电缆的屏蔽方法
电缆屏蔽计算公式

电缆屏蔽计算公式
电缆屏蔽计算公式是一种用于计算电缆屏蔽效果的方法。
在电缆传输中,电缆外部的干扰会对信号的传输质量产生不良影响,因此需要通过屏蔽来保护电缆,减少干扰的影响。
电缆的屏蔽效果可以通过屏蔽系数来描述,屏蔽系数越高,表示屏蔽效果越好。
屏蔽因子=(1+4πσ/ωε)^-1
其中,σ为屏蔽材料的导电率,ω为工作频率,ε为电缆绝缘材料的介电常数。
屏蔽因子越高,表示外屏蔽的效果越好。
电缆的内屏蔽采用铜丝编织、铜箔、铝箔等方式,其屏蔽效果可以通过衰减因子来描述。
根据电场理论,内屏蔽的衰减因子与屏蔽材料的传导率、电缆内径、屏蔽厚度等因素有关。
具体计算公式如下:
衰减因子=(1+4πσ/ωε)^-1
其中,σ为屏蔽材料的导电率,ω为工作频率,ε为电缆绝缘材料的介电常数。
衰减因子越高,表示内屏蔽的效果越好。
在实际应用中,电缆常常同时具有外屏蔽和内屏蔽,屏蔽效果由两者共同决定。
总屏蔽效果可以通过屏蔽系数来描述,屏蔽系数被定义为外屏蔽因子与内屏蔽因子的乘积。
具体计算公式如下:
屏蔽系数=外屏蔽因子×内屏蔽因子
屏蔽系数越高,表示总屏蔽的效果越好。
需要注意的是,以上公式是根据理论推导得出的近似公式,实际应用中还需要考虑电缆的具体结构、工作环境等因素,以及各种因素之间的相互影响。
因此,在实际应用中需要根据具体情况进行修正和调整,确保计
算结果的准确性。
此外,还需要结合实测数据进行验证,以保证计算结果的可靠性。
10-35KV中压电缆的半导电内屏蔽,绝缘屏蔽,铜带屏蔽,

10-35KV中压电缆的半导电内屏蔽,绝缘屏蔽,铜带屏蔽,
起着什么作用,各有什么区别
屏蔽主要是均匀电场、传输不平衡电流
金属屏蔽主要是在三相四线中当中性线,当电缆发生短路时可以当回路,可以放止电缆轴向放电,最主要的作用就是均化电场.铜带屏蔽还起到接地和承担短路电流的作用。
电缆结构上的屏蔽是一种改善电场分布的措施。
中策电缆电缆导体由多根导线绞合而成,它与绝缘层之间易形成气隙,导体表面不光滑,会造成电场集中。
在导体表面加一层半导电材料的屏蔽层,它与被屏蔽的导体等电位并与绝缘层良好接触,从而避免在导体与绝缘层之间发生局部放电,这一层屏蔽为内屏蔽层;同样在绝缘表面和护套接触处也可能存在间隙,是引起局部放电的因素,故在绝缘层表面加一层半导电材料的屏蔽层,它与被屏蔽的绝缘层有良好接触,与金属护套等电位,从而避免在绝缘层与护套之间发生局部放电,这一层屏蔽为外屏蔽层;没有金属护套的挤包绝缘电缆,除半导电屏蔽层外,还要增加用铜带或铜丝绕包的金属屏蔽层,这个金属屏蔽层的作用,在正常运行时通过电容电流;当系统发生短路时,作为短路电流的通道,同时也起到屏蔽电场的作用。
可见,如果中策电缆中这层外半导体层和铜屏蔽不存在,三芯电缆中芯与芯之间发生绝缘击穿的可能性非常大。
金属屏蔽的作用是1、做静电屏蔽,限制电场在电缆绝缘内作用
2、作为三相四线制系统的中性线,传导不平衡电流。
3、电站保护系统需要外金属屏蔽有好的防雷特性。
4、正常情况下,流过电容电流,短路时作为故障电流的回路。
5、防止轴向表在放电。
屏蔽导线的原理与方法

什么是屏蔽线?定义:导体外部有导体包裹的导线叫屏蔽线,包裹的导体叫屏蔽层,一般为编织铜网或铜泊(铝),屏蔽层需要接地,外来的干扰信号可被该层导入大地。
作用:避免干扰信号进入内层,导体干扰同时降低传输信号的损耗。
结构:(普通)绝缘层+屏蔽层+导线(高级)绝缘层+屏蔽层+信号导线+屏蔽层接地导线注意:在选用屏蔽线时,屏蔽层接地导线屏蔽层接地导线的绝缘层有导电功能,可以与屏蔽层导通(有一定的电阻)屏蔽线缆的原理:屏蔽布线系统源于欧洲,它是在普通非屏蔽布线系统的外面加上金属屏蔽层,利用金属屏蔽层的反射、吸收及趋肤效应实现防止电磁干扰及电磁辐射的功能,屏蔽系统综合利用了双绞线的平衡原理及屏蔽层的屏蔽作用,因而具有非常好的电磁兼容(EMC)特性。
电磁兼容(EMC)是指电子设备或网络系统具有一定的抵抗电磁干扰的能力,同时不能产生过量的电磁辐射。
也就是说,要求该设备或网络系统能够在比较恶劣的电磁环境中正常工作,同时又不能辐射过量的电磁波干扰周围其它设备及网络的正常工作。
U/UTP(非屏蔽)电缆的平衡特性并不只取决于部件本身的质量(如绞对),而会受到周围环境的影响。
因为U/UTP(非屏蔽)周围的金属、隐蔽的“地”、施工中的牵拉、弯曲等等情况都会破坏其平衡特性,从而降低EMC性能。
所以,要获得持久不变的平衡特性,只有一个解决方案:在所有芯线外加多一层铝箔进行接地。
铝箔为脆弱的双绞芯线增加了保护,同时为U/UTP(非屏蔽)电缆人为的创造了一个平衡环境。
从而形成我们现在所说的屏蔽线缆。
屏蔽电缆的屏蔽原理不同于双绞的平衡抵消原理,屏蔽电缆是在四对双绞线的外面加多一层或两层铝箔,利用金属对电磁波的反射、吸收和趋肤效应原理(所谓趋肤效应是指电流在导体截面的分布随频率的升高而趋于导体表面分布,频率越高,趋肤深度越小,即频率越高,电磁波的穿透能力越弱),有效的防止外部电磁干扰进入电缆,同时也阻止内部信号辐射出去,干扰其它设备的工作。
XLPE电缆的金属屏蔽

XLPE电缆的金届屏蔽主要起电屏蔽作用,在断路时也起着导线断路电流的重要作用。—般金属屏蔽可由一二层铜带、铜丝编织层或铜线疏绕同芯层等组成。疏绕钢线的间距不得大于4mm,并要有一反向绕的铜线作为接触扎线,把金属疏绕层在电气上连成一体。
对多芯电缆,一般采用总金属屏蔽。在包制总屏蔽前,电缆成缆时必须填充圆整,并绕包一层原1—2mm(成缆外径25—80mm时)的塑料垫层。除0.6/1kv等级的电缆外,XLPE电缆填充及垫层都必须采用半导体塑料,并要求其具有相应耐温等级。有些设计,对三芯24kV以下XLPE电明闸搭靛的PE—金属复合带纵包为金属总屏蔽。当纵包成形后立即挤上一层PE外护套,使其与复合带牢固结合。金属带可以用铝或铜制成,铝带厚度为0.3mm。这种金属屏蔽层设计既造价低廉,又能防水侵入。在金属屏蔽层中,断路电流、导电截面的大小要按电网系统的短路容量(shortcircult power)和系统接地方式而定。如果中心点直接接地,在金属屏蔽层中引起的短路电流将与电缆导电芯中的相同。如果系统不接地或通过阻抗接地,除出现少见的特殊短路情况外,金属屏蔽层中的短路电流将不会太大。非宜接接地系统中XLPE配电缆的铜屏蔽层的截面,各截面的断路电流截流量是与同样电压,同样导体截面的油纸绝缘电缆的铝包层的载流量相同。
三芯电缆平均能承受60KA冲击短路电流,即相当于24kA对称短路电流(60kV/2.5);用铠装或其它方法加固的XLPE电腕以承受95kAI而相应的油纸绝缘铅包钢带铠转电继可以承受100一120PVC或PE的外护套己足够对外力的防卫。但为了垂直敷设,海底敷设或防卫鼠及白蚊咬伤等则需用铠装等新方法来加固。为了防止多芯电缆内部短路电流所产生的巨大斥力,外部加固可以与内部加强结合起来。如在成缆半导体总屏蔽及半导体扎紧带外面做一镀锌钢丝铠装,同时充当金属屏蔽,必要时可以在钢丝间夹以一定铜丝以满足所需导电截面。塑料外护套可以做成阻燃或防白蚁结构。
屏蔽线的四种接法

屏蔽线的四种接法:
1、两端同时接地:
很好地屏蔽射频信号易受地环路电流的影响
2、两端接地,并带大面积的并行结合线(with large-area parallel bonding wire)
很好地屏蔽射频信号地电流主要流过结合线,但易受电磁场影响
3、一端接地
对射频屏蔽不好,尤其是电缆超过1/8波长时,甚至比不加屏蔽线还差
4、发射端接地,接收端通过电容接地
如果电容类型、位置正确,可以很好地屏蔽射频信号没有低频地回流模拟信号单端接地就可以了。
如果两端接地,大地就构成一个回路,对线路的屏蔽效果不好。
模拟信号最好单端接地,尤其是线路较长时,应为两个接地点的电位不同,有可能造成检测信号的不准确。
数字信号无所谓,一般单端就可以
应分3种类型
动力电缆三芯以上电缆带屏蔽的应两端接地
单芯的电缆带屏蔽应一端接地
控制电缆原则上带屏蔽的应一端接地
仪表电缆模拟信号单端接地,一般在控制柜侧进行接地,中间的转接箱或盒屏蔽要连续电磁流量计的信号应在流量计侧接地.
数字信号应两端接地。
如何解决电线电缆上的干扰

如何解决电线电缆上的干扰电线电缆上的干扰是一种常见的问题,它可能会导致电信号的衰减、噪声的增加以及信号传输的不稳定。
为了解决这个问题,可以采取以下措施:1.电磁屏蔽:在电线电缆周围添加电磁屏蔽材料可以有效地减少外界电磁干扰对电信号的影响。
常见的电磁屏蔽材料包括铝箔、铁氧体、石墨纤维等。
在安装电线电缆时,可以将电磁屏蔽材料包裹在电缆外部,形成一个屏蔽层,使电信号不受到周围电磁场的影响。
2.地线连接:良好的地线连接是保证电信号质量的重要因素之一、通过将电线电缆的金属外皮与地线相连接,可以有效地将干扰信号引入地下,避免其对电信号造成影响。
此外,还可以通过提升接地电阻的方法进一步优化地线连接的效果。
3.信号隔离:在电线电缆传输信号的过程中,可以采取信号隔离的措施,将干扰信号和传输信号进行分离。
常用的方法包括使用差分信号传输、电源隔离、光纤传输等。
通过这些方法,可以避免外界干扰对传输信号的影响。
4.滤波器:在电线电缆的输入和输出端添加滤波器可以有效地抑制干扰信号的传输。
滤波器可以通过选择合适的截止频率来滤除干扰信号,保证传输信号的质量。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器等。
5.地下布线:将电线电缆布线在地下可以减少外界干扰的影响。
地下布线使电线电缆与外界的物体隔离开,减少了电磁场的干扰源。
此外,地下布线还可以提高电线电缆的安全性,减少其被破坏的风险。
6.绝缘材料:在电线电缆的外部添加绝缘材料可以防止外界电磁场对电信号的干扰。
常见的绝缘材料包括橡胶、聚乙烯、聚氯乙烯等。
选择合适的绝缘材料可以提高电线电缆的抗干扰能力,保证信号的传输质量。
7.抑制共模干扰:共模干扰是一种常见的电磁干扰形式,它是指干扰信号以相同的方式作用于电线电缆的两个导线上。
为了抑制共模干扰,可以采取差模传输的方法,在信号传输过程中,将干扰信号差异化,避免其对两个导线的干扰。
总结起来,解决电线电缆上的干扰需要采取多种措施,包括电磁屏蔽、地线连接、信号隔离、滤波器、地下布线、绝缘材料等。
电缆封堵方案

电缆封堵方案1. 简介随着电力行业的迅速发展,电缆的使用越来越广泛。
电缆安装过程中,常常需要对电缆进行封堵,以确保电缆的安全运行。
本文将介绍电缆封堵的概念、原因以及常用的电缆封堵方案。
2. 电缆封堵的概念电缆封堵是指在电缆穿越墙壁、天花板或地板等构筑物的孔洞中,采用适当的方法对电缆进行封堵,防止火灾、烟气、有毒有害气体等通过电缆孔洞进入其他房间或楼层。
3. 电缆封堵的原因电缆封堵的主要原因是为了阻止火灾蔓延和烟气扩散。
在火灾发生时,电缆是最容易引燃的物体之一,如果电缆穿越的孔洞没有封堵好,火灾和烟气很容易通过这些孔洞传播到其他房间或楼层,造成更大的损失和伤害。
4. 常用的电缆封堵方案4.1 火灾封堵材料常用的火灾封堵材料有石膏板、岩棉板、硅酸铝防火泡沫等。
这些材料具有良好的耐高温性能和阻燃性能,可以有效阻止火灾和烟气的传播。
4.2 封堵方法在进行电缆封堵时,可以采用多种方法,如填塞封堵法、贴封堵法和注浆封堵法等。
•填塞封堵法:使用火灾封堵材料填塞电缆孔洞,确保密封牢固。
•贴封堵法:将火灾封堵材料粘贴在电缆孔洞周围,形成有效的封堵层。
•注浆封堵法:使用专用的封堵胶浆注入电缆孔洞,快速硬化形成封堵层。
4.3 封堵材料的选择选择适合的封堵材料是电缆封堵方案的关键。
应根据电缆尺寸、孔洞尺寸、封堵要求以及施工条件等因素进行综合考虑。
同时,还应遵循相关的安全标准和规范,确保封堵材料具有良好的隔热、阻燃和耐高温性能。
5. 总结电缆封堵是保障电缆安全运行的重要措施,可以有效阻止火灾和烟气的传播。
本文介绍了电缆封堵的概念、原因以及常用的电缆封堵方案,希望对读者在进行电缆封堵时提供一定的参考和借鉴价值。
注意:本文仅供参考,请根据实际情况和相关规范进行具体操作。
电缆中的铜丝屏蔽和铜带屏蔽选哪一种比较好?

电缆中的铜丝屏蔽和铜带屏蔽选哪一种比较好?
根据不同的场合,电缆结构也不同。
在屏蔽干扰的场合,屏蔽电缆被广泛使用,所以在选择屏蔽电缆时,应该选择铜丝屏蔽还是铜带屏蔽?关于铜丝屏蔽和铜带屏蔽,小编将带你简单了解!
屏蔽层的作用主要是保护电流或信号不受外界电磁干扰,避免使用中自身产生的电磁场对周围环境的干扰和电流流通故障。
根据屏蔽性能的要求,选择不同的材料,如铜丝编织屏蔽、铜带缠绕屏蔽、铜丝松散缠绕屏蔽、铝合金丝编织屏蔽、铜包铝丝编织屏蔽、铝塑复合带缠绕屏蔽等。
为了确保屏蔽层的连续性并降低屏蔽层的传输阻抗,通常需要在屏蔽层中纵向放置一根或多根退火铜丝作为引流线,用于铜带缠绕。
铜带屏蔽电流的主要方向与铜带相同。
铜丝屏蔽电流流过一个短路径,产生的热量较少,而两层铜带屏蔽增加了屏蔽横截面积,减少了流动电流,产生的热量较少。
虽然它可以屏蔽信号,但如果它瞄准的是载流量为500mm的电缆,它自身产生的磁场也会增加。
当短路电流超过一定值时,第二层0.12毫米铜带的有效截面值不能达到铜丝缠绕所能达到的较大有效截面值。
从以上综合考虑,铜丝的屏蔽效果要比其他屏蔽方法好得多,而且连续性可靠,因此可以选用铜丝屏蔽电缆。
但是,根据不同的施工方案和敷设环境,铜屏蔽电缆的利用率也很高。
在这里,用户应该根据自己的需要选择购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电缆的屏蔽方法
电缆导体通过电流时周围就有电场,磁场。
当电磁场达到一定强度时就可能对周围的金属构件或电子设备造成不利影响。
为消除影响,人们采取了各种措施将电磁场屏蔽。
屏蔽构件的屏蔽效应源于对于电磁波的吸收衰减和反射衰减。
对低频电磁波的屏蔽以吸收衰减为主,对高频电磁波的屏蔽以反射衰减为主。
屏蔽效应用屏蔽系数S表征。
屏蔽系数S用场中某处屏蔽后的电场强度EP或磁场强度HP与该处屏蔽前的电场强度E或磁场强度H之比测算,屏蔽系数越小则屏蔽效果越好S=EP/E=HP/H=0~1。
电缆屏蔽结构有多种,如铜丝或钢丝编织,铜带绕包或纵包,铝塑复合带纵包,铅套或铝套,钢带或钢丝铠装等。
一般来说,屏蔽体半径小,厚度大,层数多,材质复合交错,则屏蔽效果好。
不同材质的屏蔽效应不同,如铜带屏蔽的反射衰减效应好,而钢带屏蔽的吸收衰减效应好。
电力电缆6KV及以上绝缘外均有金属屏蔽,其功能除屏蔽电场外,还有一个重要功能,就是泄露短路电流。
由于电缆接地方式不同,金属屏蔽结构也不同。
电缆采用消弧线圈接地时,金属屏蔽采用铜带绕包。
电缆若采用小电阻接地,金属屏蔽多采用铜丝疏绕结构或金属套。
另外,10KV及以上电力电缆绝缘内外均有半导体屏蔽,其功能不再是屏蔽电场,而是均化电场,即使绝缘内的电场尽量趋于均匀,从而改善和提供绝缘效能,延长电缆使用寿命。
半导体电屏蔽料多为加有炭黑的聚烯烃,有交联型和非交联型,采用三层共挤工艺紧密均匀的附着在绝缘内外,其厚度标准规定。
就屏蔽效果而言,导体屏蔽厚一点好,绝缘屏蔽薄一点,均匀一点好。
使用半导体电屏蔽材料有严格的技术条件,这里仅谈三点,即含水量,电阻率及杂质颗粒的规定数据,一般半导体电屏蔽材料的含水量应不大于1000PPM,超光滑材料应不大于250PPM。
导体屏蔽材料的体积电阻率应不大于10000,绝缘屏蔽料的体积电阻率应不大于500。
超光滑屏蔽料的杂质颗粒有严格要求,大于200的颗粒应不多于15个/M2,大于500的颗粒应不多于1个/M2。
额定电压100KV及以上的电缆应采用光滑屏蔽料。