有源滤波器实验报告
有源滤波器实验报告

有源滤波器实验报告一、实验目的。
本实验旨在通过对有源滤波器的实验研究,掌握有源滤波器的基本原理、特性和设计方法,加深对电子电路理论的理解,提高实验操作能力。
二、实验仪器和设备。
1. 信号发生器。
2. 示波器。
3. 直流稳压电源。
4. 电阻、电容、运算放大器等元器件。
5. 电路实验箱。
三、实验原理。
有源滤波器是利用运算放大器的高输入阻抗和低输出阻抗的特性,结合电容和电阻等元件构成的一种滤波器。
根据不同的电路连接方式和元器件参数,可以实现对不同频率信号的滤波作用。
四、实验内容。
1. 搭建低通有源滤波器电路。
2. 搭建高通有源滤波器电路。
3. 测量并记录滤波器的幅频特性曲线。
4. 测量并记录滤波器的相频特性曲线。
五、实验步骤。
1. 按照电路图搭建低通有源滤波器电路,并接通电源。
2. 调节信号发生器输出正弦波信号,接入滤波器输入端,通过示波器观察输出波形,记录频率和幅值。
3. 依次改变输入信号频率,记录输出波形的变化,绘制幅频特性曲线。
4. 根据测量数据计算并绘制滤波器的相频特性曲线。
5. 重复以上步骤,搭建高通有源滤波器电路,进行相同的测量和记录。
六、实验数据记录与处理。
1. 低通有源滤波器幅频特性曲线数据:频率(Hz)幅值(V)。
100 2.5。
500 2.3。
1000 2.0。
5000 1.5。
10000 1.2。
... ...2. 低通有源滤波器相频特性曲线数据:频率(Hz)相位(°)。
100 0。
500 -45。
1000 -90。
5000 -180。
10000 -270。
... ...3. 高通有源滤波器幅频特性曲线数据:频率(Hz)幅值(V)。
100 0.5。
500 0.8。
1000 1.2。
5000 2.0。
10000 2.5。
... ...4. 高通有源滤波器相频特性曲线数据:频率(Hz)相位(°)。
100 180。
500 135。
1000 90。
5000 0。
10000 -90。
有源无源滤波器实验报告

有源无源滤波器实验报告
源:
滤波器是用来处理频率信号的电子设备,包括电子设备中有源滤波器(Active
Filter)和无源滤波器(Passive Filter)。
现在,本实验组将进行关于有源滤波器和无
源滤波器性能对比的实验后评估。
实验问题:
本实验将比较有源滤波器和无源滤波器的性能,考察它们在不同频率下的工作特性及
其各自的优缺点。
实验步骤:
实验步骤如下:
(1)设置实验仪器:首先,将有源滤波器和无源滤波器的信号电路连接到仪器的通
道A和B。
将两个通道的增益调节至0dB,以加强测量结果的准确性。
(2)有源滤波器实验:调节已经设置好的有源滤波器,以实现不同的截止频率。
将
信号源接到输入端,同时用示波器观察输入和输出信号,以观察滤波器特性。
(4)实验结果及分析:以两种滤波器不同的截止频率为参数,绘制其频率特性曲线,比较其各自的优势及特性,并对实验结果进行总结。
实验结果:
实验结果,有源滤波器在相同截止频率下比无源滤波器的工作效果要好,并且具有较
高的增益,低的失真,高的抑制比和快速的反应速度。
无源滤波器的灵敏度有限,受限于
增益,失真的和抑制比的变化范围也更小,反应速度也慢很多。
有源滤波器实验报告总结

有源滤波器实验报告总结一、引言有源滤波器是一种电子滤波器,它利用放大器来增强信号的幅度并同时进行滤波。
在本次实验中,我们设计了一个有源低通滤波器,并通过实验验证了其性能。
二、实验步骤1. 设计滤波器电路:根据所需的滤波特性,我们选择了适当的电路拓扑结构,并计算了元件的数值。
然后,我们根据计算结果选择了合适的电阻、电容和放大器。
2. 搭建电路:根据设计好的电路图,我们按照所需的元件数值和连接方式搭建了有源滤波器电路。
3. 测试电路:接下来,我们使用信号发生器产生不同频率的正弦信号作为输入信号,通过有源滤波器后,使用示波器观察输出信号的波形和频率响应。
4. 记录实验数据:我们记录了不同频率下输入和输出信号的幅度,以及相位差,并绘制了频率响应曲线。
三、实验结果通过实验,我们得到了有源滤波器的频率响应曲线。
曲线显示,在低频段时,输出信号幅度较大,而在高频段时,输出信号幅度逐渐衰减。
这符合我们设计的低通滤波器的特性。
四、讨论与分析根据实验结果,我们可以得出以下结论:1. 有源滤波器能够对输入信号进行增强和滤波。
2. 频率响应曲线显示了有源滤波器的滤波特性,能够滤除高频信号,保留低频信号。
我们还发现了一些问题和改进的空间:1. 在实际搭建电路的过程中,可能会遇到元件误差和放大器非线性等问题,这都会对滤波器的性能产生影响,需要进一步优化和调整电路。
2. 在选择元件数值时,需要根据具体要求和条件进行综合考虑,以获得更好的滤波效果。
五、总结通过本次实验,我们成功设计并搭建了一个有源低通滤波器,并验证了其滤波特性。
实验结果表明,有源滤波器具有良好的滤波效果,能够滤除高频信号,保留低频信号。
在实际应用中,有源滤波器在音频处理、通信系统等领域具有广泛的应用前景。
六、参考文献1. 张宇. 电子技术实验教程[M]. 北京:高等教育出版社,2015.2. Sedra A S, Smith K C. Microelectronic Circuits[M]. OxfordUniversity Press, 2010.注:本文仅为实验报告总结,旨在总结有源滤波器实验的过程和结果,并对实验中的问题和改进进行讨论。
有源滤波器实验报告

有源滤波器实验报告1. 引言有源滤波器是一种结合了被动元件和有源放大器的滤波器,能够实现对电路信号进行滤波和放大。
本实验旨在通过实际搭建有源滤波器电路并进行实验测量,以验证其性能和功能。
2. 实验目的本实验的主要目的如下:1.理解有源滤波器的基本原理和工作方式;2.掌握有源滤波器的搭建方法和测量技巧;3.分析和评估实验结果,对有源滤波器性能进行验证;3. 实验原理有源滤波器是一种基于放大器的滤波器,其基本原理是利用放大器对输入信号进行放大,并利用电容、电感等被动元件完成滤波功能。
根据放大器的类型和反馈方式的不同,有源滤波器可以分为多种类型,如比例型、积分型、微分型等。
在本实验中,我们将搭建一个基于运算放大器的积分型有源滤波器。
该滤波器的电路图如下所示:有源滤波器电路图有源滤波器电路图其中,R1、R2、R3、C1和OA分别代表电阻、电容和运算放大器,上标“+”和“-”分别表示正反馈和负反馈连接。
有源滤波器工作的基本原理是:输入信号经过R1和C1形成了积分电路,然后通过运算放大器(OA)的负反馈放大输出,最终得到经过滤波和放大后的输出信号。
4. 实验步骤根据上述电路图,我们可以按照以下步骤进行有源滤波器的实验:1.按照电路图搭建实验电路,并确保连接正确可靠。
2.使用函数发生器产生一个正弦波信号作为输入信号,并连接到电路的输入端。
输入信号频率:10kHz幅度:1Vpp3.使用示波器测量电路的输入输出电压,并记录测量结果。
示波器通道1连接到输入信号的输入端示波器通道2连接到电路的输出端4.分别改变输入信号的频率,并记录相应的输入输出电压值,形成频率响应曲线。
频率范围:100Hz ~ 10kHz步进:100Hz5.根据实验结果,分析并讨论有源滤波器的频率响应特性、增益和相位差等指标。
5. 实验结果与分析根据实验步骤中记录的输入输出电压值,我们可以绘制出有源滤波器的频率响应曲线。
下图展示了在不同频率下的输入输出电压值:根据实验结果可以发现,有源滤波器在低频时,对信号的放大倍数较小,随着频率的增加,放大倍数逐渐增大;在高频时,放大倍数趋于稳定。
无源和有源滤波器实验报告

无源和有源滤波器实验报告无源和有源滤波器实验报告引言:滤波器是电子电路中常见的一个组件,它可以对信号进行处理,使得输出信号满足特定的频率响应要求。
根据电路中是否引入能量源,滤波器可以分为无源滤波器和有源滤波器两种类型。
本实验旨在通过搭建无源和有源滤波器电路,并对其进行测试和比较,以了解它们的工作原理和特性。
实验一:无源滤波器1.1 实验目的通过搭建无源滤波器电路,观察和分析其频率响应特性。
1.2 实验原理无源滤波器是指不引入能量源的滤波器,它主要由电感和电容组成。
在本实验中,我们将使用RC滤波器作为无源滤波器的代表。
RC滤波器由一个电阻和一个电容串联而成,通过改变电阻和电容的数值可以调节滤波器的截止频率。
1.3 实验步骤1)根据实验要求,选择合适的电阻和电容数值。
2)按照电路图搭建无源滤波器电路。
3)连接信号发生器和示波器,设置信号发生器输出正弦波信号。
4)逐渐调节信号发生器的频率,观察示波器上输出信号的振幅变化。
5)记录不同频率下的输出振幅,并绘制频率-振幅曲线。
1.4 实验结果与分析通过实验我们得到了频率-振幅曲线,可以看出在截止频率以下,输出信号的振幅基本保持不变,而在截止频率以上,输出信号的振幅逐渐减小。
这是因为在截止频率以下,电容对低频信号的阻抗较大,起到了滤波的作用;而在截止频率以上,电容对高频信号的阻抗较小,导致信号通过电容而无法被滤波。
实验二:有源滤波器2.1 实验目的通过搭建有源滤波器电路,观察和分析其频率响应特性。
2.2 实验原理有源滤波器是指引入能量源的滤波器,它可以通过放大器等有源元件来增强滤波效果。
在本实验中,我们将使用激励放大器和RC滤波器组成有源滤波器。
2.3 实验步骤1)根据实验要求,选择合适的电阻、电容和放大器数值。
2)按照电路图搭建有源滤波器电路。
3)连接信号发生器、放大器和示波器,设置信号发生器输出正弦波信号。
4)逐渐调节信号发生器的频率,观察示波器上输出信号的振幅变化。
有源滤波器实验报告

实验七集成运算放大器的基本应用(H)—有源滤波器一、实验目的1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。
2、学会测量有源滤波器的幅频特性。
二、实验原理图7 —1四种滤波电路的幅频特性示意图由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。
可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。
根据对频率范围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图7 —1所示。
具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。
一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。
滤波器的阶数越高,幅频特性(a)低通(C)带通(d)带阻衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。
任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。
1、低通滤波器(LPF)低通滤波器是用来通过低频信号衰减或抑制高频信号。
如图7 —2 (a)所示,为典型的二阶有源低通滤波器。
它由两级RC滤波环节与同相比例运算电路组成,其中第一级电容C接至输出端,弓I入适量的正反馈,以改善幅频特性。
图7—2 ( b)为二阶低通滤波器幅频特性曲线。
图7 —2二阶低通滤波器电路性能参数R fA UP=^- 二阶低通滤波器的通带增益R I截止频率,它是二阶低通滤波器通带与阻带的界限频率。
状。
2、高通滤波器(HPF与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。
只要将图7—2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图7 —3(a)所示。
高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH分析方法,不难求得HPF的幅频特性。
有源滤波器设计 实验报告

有源滤波器设计实验报告有源滤波器设计实验报告引言:滤波器是电子电路中常见的重要组成部分,用于对信号进行滤波和处理。
有源滤波器是一种采用有源元件(如放大器)来增强信号处理能力的滤波器。
本实验旨在设计并实现一个有源滤波器,通过实验验证其滤波性能。
一、实验目的本实验的主要目的是设计和实现一个有源滤波器,通过调整电路参数和元件值,实现对不同频率信号的滤波。
同时,通过实验结果的分析,了解有源滤波器的工作原理和性能。
二、实验原理有源滤波器是一种利用有源元件(如运算放大器)来增强滤波器性能的电路。
常见的有源滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
它们分别通过选择合适的元件和电路拓扑结构来实现对不同频率信号的滤波。
三、实验步骤1. 根据设计要求,选择合适的电路拓扑结构和元件。
2. 按照电路图连接电路,并确保连接正确无误。
3. 根据设计要求,选择合适的元件值,并进行元件的选取和调整。
4. 使用信号发生器产生测试信号,并连接到有源滤波器的输入端。
5. 使用示波器测量有源滤波器的输出信号,并记录实验数据。
6. 根据实验数据,分析有源滤波器的滤波性能。
四、实验结果与分析通过实验,我们设计并实现了一个二阶有源低通滤波器。
在实验中,我们选择了合适的运算放大器和电容、电阻元件,并根据设计要求进行了调整。
实验结果显示,该有源滤波器能够有效滤除高频信号,只保留低频信号。
通过调整电路参数,我们还可以改变滤波器的截止频率,实现对不同频率信号的滤波。
五、实验总结本实验通过设计和实现有源滤波器,验证了其滤波性能。
通过调整电路参数和元件值,我们可以实现对不同频率信号的滤波。
有源滤波器在电子电路中具有重要的应用价值,能够对信号进行精确的滤波和处理。
通过本实验,我们对有源滤波器的工作原理和性能有了更深入的了解。
六、实验感想通过本次实验,我对有源滤波器的设计和实现有了更深入的理解。
在实验过程中,我遇到了一些问题,如电路连接错误和元件值选择不准确等。
有源滤波器实验报告(1)

有源滤波器实验报告(1)有源滤波器实验报告一、实验目的1.了解有源滤波器的基本工作原理。
2.掌握有源低通和有源高通滤波器的实现方法及其频率特性。
3.学习使用多用途运放进行有源滤波器的设计。
二、实验原理有源滤波器由运放放大器和RC电路构成。
有源滤波器的基本原理是利用运放的放大作用以及RC电路的滤波作用实现滤波的过程。
有源滤波器分为有源低通滤波器和有源高通滤波器两种类型,分别用于对信号的低频和高频进行滤波。
三、实验仪器1.多用途运放实验板2.数字存储示波器3.脉冲信号发生器4.电源四、实验内容1.设计并搭建有源低通滤波器电路。
2.设计并搭建有源高通滤波器电路。
3.对低频和高频信号分别进行滤波实验。
4.在不同频率下测量有源低通和有源高通滤波器的增益和相位延迟特性。
五、实验步骤和操作1.设计有源低通滤波器电路。
按照RC低通滤波器的原理,选择合适的电阻和电容组合来计算截止频率,然后根据运放的放大倍数设计电压跟随电路来实现放大和增益控制。
将设计好的电路搭建在实验板上,并连接信号输入和输出端口,将脉冲信号发生器输出的信号接入输入端口,使用数字示波器来观察滤波结果。
2.设计有源高通滤波器电路。
按照RC高通滤波器的原理,选择合适的电阻和电容组合来计算截止频率,然后根据运放的放大倍数设计电压跟随电路来实现放大和增益控制。
将设计好的电路搭建在实验板上,并连接信号输入和输出端口,将脉冲信号发生器输出的信号接入输入端口,使用数字示波器来观察滤波结果。
3.测量有源低通和有源高通滤波器的增益和相位延迟特性。
分别在不同频率下进行测量,利用示波器测量输出信号的幅度和相位,计算出滤波器的增益和相位延迟特性。
六、实验结果和分析1.有源低通滤波器实验结果:实验中选择的截止频率为1kHz,测量得到在1kHz处的增益为18dB,相位延迟为-40度。
通过实验观察到,低频信号经过滤波器处理后能够得到较好的效果,高频信号被滤除,滤波器具有很好的低通滤波特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
课程名称:电路与电子技术实验Ⅱ 指导老师:张德华 成绩:__________________ 实验名称:有源滤波器 实验类型:模拟电路实验 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得
一、实验目的和要求
1.了解有源滤波器的工作原理、特点;
2.掌握有源滤波器典型电路的设计、分析与实现;
3.学习有源滤波器典型电路的频率特性测量方法、电路调试与参数测试,了解其滤波性能;
4.通过仿真方法进一步研究有源滤波电路,了解不同的有源滤波器结构、参数等对滤波性能的影响。
二、实验内容和原理 实验内容: 1.原理分析; 2.频率特性; 3.滤波效果。
实验原理: 0.滤波器
⑴定义:
让指定频段的信号通过,而将其余频段上的信号加以抑制,或使其急剧衰减。
(选频电路)
⑵分类:
a)按照器件类型分类:
无源滤波器:由电阻、电容和电感等无源元件组成; 有源滤波器:采用集成运放和RC 网络为主体; b)按照频段分类:
低通滤波器(LPF )、高通滤波器(HPF )、带通滤波器(BPF )、带阻滤波器(BEF );
通带:能够通过(或在一定范围内衰减)的信号频率范围; 阻带:被抑制(或急剧衰减)的信号频率范围; 过渡带越窄,说明滤波电路的选频特性越好。
专业:自动化(电气) 姓名:冷嘉昱
学号:3140100926 日期:2016.5.25 地点:东三211桌号F-2
装
订
线
⑷关键指标:
传递函数(频率响应特性函数)A v :反映滤波器增益随频率的变化关系; 固有频率(谐振频率)f c 、ωc :电路无损耗时的频率参数,其值由电路器件决定; 通带增益:A 0(针对LPF )、A ∞(针对HPF )、A r (针对BPF ); 截止频率(-3dB 频率)f p 、ωp :增益下降到通带增益时所对应的频率;
品质因数Q :反映滤波器频率特性的一项重要指标,不同类型滤波器的定义不同(低通、高通滤波器中,定义为当f = fc 时增益模与通带增益模之比)。
1.一阶低通有源滤波器
⑴电路原理图:
⑵关键指标:
⑶幅频特性图:
2.二阶低通有源滤波器
⑴电路原理图:
⑵关键指标:
装
订
线
⑶幅频特性图:
3.二阶单一正反馈型低通有源滤波器:
⑴电路原理图:
⑵关键指标:
⑶幅频特性图:
装
订
线
三、主要仪器设备
1.ACL-ZD-II 型模拟电子技术实验箱;
2.TDS1002C-EDU 型数字示波器;
3.LM358集成运放;
4.DG1022U 信号发生器;
5.万用表。
四、操作方法和实验步骤 1.一阶低通有源滤波器
取R =2.4kΩ,C =0.1μF ,按照原理图连接电路,输入V pp =3.00V (实测为3.08V )正弦信号,逐渐改变频率,测量各点幅值与相位值;输入混频信号(由加法器电路实现),观察滤波效果。
2.二阶低通有源滤波器
取R =1kΩ,C =0.1μF ,R f =20kΩ,R a =10kΩ,按照原理图连接电路,输入V pp =3.00V (实测为3.08V )正弦信号,逐渐改变频率,测量各点幅值与相位值;输入混频信号(由加法器电路实现),观察滤波效果。
3.二阶单一正反馈型低通有源滤波器:
取R =1kΩ,C =0.1μF ,R f =20kΩ,R a =10kΩ,按照原理图连接电路,输入V pp =2.00V (实测为2.04V )正弦信号,逐渐改变频率,测量各点幅值与相位值;输入混频信号(由加法器电路实现),观察滤波效果。
五、实验数据记录和处理 1.一阶低通有源滤波器
f /kHz 0.1 0.2 0.5 0.6 0.7 1 2 3 5 10 20 V pp/V 3.04 2.92 2.44 2.24 2.08 1.68 0.96 0.65 0.4 0.21 0.1 Δφ/º
-9.36
-16.6
-37.4
-41.2
-47.1
-56.9
-66.8
-76.7
-82.3
-86.1
-86.9
幅频特性
装
订
线
相频特性
装
订
线
滤波效果PSpice仿真:
截止频率661.006Hz
选做:一阶高通有源滤波器
f/kHz 0.1 0.2 0.5 0.6 0.7 1 2 3 5 10 20 V pp/V 0.47 0.90 1.88 2.08 2.24 2.52 2.84 2.92 3.08 3.08 3.08 Δφ/º80.7 73.4 49.8 48.3 44.9 34.1 16.1 9.9 5.75 3.25 0
装
订
线
幅频特性
相频特性
PSpice 仿真:
截止频率663.618Hz
2.二阶低通有源滤波器
f /kHz 0.1 0.2 0.5 0.6 0.7 1 2 3 5 10 20 V pp /V 9 8.6 6.8 6.16 5.68 4.4 2.28 1.4 0.7 0.26 0.07 Δφ/º
-7.21
-21.9
-46.8
-54.3
-59.5
-72.0
-100
-112
-133
-152
-166
幅频特性
装
订
线
相频特性
装
订
线
滤波效果
PSpice仿真:
截止频率610.884Hz
选做:二阶高通有源滤波器
f/kHz 0.1 0.2 0.5 0.6 0.7 1 2 3 5 8 10 V pp/V 0.046 0.14 0.7 0.92 1.18 1.84 3.68 4.9 6.32 7.44 8 Δφ/º168 157 131 126 119 107 81.4 63.1 43.9 31.1 24.5
装
订
线
幅频特性
相频特性
滤波效果
PSpice仿真:
装
订
线
截止频率5.78kHz
3.二阶单一正反馈型低通有源滤波器
f/kHz 0.1 0.2 0.5 0.6 0.7 1 2 3 4 5 6 V pp/V 6.72 6.2 4.6 3.79 2.31 1.88 1.03 0.87 0.68 0.57 0.42 Δφ/º 2.87 -1.44 0.72 0.863 -3.01 -1.44 8 2 2 10 -4
幅频特性装
订
线
相频特性
滤波效果
PSpice 仿真:
截止频率314.98Hz
选做:二阶单一正反馈型高通有源滤波器
f /kHz 0.1 0.2 0.5 0.6 0.7 1 1.1 1.2 1.3 1.4 V pp /V 0.03 0.132 0.8 1.1 1.6 4.4 6.16 8.88 13.6 23.6 Δφ/º
176
171
174
178
177
173
174
171
169
152
幅频特性
装
订
线
相频特性
PSpice 仿真:
截止频率2.91kHz
六、实验结果与分析
一阶低通 0.663 0.661 0.379 0.679 二阶低通 1.59 0.610 0.304 0.6 二阶高通 1.59 5.78 18.67 3.9 二阶压控低通 1.59 0.314 0.360 0.45 二阶压控高通
1.59
2.91
1.054
1.32
七、讨论、心得
本次实验出现了很多令人不愉快的问题。
首先,实测截止频率与理论值相去甚远,而且仿真值竟然也与理论值相差很多;其次,作图时发现以增益为纵坐标的图像与以幅值为纵坐标的图像相差很大,利用图像测得的截止频率也相差很多;并且,在实验过程中观测滤波效果时,波形效果较差。
问题解决如下:
1.经询问老师了解到LM358芯片的正常工作频段在1kHz 以内,本实验选取的电阻值将截止频率设定在0.66kHz 左右,后面许多测量点是在运放不正常工作下进行的,导致误差较大。
但是由于实验时间限制,已经无法在合理的频段内重新测量数据,只好引以为戒;
2.经数学推导,幅值法所测截止频率与增益法所测截止频率之间相差一个值为20lg(V in )的线性差移,因此结果相差较大。
装
订
线。