常见线性递推数列通项的求法
数列的递推公式和通项公式

数列的递推公式和通项公式数列是数学中的一种常见概念,它由一系列按照一定规律排列的数所组成。
数列的递推公式和通项公式是数列的两种重要表示方式,它们可以帮助我们更好地理解和计算数列。
一、数列的递推公式数列的递推公式是指通过前一项或多项来推导出后一项的公式。
一般来说,递推公式可以分为线性递推和非线性递推两种。
1.1 线性递推公式线性递推公式是指数列中的每一项都可以通过前一项乘以一个常数再加上另一个常数得到。
一般可以用如下的形式表示:an = a(n-1) * r + b。
其中an表示数列中的第n项,a(n-1)表示数列中的第(n-1)项,r和b 为常数。
例如,如果数列的前两项分别为a1和a2,且每一项都等于前一项乘以2再加上1,则该数列的递推公式为:an = a(n-1) * 2 + 1。
利用这个递推公式,我们可以轻松求解数列中的任意一项。
1.2 非线性递推公式非线性递推公式是指数列中的每一项不能通过前一项乘以一个常数再加上另一个常数得到。
非线性递推公式的形式较为多样,常见的有多项式递推和递归递推等。
以多项式递推为例,假设数列的前两项分别为a1和a2,而后续项满足如下规律:an = an-1^2 + an-2^2。
在这种情况下,我们无法仅仅通过前一项或多项来计算后一项。
此时,我们需要借助递归或其他更复杂的方法来求解数列中的每一项。
二、数列的通项公式数列的通项公式是指通过数列的位置n来计算该位置上的数值。
通项公式可以直接给出数列前n项的数值,而不需要通过递推关系一步步推导。
通项公式也常被称为数列的一般项公式。
2.1 等差数列的通项公式等差数列是最常见的数列之一,它的通项公式为an = a1 + (n-1)d,其中an表示数列中的第n项,a1表示数列的首项,d表示公差。
例如,如果一个等差数列的首项为3,公差为2,则它的通项公式为an = 3 + (n-1)2。
通过这个通项公式,我们可以轻松计算出等差数列中的任何一项。
数列的递推公式及通项公式

数列的递推公式及通项公式数列是由一系列按照一定规律排列的数字组成的序列。
数列中的每个数字称为项,而这些项之间的关系可以通过递推公式和通项公式来描述。
本文将介绍数列的递推公式和通项公式,并通过具体的例子来解释其应用。
一、递推公式递推公式是指通过前一项或多项来确定后一项的公式。
递推公式可以分为线性递推和非线性递推两种类型。
1.1 线性递推线性递推是指数列的每一项都可以通过前一项乘以某个常数再加上某个常数得到。
其一般形式如下:an = a(n-1) * r + d其中,an代表数列中的第n项,a(n-1)代表数列中的第n-1项,r为公比,d为公差。
例如,给定数列1,3,5,7,9,...,其中第一项a1为1,公差d 为2。
根据数列的特点可以确定递推公式为:an = a(n-1) + 2通过递推公式,可以依次计算出数列的每一项。
1.2 非线性递推非线性递推是指数列的每一项不能用前一项的线性组合表示,而是通过其他的方式来确定。
例如,斐波那契数列就是一个常见的非线性递推数列。
斐波那契数列的递推公式为:an = a(n-1) + a(n-2)其中,a1 = 1,a2 = 1。
根据递推公式,可以计算出斐波那契数列的每一项。
二、通项公式通项公式是指通过数列的位置n来直接计算数列中的第n项的公式。
通项公式可以分为线性通项和非线性通项两种类型。
2.1 线性通项线性通项是指数列的每一项可以通过位置n的线性关系来计算。
其一般形式如下:an = a1 + (n-1) * d其中,an代表数列中的第n项,a1为数列首项,d为公差。
以等差数列为例,假设已知数列首项a1为2,公差d为3,可以通过线性通项公式an = 2 + (n-1) * 3计算出数列的任意一项。
2.2 非线性通项非线性通项是指数列的每一项不能用位置n的线性关系来计算,而是通过其他的方式来确定。
例如,等比数列就是一个常见的非线性通项数列。
等比数列的通项公式为:an = a1 * r^(n-1)其中,an代表数列中的第n项,a1为数列首项,r为公比。
常见递推数列通项的九种求解方法(1)

常见递推数列通项的九种求解方法(1)高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。
是一类考查思维能力的好题。
要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。
类型一:an1解决方法累加法af(n)(fn可以求和)n例1、在数列an中,已知a1=1,当n2时,有anan12n1n2,求数列的通项公式。
解析:anan12n1(n2)a2a11aa332a4a35上述n1个等式相加可得:anan12n1∴ana1n21ann2评注:一般情况下,累加法里只有n-1个等式相加。
【类型一专项练习题】1、已知a11,anan1n(n2),求an。
2、已知数列an,a1=2,an1=an+3n+2,求an。
,a11,求数列{an}的通项公式。
3、已知数列{an}满足an1an2n14、已知{an}中,a13,an1an2n,求an。
11某5、已知a1,an1an(nN),求数列an通项公式.226、已知数列an满足a11,an3n1nan1n2,求通项公式an?7、若数列的递推公式为a13,an1an23n1(nN某),则求这个数列的通项公式8、已知数列{an}满足an1an23n1,a13,求数列{an}的通项公式。
9、已知数列an满足a111,an1an2,求an。
2nn,2,3,)10、数列an 中,a12,an1ancn(c是常数,n1,且a1,a2,a3成公比不为1的等比数列.(I)求c的值;(II)求an的通项公式.11、设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4);当n4时,f(n)(用n表示).n(n1)n(3n1)31答案:1.an2.an3.ann214.an2n15.an2222n1313n16.an7.an123n18.an3nn19.an10.(1)2(2)ann2n22n2n2n211.(1)5(2)2类型二:an1f(n)an(f(n)可以求积)累积法解决方法例1、在数列an中,已知a11,有nan1n1an,(n2)求数列an 的通项公式。
求数列通项公式的十种方法

求数列通项公式的十种方法求解数列的通项公式是高中数学中的一个重要问题,通常需要运用数学分析方法、递推关系、差分方法等多种技巧。
下面将列举十种常见的方法来求解数列的通项公式。
方法一:等差数列的通项公式对于等差数列 an = a1 + (n - 1) * d,其中 a1 为首项,n 为项数,d 为公差。
通项公式可以直接通过公式计算得出。
方法二:等差数列的求和公式对于等差数列 S = (n / 2) * (a1 + an),其中 S 为前 n 项和,a1 为首项,an 为末项,n 为项数。
可以通过求和公式推导出等差数列的通项公式。
方法三:等比数列的通项公式对于等比数列 an = a1 * r^(n - 1),其中 a1 为首项,r 为公比,n 为项数。
通项公式可以直接通过公式计算得出。
方法四:等比数列的求和公式对于等比数列S=(a1*(r^n-1))/(r-1),其中a1为首项,r为公比,n为项数。
可以通过求和公式推导出等比数列的通项公式。
方法五:递推关系法对于一些递推关系的数列,可以通过寻找规律,构建递推关系来求解数列的通项公式。
例如斐波那契数列就可以通过递推关系f(n)=f(n-1)+f(n-2),其中f(1)=1,f(2)=1,来求解通项公式。
方法六:二项式展开法对于一些满足二项式展开的数列,可以通过展开得到二项式系数,然后通过系数的通项公式来求解数列的通项公式。
例如二项式数列(x+1)^n的展开系数就是通过n阶二项展开推导出来的。
方法七:差分法通过对数列进行差分操作,找到规律来求解数列的通项公式。
例如,如果差分的结果是一个等差数列,那么原数列就是一个二次或高次多项式。
方法八:线性递推法对于一些线性递推关系的数列,可以通过构建矩阵形式或特征方程的方法来求解数列的通项公式。
例如,对于一阶线性递推数列a(n)=p*a(n-1)+q,可以通过特征方程x-p*x-q=0来求解通项公式。
方法九:插值法通过给定数列中的若干项,利用 Lagrange 插值公式来推导数列的通项公式。
根据递推关系求数列通项公式的几种方法

根据递推关系求数列通项公式的几种方法要求根据递推关系求解数列的通项公式,其实是要求找到一个能将数列的每一项都表示为n(项数)的函数的公式。
在数学中,有几种方法可以求解这类问题。
一、代数方法:对于一些简单的递推关系,可以尝试使用代数方法来求解数列的通项公式。
这种方法通过观察数列中的模式,尝试将递推关系转化为代数方程,然后解方程得到通项公式。
例如,我们考虑求解斐波那契数列的通项公式。
斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设通项公式为Fn=k1a^n+k2b^n,其中k1、k2为常数,a、b为待定数。
k1a^n+k2b^n=k1a^(n-1)+k2b^(n-1)+k1a^(n-2)+k2b^(n-2)整理得:k1a^2-k1a-k2=0。
解这个方程,可以得到a和b的值,然后将a和b的值代入通项公式中,即可求解斐波那契数列的通项公式。
二、特征根法:特征根法是求解一阶线性递推关系(如Fn=aFn-1+b)的通项公式的常用方法。
该方法的基本思想是,将递推关系转化为一个一阶线性常微分方程,然后解方程得到通项公式。
例如,我们考虑求解斐波那契数列的通项公式。
斐波那契数列满足的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1将递推关系转化为一阶线性常微分方程得到:y''-y'-y=0其中y=Fn。
解这个方程得到的特征根为α1=(1+√5)/2,α2=(1-√5)/2通项公式可以表示为:Fn=k1(α1)^n+k2(α2)^n其中k1、k2为常数。
利用初始条件F1=1,F2=1,可以求解出k1和k2的值,进而求解出斐波那契数列的通项公式。
三、母函数法:母函数法是一种求解递推关系的高效方法,尤其适用于求解求和问题。
该方法的基本思想是,将数列视为一个幂级数的系数列,通过构造母函数来解决递推关系。
例如,我们考虑求解斐波那契数列的通项公式。
斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设母函数为F(x)=F0+F1x+F2x^2+F3x^3+...F(x)=x(F(x)-F0)+x^2F(x)整理得:F(x)=F0+xF(x)+x^2F(x)移项得:F(x)=F0/(1-x-x^2)。
求通项公式的常用方法

求通项公式的常用方法通项公式是数列中每一项与序号n之间的关系式,可通过递推关系和数列特点来确定。
下面将介绍几种常用的方法来求解通项公式。
一、等差数列等差数列是一种公差固定的数列,通项公式可以通过公差和首项求得。
1.递推法:设等差数列的首项为a₁,公差为d,则通项公式为an = a₁ + (n -1)d。
2.求和法:对于等差数列,可以根据前n项和与首项之间的关系来求解通项公式。
设前n项和为Sn,首项为a₁,公差为d,则有等差数列求和公式Sn =n/2(a₁ + an)。
二、等比数列等比数列是一种比值固定的数列,通项公式可以通过公比和首项求得。
1.递推法:设等比数列的首项为a₁,公比为r,则通项公式为an = a₁ * r^(n -1)。
2.求和法:对于等比数列,可以根据前n项和与首项之间的关系来求解通项公式。
设前n项和为Sn,首项为a₁,公比为r,则有等比数列求和公式Sn=a₁(r^n-1)/(r-1)。
三、斐波那契数列斐波那契数列是一种特殊的数列,前两项为1,之后的每一项都是前两项的和。
1.递推法:设斐波那契数列的第n项为F(n),则通项公式为F(n)=F(n-1)+F(n-2),其中F(1)=1,F(2)=12.通项公式法:利用通项公式公式Fn = (Phi^n - (-Phi)^(-n))/sqrt(5),其中Phi是黄金分割比(约为1.618)。
四、多项式数列多项式数列是指通项由多项式表达的数列。
1.解线性递推关系:对于多项式数列,可以根据给定的递推关系式来推导通项公式。
具体的方法可以通过代入法、特征根法、辅助方程法等来求解。
2.拉格朗日插值法:对于已知部分数列项的数值,可以利用拉格朗日插值法求解通项公式。
该方法需要确定数列项数目与已知项数目一致。
以上是一些常见的求通项公式的方法,不同的数列类型可能需要不同的方法来求解。
在实际问题中,还可以根据数列性质和给定条件等将其转化为已知的数列类型,从而应用相应的求解方法。
求数列通项公式的十种方法

求数列通项公式的十种方法求解数列通项公式是数学中的一个重要问题,对于一些特殊的数列,我们可以通过观察规律来找到通项公式,但对于一般的数列来说,我们需要使用一些数学工具和技巧来解决这个问题。
在下面,我将介绍十种常用的方法来求解数列的通项公式。
方法一:递推法递推法是一种常见的求解数列的方法,通过观察数列中相邻项之间的关系,可以找到递推公式。
常见的递推公式有线性递推和非线性递推两种形式。
方法二:列元法列元法是一种将数列元素列出来,然后通过观察数列元素之间的关系,找到通项公式的方法。
常见的列元法包括列出常数项和差项、连加项、平方项和立方项等。
方法三:指数递推法指数递推法是一种将数列元素进行指数递推,然后通过观察递推结果找到通项公式的方法。
常见的指数递推法包括指数增长、指数递减和二阶指数递增等。
方法四:利用级数对于一些复杂的数列,可以使用级数的方法来求解通项公式。
通过构造级数和求导积分等操作,可以得到数列的通项公式。
方法五:利用生成函数生成函数是一种将数列转化为多项式的方法,通过多项式的操作,可以得到数列的通项公式。
常见的生成函数包括普通生成函数和指数型生成函数。
方法六:利用逼近方法逼近方法是通过找到数列与一些函数逼近的关系,然后通过求解该函数的表达式来求解数列的通项公式。
常见的逼近方法包括泰勒级数逼近和拉格朗日插值等。
方法七:利用矩阵运算对于一些特殊的数列,可以使用矩阵运算的方法来求解通项公式。
通过构造矩阵和矩阵的运算,可以得到数列的通项公式。
方法八:利用线性代数利用线性代数的方法,可以将数列看作向量空间中的向量,通过线性变换和线性方程组的解来求解数列的通项公式。
方法九:利用特殊函数对于一些特殊的数列,可以使用特殊函数的方法来求解通项公式。
常见的特殊函数有二次函数、指数函数、对数函数、三角函数和双曲函数等。
方法十:利用离散数学离散数学是一种研究离散结构和离散规律的数学分支,通过利用离散数学的方法,可以求解数列的通项公式。
利用递推关系求数列通项的九种类型及解法

利用递推关系求数列通项的九种类型及解法1.形如)(1n f a a n n =-+型(1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 方法如下: 由 )(1n f a a n n =-+得:2≥n 时,)1(1-=--n f a a n n ,)2(21-=---n f a a n n ,)2(23f a a =-)1(12f a a =-所以各式相加得 )1()2()2()1(1f f n f n f a a n +++-+-=-即:∑-=+=111)(n k n k f a a .为了书写方便,也可用横式来写:2≥n 时,)1(1-=--n f a a n n ,∴112211)()()(a a a a a a a a n n n n n +-++-+-=---=1)1()2()2()1(a f f n f n f ++++-+- . 例 1. (2003天津文) 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明213-=nn a证明:由已知得:故,311--=-n n n a a112211)()()(a a a a a a a a n n n n n +-++-+-=---=.213133321-=++++--nn n ∴213-=nn a .例 2.已知数列{}n a 的首项为1,且*12()n n a a n n N+=+∈写出数列{}n a 的通项公式.答案:12+-n n例3.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:na n 12-=评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见线性递推数列通项的求法对于由递推式所确定的数列通项公式问题,往往将递推关系式变形转化为我们熟知的等差数列或等比数列,从而使问题简单明了。
这类问题是高考数列命题的热点题型,下面介绍常见线性递推数列求通项的基本求法。
一、一阶递推数列1、q pa a n n +=+1型形如q pa a n n +=+1(q p 且1≠为不等于0的常数)的数列,可令)(1x a p x a n n +=++ 即x p pa a n n )1(1-+=+与q pa a n n +=+1比较得1-=p q x ,从而构造一个以11-+p qa 为首项以p 为公比的等比数列⎭⎬⎫⎩⎨⎧-+1p q a n 例1.在数列{a n }中,,13,111-⋅==+n n a a a 求n a .解:在131-⋅=+n n a a 的两边同加待定数λ,得n n n a a a (3131⋅=+-⋅=++λλ+(λ-1)/3),令,3)1(-=λλ得).21(321.211-⋅=-∴-=+n n a a λ数列{}21-n a 是公比为3的等比数列, ∴a n 21-=).13(21,32111+=∴⋅--n n n a2、 ()n g a c a n n +⋅=+1型(1)1=c 时:解题思路:利用累差迭加法,将)1(1-=--n g a a n n ,--1n a 2-n a =)2(-n g ,…,-2a 1a =)1(g ,各式相加,正负抵消,即得n a .例2.在数列{}n a 中,01=a 且121-+=+n a a n n ,求通项n a .解:依题意得,01=a ,()32112,,3,112312-=--=-=-=--n n a a a a a a n n ,把以上各式相加,得【评注】由递推关系得,若()n g 是一常数,即第一种类型,直接可得是一等差数列;若n n a a -+1非常数,而是关于n 的一个解析式,可以肯定数列n a 不是等差数列,将递推式中的n 分别用2,3,4,,2,1 --n n 代入得1-n 个等式相加,目的是为了能使左边相互抵消得n a ,而右边往往可以转化为一个或几个特殊数列的和。
(2)1≠c 时:例3.在数列{}n a 中,,3,1211n a a a n n +==+求通项n a .解:作新数列}{n b ,使),(2C Bn An a b n n ++-=即),(2C Bn An b a n n +++=(A ,B ,C 为待定常数)。
由213n a a n n +=+可得:C n B n A b n ++++++)1()1(21=,)(322n C Bn An b n ++++所以,B A C n A B n A b b n n --+-+++=+2)22()12(321,设2A+1=0,2B-2A=0,2C-A-B=0,可得:A=B=C=-1/2,n n b b 31=∴+,25)(11=++-=C AB A a b ,所以}{n b 是公比为3的等比数列, 1325-⨯=∴n n b ,)1(2132521++-⨯=∴-n n a n n 。
当一个数列是一阶递推或二阶递推齐次数列时,可通过线性代换把问题化为等差或等比数列,本题是设])1()1([21C n B n A a n ++++-+=)]([32C Bn An a n ++-,用待定系数法求A 、B 、C 即可。
【评注】求递推数列的通项的主要思路是通过转化, 构造新的熟知数列,使问题化陌生为熟悉.我们要根据不同的递推关系式,采取不同的变形手段,从而达到转化的目的.例4.在数列{}n a 中,,23,111nn n a a a +==+求通项n a .解:设)2(3211n n n n k a k a ⋅-=⋅-++,,231n n n k a a ⋅-=∴+又,231n n n a a +=+ ,1-=∴k ∴)2(3211n n n n a a +=+++,}2{2+∴n a 是以3为首项,3为公比的等比数列,n n n n n n n a a 23,33321-=∴=⨯=+∴-。
3、n n a n f a )(1=+型解题思路:利用累乘法, 将()()()1,,2,112211f a an f a a n f a a n n n n =-=-=--- 各式相乘得,()()()12112211f n f n f a aa a a a n n n n -⋅-=⋅⋅⋅---,即得n a . 例5.在数列{}n a 中,11=a ,11+=+n na a n n ,求通项n a . 解:由条件等式11+=+n n a a n n 得,n n n n n a a a a a a n n n n 12112112211=--⋅-=⋅⋅⋅--- ,得na n 1=. 【评注】此题亦可构造特殊的数列,由11+=+n na a n n 得,()111=++nn na a n ,则数列{}n na 是以1a 为首项,以1为公比的等比数列,∴111.11=⋅==-n n qa na 得na n 1=. 4、n n a S 与关系型(求差法)数列有形如)(),(1n n n a g S S f =-的关系(非递推关系),可考虑用求差n n n a S S =--1后,再用其它初等方法求得.n a例6.(94年全国高考试题)设}{n a 是正数组成的数列,其前n 项和为n S ,并且对于所有的自然数n a n ,与2的等差中项等于n S 与2的等比中项:(1)写出数列}{n a 的前3项; (2)求数列}{n a 的通项公式.出题者的意图是:通过(1)问求出数列前3项再猜想出通项公式;(2)再用数学归纳法证明猜想正确.实际上用求差法求通项公式更简单.解:(1)略(2)由条件,得,222n n S a =+ 即,8)2(2n n S a ⋅=+….①, .8)2(121--⋅=+n n S a … ②, ①-②得212)2()2(8+-+=-n n n a a a ,即.0)2()2(212=+---n n a a 分解因式得.0)4)((11=--+--n n n n a a a a对于n ∈n a ,N >0,∴.41=--n n a a ∴}{n a 是公差为4的等差数列, 5、da c ba a a n n n +⋅+⋅=+1(d c a ,,为非零常数)型(1)0=b 时,上式可化为:1111+⨯=+nn a c d a ,即转化为第一种类型可求解。
例6.设数列}{n a 满足,21=a ),N (31∈+=+n a a a n nn 求.n a 解:原条件变形为.311n n n n a a a a =⋅+⋅++两边同乘以,11+⋅n n a a 得11131+=⋅+n n a a .∵113211,211)2113-+=+∴+=+n n n n a a a (, ∴.13221-⨯=-n n a (2)0≠b 时,等式两边同加参数t ,则da c ct a dtb a ct a t d ac b a a t a n n n n n +⋅++++=++⋅+⋅=++)(1……① 令cta dtb t ++=,即 0)(2=--+b t d a ct ……. ② 记此方程的两根为21,t t ,(1) 若21t t ≠,将21,t t 分别代入①式可得 d a c t a ct a t a n n n +⋅++=++1111)(, da c t a ct a t a n n n +⋅++=++2221)(以上两式相除得21212111t a t a ct a ct a t a t a n n n n ++⋅++=++++,于是得到⎭⎬⎫⎩⎨⎧++21t a t a n n 为等比数列,其公比为21ct a ct a ++, 数列{}n a 的通项n a 可由121211121)(-++⋅++=++n n n ct a ct a t a t a t a t a 求得;(2)若21t t =,将1t t =代入①式可得da c t a ct a t a n n n +⋅++=++1111)(,考虑到上式结构特点,两边取倒数得111111)(11t a ct d t a c ct a t a n n n +-++⋅+=++ ……③由于21t t =时方程②的两根满足cda t --=12,∴11ct d ct a -=+ 于是③式可变形为111111t a ct a c t a n n +++=++∴⎭⎬⎫⎩⎨⎧+11t a n 为等差数列,其公差为1ct a c +, 数列{}n a 的通项n a 可由1111)1(11ct a c n t a t a n +⋅-++=+求得.这样,利用上述方法,我们可以把分式线性递推数列转化为等比数列或等差数列,从而求得其通项。
如果我们引入分式线性递推数列d a c b a a a n n n +⋅+⋅=+1(0,,,,≠∈c R d c b a )的特征方程为dcx bax x ++=,即0)(2=--+b x a d cx ,此特征方程的两根恰好是方程③两根的相反数,于是我们又有如下结论:分式线性递推数列d a c b a a a n n n +⋅+⋅=+1(0,,,,≠∈c R d c b a ),其特征方程为dcx b ax x ++=,即0)(2=--+b x a d cx ,(1)若方程有两相异根1s 、2s ,则⎭⎬⎫⎩⎨⎧--21s a s a n n 成等比数列,其公比为21cs a cs a --; (2)若方程有两等根21s s =,则⎭⎬⎫⎩⎨⎧-11s a n 成等差数列,其公差为1cs a c -. 例7、设数列{}n a 满足n n n n a a a a a 求,7245,211++==+解: 对等式两端同加参数t 得()()解之可得令,5247,7252475272475272451++=++++⋅+=++++=+++=++t t t a t t a t a t a t t a a t a n n n n n n n 1-=t ,2,代入72)52(1++⋅+=++n n n a ta t t a ,得,72292,7213111++⋅=++-⋅=-++n n n n n n a a a a a a 相除得,21312121+-⋅=+-++n n n n a a a a即31,41212111公比为是首项为=+-⎭⎬⎫⎩⎨⎧+-a a a a n n 的等比数列, 134234,34121111-⋅+⋅=⋅=+----n n n n n n a a a 解得。