七年级下册数学期末复习知识点整合

合集下载

七年级下册数学知识点总结与归纳

七年级下册数学知识点总结与归纳

第一章 二元一次方程组1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是一次的整式方程叫做二元一次。

方程一般形式是 ax+by=c(a ≠0,b ≠0)。

2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。

5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

6.代入消元:把方程组里的一个方程变形,用含有一个未知数的代数式表示另一个未知数;把这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,可先求出一个未知数的值;把求得的这个未知数的值代入第一步所得的式子中,可求得另一个未知数的值,这样就得到了方程的解⎩⎨⎧==b y a x 7.加减消元法:把方程组里一个(或两个)方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数的绝对值相等;把所得到的两个方程的两边分别相加(或相减),消去一个未知数,得到含另一个未知数的一元一次方程(以下步骤与代入法相同)第二章 整式的乘法1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

bc a 22-的 系数为-2,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

122++-x ab a ,项有4项,二次项为 ,一次项为 ,常数项为 ,各项次数分别为 ,系数分别为 ,叫 次 项式。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、同底数幂的乘法法则:m n m n a a a +=g (n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

上课用---新浙教版七年级下数学知识点汇总(期末复习宝典)

上课用---新浙教版七年级下数学知识点汇总(期末复习宝典)

上课用---新浙教版七年级下数学知识点汇总(期末复习宝典)第1章平行线在同一平面内,两条直线的位置关系只有两种:相交与平行。

平行线的定义为:在同一平面内,不相交的两条直线叫做平行线,用符号“∥”表示。

为什么要有“在同一平面内”这个条件?因为平行线只存在于同一平面内,如果不在同一平面内,两条直线可能会相交。

平行线的基本事实是:经过直线外一点,有且只有一条直线与这条直线平行。

为什么要经过“直线外”一点?因为如果经过直线上的点,会有无数条直线与这条直线平行。

用三角尺和直尺画平行线的方法是:一贴,二靠,三推,四画。

需要注意的是,作图题要写出结论。

同位角、内错角、同旁内角是判断平行线关系的重要概念。

在判断过程中,需要画出给定的两个角的边(共三条边),公共边就是截线,剩下两条边就是被截线。

同位角在截线的同旁,被截线的同一侧;内错角在截线的异侧,被截线之间;同旁内角在截线的同旁,被截线之间。

练时需要填写正确的角对应关系。

平行线的判定有多种方法:同位角相等、内错角相等、同旁内角互补、平行线的定义、平行于同一条直线的两条直线平行、在同一平面内,垂直于同一条直线的两条直线互相平行。

在练中需要根据给定条件判断两条直线是否平行。

平行线的性质包括同位角相等、内错角相等、同旁内角互补。

在练中需要根据已知条件计算未知角度。

图形的平移是指一个图形沿某个方向移动,在XXX的过程中,原图形上所有的点都沿同一个方向移动相等的距离,这样的图形运动叫做图形的平移。

平移不改变图形的形状、大小和方向,且一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等。

在描述一个图形的平移时,必须指出平移的方向和距离。

练:已知△ABC和其平移后的△DEF,点A的对应点是D,点B的对应点是E,线段AC的对应线段是DF,线段AB的对应线段是DE,平移的方向是从△ABC到△DEF的方向,平移的距离是未知。

若AC=AB=5,BC=4,平移的距离是3,则CF=4,DB=5,AE=3,四边形AEFC的周长是14.折叠问题:1)如图,将一张纸条ABCD沿EF折叠,若折叠角∠XXX°,则∠1=64°。

七年级下册数学知识点全汇总

七年级下册数学知识点全汇总

七年级下册数学知识点全汇总七年级下册数学知识点包括几何、代数、概率等多个部分,本文将对这些知识点进行全面梳理和总结。

一、几何1.1 直角三角形在直角三角形中,直角的对边叫做正弦,直角的邻边叫做余弦,直角的斜边叫做正切。

根据这些概念,我们可以计算三角函数的值,并应用到实际问题中。

1.2 圆圆是一个非常重要的几何图形,在七年级下册数学中,我们学习了圆的周长和面积的计算方法,以及如何利用圆的性质解决实际问题。

1.3 直线与平面通过学习直线和平面的关系,我们可以了解到直线与平面的交点、平行线、垂直线等性质,并能够应用这些知识解决几何问题。

二、代数2.1 一元一次方程在代数部分,我们学习了一元一次方程的解法和应用,包括用逆运算解方程、列方程解决实际问题等内容,这对我们提高数学解决问题的能力非常有帮助。

2.2 一元一次不等式类似于一元一次方程,一元一次不等式也是我们在七年级下册数学中需要掌握的知识点,通过学习不等式的性质和解法,我们可以更好地理解数学问题的求解过程。

2.3 平方根与实数平方根是代数中一个重要的概念,我们学习了如何计算平方根、平方根的性质等内容,这对我们进一步理解数学知识和解决实际问题都有很大的帮助。

三、概率3.1 事件与概率在概率的学习中,我们了解到事件的概念以及如何计算事件发生的概率,通过实际问题的练习,我们可以更好地掌握概率的计算方法。

3.2 互斥事件与对立事件互斥事件和对立事件是概率学中两个重要的概念,通过学习这些内容,我们可以更好地理解事件之间的关系,提高我们的数学分析和推理能力。

以上便是七年级下册数学知识点的全面汇总,通过系统的学习和实践,相信大家对这些知识点已经掌握得非常扎实。

希望大家在接下来的学习过程中能够继续努力,取得更好的成绩!。

人教版七年级数学下册知识点及典型试题汇总——适用于期末总复习

人教版七年级数学下册知识点及典型试题汇总——适用于期末总复习

人教版七年级数学下册知识点汇总第五章相交线与平行线相交线相交线垂线同位角、内错角、同旁内角平行线:在同一平面内,不相交的两条直线叫平行线定义:___________________________________________判定1 :同位角相等,两直线平行平行线及其判定平行线及其判定平行线的判定判定2 :内错角相等,两直线平行判定3 :同旁内角互补,两直线平行判定4 :平行于同一条直线的两直线平行性质1:两直线平行,同位角相等性质2:两直线平行,内错角相等平行线的性质性质3:两直线平行,同旁内角互补性质4:平行于同一条直线的两直线平行命题、定理平移、知识网络结构二、知识要点1、在同一平面内,2、在同一平面内, 两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。

不相交的两条直线叫平行线。

如果两条直线只有-可编辑修改-一个公共点,称这两条直线相交;如相交线与平行线的两个角叫同位角。

图3中,共有对同位角:果两条直线没有公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

邻补角的性质:邻补角互补。

如图1所示,与互为邻补角,_____ 与___ 互为邻补角。

____ + _ = 180 ° ;______ +____ = 180 ° ;_____ +____ = 180 ° ;____ +____ = 180 °。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。

对顶角的性质:对顶角相等。

如图1所示,与互为对顶角。

= ;=5、两条直线相交所成的角中,如果有一个是直角或90。

时,称这两条直线互相垂直,其中一条叫做另一条的垂线。

如图2所示,当=90。

时,丄o b垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

人教版七年级下册数学知识点总结归纳

人教版七年级下册数学知识点总结归纳

人教版七年级下册数学知识点总结归纳七年级下册数学知识点1概率1.一般地,在大量重复试验中,如果事件A发生的频率n/m会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。

2.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。

3.互斥事件:不可能同时发生的两个事件叫做互斥事件。

4.对立事件:即必有一个发生的互斥事件叫做对立事件。

5.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。

6.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。

2相交线与平行线1.相交线在同一平面内,两条直线的位置关系有相交和平行两种。

如果两条直线只有一个公共点时,称这两条直线相交。

2.垂线当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。

3.同位角两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。

4.内错角两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。

5.同旁内角两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。

6.平行线几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。

平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

7.平移平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

3平面直角坐标系1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。

华师版七年级下册数学知识点总结

华师版七年级下册数学知识点总结

华师版七年级下册数学知识点总结七年级数学下期期末复提纲第六章一元一次方程一、基本概念一)方程的变形法则法则1:方程两边都加上或减去同一个数,方程的解不变。

例如:在方程7-3x=4两边都加上7,得到新方程:-3x+14=11.在方程6x=-2x-6两边都加上4x,得到新方程:10x=-6.移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意移项要变号。

例如:(1)将方程x-5=7移项得:x=7+5即x=122)将方程4x=3x-4移项得:x=-4法则2:方程两边都乘以或除以同一个数,方程的解不变。

例如:(1)将方程-5x=2两边都除以-5得:x=252)将方程x=2y两边都乘以3,得到新方程:3x=6y这里的变形通常称为“将未知数的系数化为1”。

注意:1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。

2)不论上一乘以或除以数时,都要注意结果的符号。

方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程的解。

求解方程的过程,叫做解方程。

二)一元一次方程的概念及其解法1.定义:只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程。

例如:方程7-3x=4、6x=-2x-6都是一元一次方程。

而这些方程5x-3x+1=x-1、2x+y=1-3y、x-1=2就不是一元一次方程。

2.一元一次方程的一般式为:ax+b=0(其中a、b为常数,且a≠0)一元一次方程的一般式为:ax=b(其中a、b为常数,且a≠0)3.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1.注意:(1)方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

2)“去分母”指去掉方程两边各项系数的分母;去分母时,要求各分母的最小公倍数,去掉分母后,注意添括号。

七年级数学(下)期末复习知识点整理

七年级数学(下)期末复习知识点整理

期末复习二:第五章相交线与平行线知识点概括 一、相交线1、如图1若a 、b 相交,∠1与∠2互为 ,∠1与∠3互为 , 与∠3互为补角的有 。

2、如果∠α与∠β是对顶角,那么一定有∠α ∠β;反之如果∠α=∠β,那么∠α与∠β 对顶角。

3、如果∠α与∠β互为邻补角,则一定有∠α+∠β= °;反之如果∠α+∠β=180°,则∠α与∠β一定互为 ,∠α与∠β (是、不一定是、不是)邻补角。

二、垂直 ?1、如图2,若AB 与CD 相交于点O ,且∠ = °,则AB 与CD 垂直,记作AB CD ,垂足为 。

2、垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)3、垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

简称:垂线段最短。

如图3,线段PA 、PB 、PC 最短的是 。

(4、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

如图3点P 到直线a 的距离是 。

5、垂线的画法。

三、三线八角1、两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角。

如图,直线b a ,被直线l 所截同位角:内错角:同旁内角:三线八角也可以成模型中看出。

同位角是 型;内错角是 型;同旁内角是 型。

2、如何判别三线八角判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全。

—例如:a b】l12 3 45 6 7 \ 8) D 23 4 如图,判断下列各对角的位置关系: ⑴∠1与∠2;( )⑵∠1与∠7;( )A BC D O —PABC图3a % 12 图1a b-四、平行线的判定与性质1、平行线的概念:在,的两条直线叫做平行线,直线a与直线b互相平行,记作。

2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:3、平行公理――平行线的存在性与惟一性经过,有且只有与这条直线平行`4、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行几何语言:#5、两直线平行的判定方法:判定1:相等,两直线平行判定2:相等,两直线平行判定3:,两直线平行几何符号语言:∵∠3=∠2∴()∵∠1=∠2∴()∵∠4+∠2=180°∴()<判定4:垂直于同一直线的两直线平行。

七年级数学下册全部知识点归纳

七年级数学下册全部知识点归纳

第一章:整式的运算单项式式 多项式 同底数幂的乘法 幂的乘方 积的乘方 同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法 多项式除以单项式 一、单项式1、都就是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数与叫做单项式的次数。

4、单独一个数或一个字母也就是单项式。

5、只含有字母因式的单项式的系数就是1或―1。

6、单独的一个数字就是单项式,它的系数就是它本身。

7、单独的一个非零常数的次数就是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其她运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数就是带分数时,应化成假分数。

11、单项式的系数就是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式1、几个单项式的与叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式1、单项式与多项式统称为整式。

2、单项式或多项式都就是整式。

3、整式不一定就是单项式。

4、整式不一定就是多项式。

5、分母中含有字母的代数式不就是整式;而就是今后将要学习的分式。

四、整式的加减1、整式加减的理论根据就是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键就是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤: (1)代数式化简。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

+第一章 整式的运算一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

注意:1、单项式中的数与字母或者字母与字母之间都是乘积关系,如x x ⋅=212,所以2x 是单项式,而x2不是单项式。

2、如果一个单项式只含有字母因数,则它的系数就是1或者-1,此时“1”通常省略不写;π是常数,应作为单项式的系数;单项式的系数包括它前面的符号。

3、单项式的次数是所有字母的指数和,数的指数和π的指数不能与其他字母的指数相加作为单项式的次数,如4232y x π的次数是6(=2+4),而不是10.4、非零常数的次数是0,而不是1。

如,3是一个非零常数,这个单项式中没有字母,因此次数为0.二、多项式七年级下册数学知识点整合1、多项式、多项式的次数、项几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

注意:1、多项式中的项包括它前面的符号。

2、对于一个多项式,知道了它的项数之后,我们可以称这个多项式为几次几项式,如3632+-xy y x 称为三次三项式。

三、整式:单项式和多项式统称为整式。

注意:区分代数式中的整式的关键是看分母中是否含有字母,如222y x +是整式,但xy的分母中含有字母,所以它不是整式。

四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。

注意:1、去括号时,如果括号前面带“-”号,去括号时里边各项都要变号。

2、如果括号前面有倍数,往括号里乘时,各项都分别相乘。

五、幂的运算性质:解题方法总结:1、 单项式的次数是把所有字母的指数相加,不包含数与π的指数;多项式的次数是把多项式中每项的次数都算出来,次数最高的单项式的次数就是这个多项式的次数。

2、 整式是单项式和多项式的统称,区分代数中的整式关键是分母中不能含有字母。

1、同底数幂的乘法:),(都是正整数n m a a a n m n m +=•注意:1、三个或三个以上同底数幂相乘时,也具有这一性质,如p n m p n m a a a a ++=⋅⋅(m 、n 、p 均为正整数)2、此性质可以逆用3、底数不同的幂相乘,不能应用此法则4、底数是和、差或者其他形式的幂相乘,应把这些和或差看作一个整体,如32)()(y x y x +⋅+2、幂的乘方:),(都是正整数)(n m a a mn nm = 注意:1、此公式可以拓展成为:[]p n m pnm a a ⋅⋅=)((m 、n 、p 均为正整数)2、区别幂的乘方与同底数的幂的乘法。

这也是选择题、填空题、计算题考察的重点。

3、此性质可以逆用3、积的乘方:)()(都是正整数n b a ab n n n =注意:1、此公式可以拓展成为:n n n n c b a abc ⋅⋅=)((n 为正整数) 2、此性质可以逆用4、同底数幂的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数六、零指数幂和负整数指数幂: 1、零指数幂:);0(10≠=a a解题方法归纳:1、 确定好是否是同底数幂的乘法,如果底数不同,进行适当的转化,使之成为同底数幂。

2、 同底数幂的乘法要与合并同类项区分开,即nm nmaa a +=⋅,m mm a aa 2=+2、负整数指数幂:),0(1是正整数p a a a pp ≠=-七、整式的乘除法:1、单项式乘以单项式:把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2、单项式乘以多项式:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

4、单项式除以单项式:除式里含有的字母,则连同它的指数一起作为商的一个因式。

5、多项式除以单项式:解题方法归纳:1、 对于出现同底数幂的除法的式子可直接运用其除法法则计算,若不是同底数,则进行转化,使之成为同底数,有时逆用公式计算更简便。

2、 出现零指数幂和负整数指数幂时,直接套用公式,将其转化为正整数指数幂的形式。

多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

八、整式乘法公式:1、平方差公式: 22))((b a b a b a -=-+注意:1、平方差公式中的a 、b 可以是具体的数,也可以是字母、单项式、多项式,也就是说,a 、b 代表任一个代数式。

如)14)(12)(12(2++-a a a2、此公式可以逆用2、完全平方公式: 2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-注意:1、公式中的a 、b 可以是具体的数,也可以是字母、单项式、多项式,也就是说,a 、b 代表任一个代数式。

2、公式右边2ab 的符号取决于左边二项式中两项的符号。

若左边的两项同号,则2ab 的符号为“+”,若这两项异号,则2ab 的符号为“-”。

3、此公式可以逆用。

4、可以拓展为:bc ac ab c b a c b a 222)(2222+++++=++解题方法归纳:整式乘法实质上就是运用乘法交换律、结合律、分配律、有理数的乘法法则和同底数幂的乘法法则进行的计算。

解题方法归纳:九、整体代入求值法:如果从已知条件中不能够求出字母的值,但所求的代数式,如果对某些项添上括号或者拆项之后正好是已知条件,则可以利用整体思想代入求值。

例:已知13==-xy y x ,,求)4()223()322(xy y x x y xy y x xy ++--+-++-的值。

第二章 平行线与相交线一、余角和补角:1、余角:定义:如果两个角的和是直角,那么称这两个角互为余角。

性质:同角或等角的余角相等。

2、补角:定义:如果两个角的和是平角,那么称这两个角互为补角。

性质:同角或等角的补角相等。

注意:1、互为余角、互为补角是针对两个角而言的,都是成对出现。

2、互为余角、互为补角是两个角的数量关系,与位置无关。

3、定义反过来也成立,可以逆用。

二、对顶角:我们把两条直线相交所构成的四个角中,有公共顶点且角的两边互为反向延长线的两个角叫做对顶角。

对顶角的性质:对顶角相等。

注意:1、成对出现2、对顶角反应两个角的位置关系三、同位角、内错角、同旁内角:直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。

其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。

注意:1、同位角、内错角、同旁内角都是成对出现,完全由相对位置决定。

2、上图中有4对同位角,2对内错角,2对同旁内角。

四、平行线的判定:1、两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

简称:同位角相等,两直线平行。

2、两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

简称:内错角相等,两直线平行。

3、两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

简称:同旁内角互补,两直线平行。

补充平行线的判定方法:(1)平行于同一条直线的两直线平行。

(2)在同一平面内,垂直于同一条直线的两直线平行。

解题方法总结:1、由角的相等或互补的关系识别两直线平行。

2、把复杂图形分解成简单图形在识别各种角。

(3)平行线的定义。

五、平行线的性质:(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)两直线平行,同旁内角互补。

六、尺规作图:(考试中涉及较少,也常常融合到综合题中进行考察,需要用到这个作图的方法而已)1、作一条线段等于已知线段。

2、作一个角等于已知角。

第三章 生活中的数据一、科学记数法:一般地,一个绝对值较小的数可以表示成n a 10⨯的形式,其中101<≤a ,n 是负整数。

注意: n 就是小数点移动的次数。

二、近似数和有效数字:1、近似数:利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。

2、有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到解题方法总结:1、 若给了平行线,则利用平行线的性质得到角的关系。

2、 若给了角的相互关系,则利用平行线的判定得两直线平行的位置关系。

的数位止,所有的数字都叫做这个近似数的有效数字。

注意:1、有效数字与n 10无关,只与n a 10 中的a 有关。

2、精确到哪一位时,要注意n 的值。

第四章 概率一、事件发生的可能性;人们通常用1(或100)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。

注意:必然事件的可能性是1,不可能事件的可能性是0,确定事件的可能性在0-1之间。

二、游戏是否公平:游戏对双方公平是指双方获胜的可能性相同。

注意:游戏是否公平,并不是指获胜的可能性必是21,而是只要获胜的可能性一样即可。

三、摸到红球的概率:1、概率的意义:表示一个事件发生的可能性大小的数。

解题方法归纳:10的指数和小数的关系是10的指数中n 的值恰好等于小数中从左数第一个不为0的数前面的0 的个数(包括小数点前面的0),按照这一关系就很容易把一个绝对值小于1的数用科学记数法表示出来。

P (摸到红球=果数摸出一球可能出现的结果数摸到红球可能出现的结) 2、确定事件和不确定事件的概率:(1)必然事件发生的概率为1记作P (必然事件)=1(2)不可能事件发生的概率为0,P (不可能事件)=0(3)如果A 为不确定事件 ,那么0<P(A)<13、概率的求法:一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 个结果,那么事件A 发生的概率为P (A )=nm第五章 三角形一、三角形及其有关概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形的表示:三角形用符号“∆”表示,顶点是A 、B 、C 的三角形记作“∆ABC ”,读作解题方法总结:1、 对于摸球问题,数量多的,可能性就大,运用公式进行解题。

2、 运用概率的计算来判断游戏的公平性,若概率相等,则公平,否则不公平。

3、 几何图形的概率求法,运用面积所占百分比求概率。

“三角形ABC”。

注意:1、三条线段必须“不在同一条直线上”才能组成三角形。

相关文档
最新文档