82-86.Xu Feng,Cui Guohua,Ma Linchuan,et al.Finite element analysis and structure optimization for FSAE car frame[J].Journal of Hebei University of Engineering(Natural Science Edition),2014,31(4):82-86.(in Chinese)[15]王兵,刘云欢.基于ANSYS Workbench的FSAE赛车车架模态分析与轻量化设计[C].2013中国汽车工程学会年会论文集.北京:中国汽车工程学会,2013:612-613.[16]曾志强,蔡端波,王俊元,等.矿用防爆胶轮车车架优化设计及其静动态分析[J].中北大学学报(自然科学版),2013,34(3):231-235.Zeng Zhiqiang,Cai Duanbo,Wang Junyuan,et al.The explosion-proof rubber tyre vehicle frame design and optimization of static and dynamic analysis [J].Journal of North University of China(Natural Science Edition),2013,34(3):231-235.(in Chinese)[17]Abdelal G F,Cooper J E,Robotham A J.Reliability assessment of 3D space frame structures applying stochastic finite element analysis [J].Int J Mech Mater Des,2013(9):1-9.。

ANSYS模态分析教程及实例讲解解析

ANSYS模态分析教程及实例讲解解析

ANSYS模态分析教程及实例讲解解析ANSYS是一个广泛应用于工程领域的有限元分析软件,可以用于各种结构的模态分析,包括机械结构、建筑结构、航空航天结构等。

模态分析是通过计算结构的固有频率和振动模态,用于评估结构的动力特性和振动响应。

以下是一个ANSYS模态分析的教程及实例讲解解析。

一、教程:ANSYS模态分析步骤步骤1:建立模型首先,需要使用设计软件绘制或导入一个几何模型。

然后,在ANSYS中选择适当的单元类型和材料属性,并创建适当的网格。

确保模型的几何形状和尺寸准确无误。

步骤2:约束条件在进行模态分析之前,需要定义适当的约束条件。

这些条件包括固定支持的边界条件、约束点的约束类型、约束方向等。

约束条件的选择应该与实际情况相符。

步骤3:施加载荷根据实际情况,在模型上施加适当的载荷。

这些载荷可以是静态载荷、动态载荷或谐振载荷,具体取决于所要分析的问题。

步骤4:设置分析类型在ANSYS中,可以选择多种不同的分析类型,包括静态分析、模态分析、动态响应分析等。

在进行模态分析时,需要选择模态分析类型,并设置相应的参数。

步骤5:运行分析设置好分析类型和参数后,可以运行分析。

ANSYS将计算结构的固有频率和振动模态。

运行时间取决于模型的大小和复杂性。

步骤6:结果分析完成分析后,可以查看和分析计算结果。

ANSYS将生成包括固有频率、振动模态形态、振动模态形状等在内的结果信息。

可以使用不同的后处理技术,如模态形态分析、频谱分析等,对结果进行更详细的分析。

二、实例讲解:ANSYS模态分析以下是一个机械结构的ANSYS模态分析的实例讲解:实例:机械结构的模态分析1.建立模型:使用设计软件绘制机械结构模型,并导入ANSYS。

2.约束条件:根据实际情况,将结构的一些部分设置为固定支持的边界条件。

3.施加载荷:根据实际应用,施加恰当的静态载荷。

4.设置分析类型:在ANSYS中选择模态分析类型,并设置相应的参数,如求解方法、迭代次数等。

ANSYS动力学分析指南——模态分析

ANSYS动力学分析指南——模态分析

§1.1模态分析的定义及其应用模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。

同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。

ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。

前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。

ANSYS产品家族中的模态分析是一个线性分析。

任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。

ANSYS提供了七种模态提取方法,它们分别是子空间法、分块Lanczos法、PowerDynamics法、缩减法、非对称法、阻尼法和QR阻尼法。

阻尼法和QR阻尼法允许在结构中存在阻尼。

后面将详细介绍模态提取方法。

§1.2模态分析中用到的命令模态分析使用所有其它分析类型相同的命令来建模和进行分析。

同样,无论进行何种类型的分析,均可从用户图形界面(GUI)上选择等效于命令的菜单选项来建模和求解问题。

后面的“模态分析实例(命令流或批处理方式)”将给出进行该实例模态分析时要输入的命令(手工或以批处理方式运行ANSYS时)。

而“模态分析实例(GUI方式)” 则给出了以从ANSYS GUI中选择菜单选项方式进行同一实例分析的步骤。

(要想了解如何使用命令和GUI选项建模,请参阅<<ANSYS建模与网格指南>>)。

<<ANSYS命令参考手册>>中有更详细的按字母顺序列出的ANSYS 命令说明。

§1.3模态提取方法典型的无阻尼模态分析求解的基本方程是经典的特征值问题:其中:=刚度矩阵,=第阶模态的振型向量(特征向量),=第阶模态的固有频率(是特征值),=质量矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档