材科基考点强化(第11讲 三元相图)
合集下载
上海交大材料学院考研专业课材料科学基础--三元相图

C.
局部图形表示法
如果只需要研究三元系中一定成 分范围内的材料,就可以在浓度 三 角形中取出有用的局部(见图
8.5)加以放大,这样会表现得更
加清晰。
© meg/aol ‘02
8.2
三元匀晶相图
1. 相图的空间模型 如右图所示,三条二元匀晶相 图的液相线和固相线分别连结成三 元合金相的液相曲面和固相曲面。 液相面以上区域为液相区,固相面 以下区域为固相区,而两面之间为 液、固两相共存的两相区。
元的质量之和应等于合金P中C、B两组元的质量之和。令合金P的质量为
WP, α 相的质量为Wα , β 相的质量为Wβ ,则WP=Wα + Wβ ,由于合金 中的C、B组元的含量分别为Af和Af’,由C、B质量守恒分别的下两式:
WP Af W Ae W Ag (W W ) A f W Ae W Ag WP Af ' W Ae ' W Ag ' (W W ) Af ' W Ae ' W Ag ' W ( Af Ae ) W ( Ag Af ) W ( Af ' Ae ' ) W ( Ag ' Af ' ) fg f ' g ' ef e' f '
直线两边的组元含量之比为定值,如图中CG线上的任何合金,A%与B %的比值为定值,即A%/B%=BG/GA。
证明:在CG上任何一合金o,如下图所示,
过o点作MN//AC,bp//AB, aQ//BC。
© meg/aol ‘02
B
O合金成分: A%/B%=Ca/AM (定义) =ob/op =BG/GA.
证明如下:假定
三元相图ppt

三元相图的分析技巧
相态的分析
确定三元相图的三个相态
根据三元相图中的三个区域,可以确定三元相图的三个相态,即液相、固相和气 相。
确定相态之间的转化
三元相图中不同相态之间的转化与成分和温度有关,可以根据相图中的成分和温 度范围确定不同相态之间的转化条件。
结晶过程的分析
分析结晶过程
三元相图中的结晶过程分析需要了解不同成分的溶液中结晶 过程的特点,以及结晶过程中成分的变化规律。
材料科学的基础研究
三元相图的研究也是材料科学基础研 究的重要组成部分。通过对三元相图 的深入研究,可以更好地理解物质的 本质和规律,为材料科学的其他领域 提供基础支撑。
THANKS
谢谢您的观看
新型材料的探索
研究者们通过实验探索新型材料的三元相图,以寻找具有更优性能的相变材料, 应用于能源、环保等领域。
理论研究进展
计算方法的改进
研究者们不断改进计算方法,以更准确地预测三元相图中的 相行为。
分子动力学模拟
利用分子动力学模拟技术,研究者们可以模拟真实材料的三 元相图,为理论预测提供更为准确的依据。
多晶型和同素异构体的存在
在某些三元体系中,可能存在多种晶型和同素异构体,这些不同结构的物质在物理和化学 性能上可能存在显著的差异,因此如何考虑这些差异对三元相图的影响也是一个重要的问 题。
三元相图未来研究方向的建议
加强实验研究
由于三元相图的复杂性,实验研究仍然是确定三元相图最准确的方法。因此,需要发展新的实验技术,提高实验的精度和效 率,同时需要建立更加完善的数据库和理论模型来描述和预测三元相图。
应用研究进展
能源储存与运输
研究者们正在研究如何利用三元相图优化能源储存与运输过程中的性能。例 如,优化相变材料在储存和运输过程中的热力学性质。
相态的分析
确定三元相图的三个相态
根据三元相图中的三个区域,可以确定三元相图的三个相态,即液相、固相和气 相。
确定相态之间的转化
三元相图中不同相态之间的转化与成分和温度有关,可以根据相图中的成分和温 度范围确定不同相态之间的转化条件。
结晶过程的分析
分析结晶过程
三元相图中的结晶过程分析需要了解不同成分的溶液中结晶 过程的特点,以及结晶过程中成分的变化规律。
材料科学的基础研究
三元相图的研究也是材料科学基础研 究的重要组成部分。通过对三元相图 的深入研究,可以更好地理解物质的 本质和规律,为材料科学的其他领域 提供基础支撑。
THANKS
谢谢您的观看
新型材料的探索
研究者们通过实验探索新型材料的三元相图,以寻找具有更优性能的相变材料, 应用于能源、环保等领域。
理论研究进展
计算方法的改进
研究者们不断改进计算方法,以更准确地预测三元相图中的 相行为。
分子动力学模拟
利用分子动力学模拟技术,研究者们可以模拟真实材料的三 元相图,为理论预测提供更为准确的依据。
多晶型和同素异构体的存在
在某些三元体系中,可能存在多种晶型和同素异构体,这些不同结构的物质在物理和化学 性能上可能存在显著的差异,因此如何考虑这些差异对三元相图的影响也是一个重要的问 题。
三元相图未来研究方向的建议
加强实验研究
由于三元相图的复杂性,实验研究仍然是确定三元相图最准确的方法。因此,需要发展新的实验技术,提高实验的精度和效 率,同时需要建立更加完善的数据库和理论模型来描述和预测三元相图。
应用研究进展
能源储存与运输
研究者们正在研究如何利用三元相图优化能源储存与运输过程中的性能。例 如,优化相变材料在储存和运输过程中的热力学性质。
材料科学基础三元相图PPT课件

代表的两组元的比值恒定。
17
与某一边平行的直线
B
含对角组元浓度相等
B%
C%
P
Q
A
← A%
C
18
过某一顶点作直线
A% C a1 Ba '1 Ba '2 C a2 常 数 C % Bc1 Bc1 Bc2 Bc2
B
a1′ a2′
c1
c2 E
F
C%
B%
A
← A% D a2 a1 C
19
课堂练习
↑
N
B%
A
C%→
13
14
3 成分三角形中特殊的点和线 (1)三个顶点:代表三个纯组元; (2)三个边上的点:二元系合金的成分点;
15
II 点:40%A- 0%B- 60%C 90
III 点:20%A- 20%B- 60%C IV点:20%A- 50%B- 30%C 80
70
60 B% 50
B
10
还有偏共晶、共析、包析、包共析转变等。
22
5 共线法则与杠杆定律 (1)共线法则:在一定温度下,三元合金两相平衡时,合
金的成分点和两个平衡相的成分点必然位 于成分三角形内的同一条直线上。 (由相率可知,此时系统有一个自由度,表示一个相的成 分可以独立改变,另一相的成分随之改变。) (2)杠杆定律:用法与二元相同。
26
二元匀晶相图
液相线 固相线
T (℃)
单相区 双相区
L
L +
A
B
27
三元匀晶相图
70 60 B% 50 40
30
20
10
10
20
30
40
II
17
与某一边平行的直线
B
含对角组元浓度相等
B%
C%
P
Q
A
← A%
C
18
过某一顶点作直线
A% C a1 Ba '1 Ba '2 C a2 常 数 C % Bc1 Bc1 Bc2 Bc2
B
a1′ a2′
c1
c2 E
F
C%
B%
A
← A% D a2 a1 C
19
课堂练习
↑
N
B%
A
C%→
13
14
3 成分三角形中特殊的点和线 (1)三个顶点:代表三个纯组元; (2)三个边上的点:二元系合金的成分点;
15
II 点:40%A- 0%B- 60%C 90
III 点:20%A- 20%B- 60%C IV点:20%A- 50%B- 30%C 80
70
60 B% 50
B
10
还有偏共晶、共析、包析、包共析转变等。
22
5 共线法则与杠杆定律 (1)共线法则:在一定温度下,三元合金两相平衡时,合
金的成分点和两个平衡相的成分点必然位 于成分三角形内的同一条直线上。 (由相率可知,此时系统有一个自由度,表示一个相的成 分可以独立改变,另一相的成分随之改变。) (2)杠杆定律:用法与二元相同。
26
二元匀晶相图
液相线 固相线
T (℃)
单相区 双相区
L
L +
A
B
27
三元匀晶相图
70 60 B% 50 40
30
20
10
10
20
30
40
II
三元相图-材料科学基础

2.等边成分三角形中的特殊线
●平边线等浓度关系 平行于三角形某一边的直线 (如 ef),凡成分点位于该线 上的各合金中所含与此线对应 顶角代表的组元( B)的质量分 数(浓度)均相等。
WB=Ae%
●顶角线等比成分关系 通过三角形某一顶点的直线 ( 如 Bg),位 于 该线上的所有 三元系合金,所含另外两顶点 所代 表 的 组 元 ( A、C) 质量分 数(浓度)比值为恒定值。 即:WA/WC= Cg/Ag
一、三元相图成分表示方法
相图成分通常用浓度(或成分)三角形 (concentration/composition triangle) 表示。常用的成分三角形有等边成分三角形、 等腰成分三角形或直角成分三角形。
1.等边成分三角形
●三角形顶点代表纯组元 A、B、C, ●三角形的边代表二元系合金 即:A-B系、B-C系、C-A系。 且 AB=BC=CA=100%, ● 三角形内任一点都代表一个三 元合金。 其成分确定方法如下:由成分三 角形所给定点 S,分别向 A、B、C 顶点所对应的边 BC、CA、AB 作平 行 线 ( sa、sb、sc), 相 交 于 三 边 的 c、a、b 点 , 则 A、 B、C 组 元 的 浓度为:
(vid三元简单共晶相图介绍)
三元共晶相图的相区
相区:(fla三元相图在固态下互不溶解共
晶相图分布)。
液相区L(液相面以上); 三个液固两相区 L+A L +B L+C(液相面和二元共晶 转变面之间 ) (vid 简单共晶两相区) ; 三 个 液 固 三 相 区 L+A+B L+B+C L+C+A( 二元共晶 面与三元共晶面之间 ) ;一个 固 相 三 相 区 A+B+C( 固 相 面 mpne以下) (vid简单共晶三相区); 一 个 四 相 区 L+A+B+ C(过E点水平面)
材料科学基础三元相图

液相与np接触,L+α→M, 至P点LP+αa→Md1+γc1,α消失 多余液相发生L→M+γ结束
材料科学基础三元相图
七、 三元包晶相图
1. 空间模型(可以与有固溶度三元共晶比较) 三个液相面 三个单相固相面 一个三元包晶
反应水平面 一组二元共晶
开始、结束面 两组二元包晶
反应开始、结束面 六个单相固度面
x,y,z分别为α,β,γ成分点,则 α%=oa/ax×100%,β=ob/by×100%, γ%=oc/cz×100%
材料科学基础三元相图
三、匀晶三元相图
1. 立体模型 液相区,固相区,液、固两相区
材料科学基础三元相图
匀晶三元相图---合金凝固过程及组织
a.平衡凝固 b.蝶形法则:如图 匀晶合金凝固中相成分变化 ,凝固中固、液相成分沿固相
共线法则:三元合金中两相平衡时合金 成分点与两平衡相成分点在浓度三角形 的同一直线上
杠杆定律表达式
α%=EO/DE×100%, β=OD/DE×100%
注意:当一个合金O在液相的凝固
过程中,析出α相成分不变时,液 相成分一定沿α相成分点与O点
连线延长线变化。
材料科学基础三元相图
2.三相平衡重心法则(重量三角形重心)
24
3
材料科学基础三元相图
3. 固态有限溶解三元共晶合金的等温截面
材料科学基础三元相图
4. 固态有限溶解三元共晶合金的变温截面
xy变温截面
x1:L→α+β,L→α+β+γ x2:L→α,L→α+β+γ x3:L→α,L→α+γ,L→α+β+γ x4:L→α,L→α+γ, α → β
材料科学基础三元相图
七、 三元包晶相图
1. 空间模型(可以与有固溶度三元共晶比较) 三个液相面 三个单相固相面 一个三元包晶
反应水平面 一组二元共晶
开始、结束面 两组二元包晶
反应开始、结束面 六个单相固度面
x,y,z分别为α,β,γ成分点,则 α%=oa/ax×100%,β=ob/by×100%, γ%=oc/cz×100%
材料科学基础三元相图
三、匀晶三元相图
1. 立体模型 液相区,固相区,液、固两相区
材料科学基础三元相图
匀晶三元相图---合金凝固过程及组织
a.平衡凝固 b.蝶形法则:如图 匀晶合金凝固中相成分变化 ,凝固中固、液相成分沿固相
共线法则:三元合金中两相平衡时合金 成分点与两平衡相成分点在浓度三角形 的同一直线上
杠杆定律表达式
α%=EO/DE×100%, β=OD/DE×100%
注意:当一个合金O在液相的凝固
过程中,析出α相成分不变时,液 相成分一定沿α相成分点与O点
连线延长线变化。
材料科学基础三元相图
2.三相平衡重心法则(重量三角形重心)
24
3
材料科学基础三元相图
3. 固态有限溶解三元共晶合金的等温截面
材料科学基础三元相图
4. 固态有限溶解三元共晶合金的变温截面
xy变温截面
x1:L→α+β,L→α+β+γ x2:L→α,L→α+β+γ x3:L→α,L→α+γ,L→α+β+γ x4:L→α,L→α+γ, α → β
材料科学基础三元相图共67页

42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
Байду номын сангаас
材料科学基础三元相图
21、静念园林好,人间良可辞。 22、步步寻往迹,有处特依依。 23、望云惭高鸟,临木愧游鱼。 24、结庐在人境,而无车马喧;问君 何能尔 ?心远 地自偏 。 25、人生归有道,衣食固其端。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
Байду номын сангаас
材料科学基础三元相图
21、静念园林好,人间良可辞。 22、步步寻往迹,有处特依依。 23、望云惭高鸟,临木愧游鱼。 24、结庐在人境,而无车马喧;问君 何能尔 ?心远 地自偏 。 25、人生归有道,衣食固其端。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
材料科学基础——三元合金相图152页PPT

6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
材料科学基础——三元 合金相图
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思
Thank
材料热力学课件11三元相图及凝固组织三元匀晶相图

从a,b,c的值可以直接读出 A组元的含量Ca=20% B组元的含量Ab=40% C组元的含量Bc=40%
y z
2024/2/21
4
若已知合金中三个组元的百分含量,求该合金在 三角形内的位置。
标出 ABC含量分别为25%,10%,65%的点? ABC含量分别为60%,10%,30%的点?
2024/2/21
的相对量 3.将一系列等温截面与液相面的交线(称液相等温线)
和固相面的交线(称固相等温线)分别投影到浓 度三角形上,即获得液相等温线一固相等温线投 影图,分别表示该系合金的开始凝固温度和凝固 完毕温度。
2024/2/21
23
T1>T2>T3>T4>T5
X合金在高于T1开始凝 固,T2凝固完毕;
三元相图的浓度三角形
2024/2/213源自三角形内任一点x合金的成分求法
三边AB、BC、CA按顺时针方向分别代表三组元B、C、 A的含量
由x点分别向顶点A,B,C的对应边作平行线,顺序交 于三边的a,b,c点,三线段之和等于三角形的任一边长, 即 xa+xb+xc=AB=BC=CA =合金的总量(100%)
2024/2/21
20
共轭线的确定----实验确定
测定一定温度下两平衡相中任一相的一个组元含量,就 可确定两平衡相的成分。
设合金x分解为L+α两相,其成分分别位于固相 线和液相线上。若测出α中含C为xc%,则α的成 分一定位于平行于AB的虚线上,与固相线交于 n点,即为α成分点,再根据杠杆定律连接nx, 并延长与液相线交于m点,即为液相成分点。 此mn线段即为一条共轭线。
2024/2/21
9
2 三元相图的杠杆定律和重心法则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点1:基础知识
例1:在三元系中出现两相平衡时,若要计算两相的百分数,则()。
A.在垂直截面上运用杠杆定理计算
B.在水平截面上运用杠杆定理计算
C.在投影面上运用杠杆定理计算
D.在水平截面上运用重心法则计算
例2:解释三元系合金相图的重心定律?
考点2:固态完全不互溶三元相图
例:某A-B-C三组元在液态完全互溶,固态完全不互溶,且具有共晶反应,其三元相图的全投影图如图所示。
图中O点成分的合金自液态平衡冷却至室温。
(1)分析O合金的平衡结晶过程;(2)写出室温时的相组成物和组织组成物;(3)计算室温时各相组成物的质量百分数和各组织组成物的质量百分数。
考点3:固态有限互溶三元相图
例1:画出固态下有限互溶三元共晶相图的投影图,并在图中标出室温下组织为γ+(γ+α)+(γ+α+β)的相区。
例2:分析三元合金相图中K合金的平衡结晶过程,画出其冷却曲线,并写出它在室温时的组织组成物(见图)。
考点4:四项平衡反应的判断
例1:(1)在如图所示的三元相图投影图中会发生什么样的四相平衡反应?写出反应式;(2)组成这个三元系的三个二元系中分别发生什么样的三相平衡反应?写出反应式。
材料科学基础知识精要与真题详解
2
例2:如图所示为组元在固态下互不溶解的三元共晶合金相图的投影图。
(1)分析O 点成分合金的平衡结晶过程;(2)写出该合金在室温下组织组成物的相对含量表达式。
例3:试根据如图所示的液相面投影图,分别写出四相平衡反应式。