五年级上册奥数速算与巧算测试题
小学数学《速算与巧算》练习题(含答案)

小学数学《速算与巧算》练习题(含答案)【复习1】(我爱数学夏令营)计算:6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78+1.89分析:原式=(6.11+1.89)+(9.22+2.78)+(8.33+3.67)+(7.44+4.56)+5.55=8+12+12+12+5.55=49.55【复习2】(06香港圣公会小学奥林匹克)计算:3.72-2.73+4.6+5.28-0.27+6.4分析:原式=(3.72+5.28)+(4.6+6.4)-(2.73+0.27)=9+11-3=17 .【复习3】(华罗庚学校五年级入学考试试题)8×(3.1-2.85)×12.5×(1.62+2.38)-3.27分析:初看这道题好像不能用简便方法进行计算.但是里面有特殊数8、12.5,所以可以先算一步,再用简便方法进行计算.原式=8×0.25×12.5×4-3.27=(8×12.5)×(0.25×4)-3.27=100-3.27=96.73【复习4】(04陈省身杯数学邀请赛)(56789+67895+78956+89567+95678)÷7分析:原式=(5+6+7+8+9)×11111÷7=5×11111=55555 . 观察可知5、6、7、8、9在万、千、百、十、个位各出现过一次 .【复习5】计算:l-2+3-4+5-6+…+2005-2006+2007分析:原式= l+3-2+5-4+7-6+…+2005+2007-2006=1+1×1003=1004 ,分组求和的思路.在速算的过程中,如果加入运算律的应用,会有意想不到的效果!我们一起先来看看常用的一些运算律和结论吧!在计算过程中,最常用的技巧之一是灵活熟练地运用运算律.运算律有:(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)(3)乘法交换律:ab=ba(4)乘法结合律:(ab)c=a(bc)(5)分配律: a(b+c)=ab+ac (反过来就是提取公因数)(6)减法(括号)的性质:a-b-c=a-(b+c)(7)除法的性质:a÷(b×c)=a÷b÷c(a+b) ÷c=a÷c+b÷c(a-b) ÷c=a÷c-b÷c和不变的规律:如果一个加数增加另一个加数减少同一个数,它们的和不变.积不变的规律:如果一个因数扩大几倍,另一个因数缩小相同的倍数,积不变.商不变的规律:如果除数和被除数同时扩大或缩小相同的倍数,商不变.【例1】(04陈省身杯数学邀请赛)计算:3.1415×252-3.1415×152分析:(法1):题中的三项都有因数34.5,容易想到把34.5作为公因数提取出来(把乘法分配律反过来用),从而使计算简便.原式=34.5×(8.23+2.77—1)=34.5×10=345.(法2):原式=3.1415×(252-152)=3.1415×(25+15)×(25-15)=3.1415×40×10=1256.6 应用下面的平方差公式【回忆巩固】a、b代表任意数字,(a+b)×(a-b)=a×a-b×b,这个公式在数学上称为平方差公式。
人教版五年级上册数学口算,速算,巧算题

人教版五年级上册数学口算, 速算, 巧算题一、引言在学习数学的过程中,口算是一个非常重要的环节。
通过口算练习,可以提高学生的计算能力和反应速度,培养学生对数字的敏感度和逻辑思维能力。
在人教版五年级上册数学教材中,有许多有趣的口算、速算和巧算题,下面我们来逐一共享一些精彩的例子。
二、口算题1. 计算:486 + 237 - 198 = ?步骤:先进行加法运算,然后再减法运算。
答案:486 + 237 = 723,723 - 198 = 525。
2. 已知378 ÷ 6 = ?计算步骤:将378除以6。
答案:378 ÷ 6 = 63。
三、速算题1. 23 × 7 = ?计算步骤:先将23分解为20和3,然后依次与7相乘。
答案:23 × 7 = (20 × 7) + (3 × 7) = 140 + 21 = 161。
2. 45 × 8 = ?计算步骤:先将45分解为40和5,然后依次与8相乘。
答案:45 × 8 = (40 × 8) + (5 × 8) = 320 + 40 = 360。
四、巧算题1. 计算:39 × 11 = ?巧算步骤:先将39分解为30和9,然后依次与11相乘。
巧算答案:39 × 11 = (30 × 11) + (9 × 11) = 330 + 99 = 429。
2. 计算:67 × 8 = ?巧算步骤:将67分解为60和7,然后依次与8相乘。
巧算答案:67 × 8 = (60 × 8) + (7 × 8) = 480 + 56 = 536。
五、结语在数学学习中,口算、速算和巧算都是非常重要的。
通过不断的练习和积累,学生可以提高自己的计算能力,从而更好地应对数学学习中的各种挑战。
希望以上的口算、速算和巧算题例子能够帮助学生更好地理解和掌握这些知识,为他们的数学学习之路增添一份乐趣和成就感。
奥数专题:速算与巧算加减法

速算与巧算加减法1.996+1574+1930=2.123+234+345-456+567+678+789-890=3.1993-1+2-3+4-5+ ... +1948-1949=4.93+87+88+79+100+62+75+95+85+69+72+98+89+77+54+75+92+85+83+76+ 65+60+79+86+100+49+97+97+80+78=5.19+199+1999+ (1999999999)6.1234+2341+3412+4123=7.101+103+107+109+113+127+131+137+139+149+151=8.569+384+147-328-167-529=9.1994+1993-1992-1991+1990+1989-1988-1987+……+10+9-8-7+6+5-4-3+2+1=10.123456+234567+345678+456789+567901+679012+790123+901234=11.376+385+391+380+377+389+383+374+366+378=12.8642-7531+6420-5317+4280-3157+2084-1753=13.6472-(4476-2480)+5319-(3323-1327)+9354-(7358-5326)+6839-(4843-2847)=14.1996+1994-1992-1990+1998+1986-1984-1982+1980+1978-1976 -1974+1972+1970…+4+2=15.123456+234561+345612+456123+561234+612345=16.1966+1976+1986+1996+2006=17.123455+234566+345677+456788+567899=18.1+2+3+4+5+11+12+13+14+15+21+22+23+24+25+……+91+92+93+94+95=19.11+22+33+44+ (99)20.1993+1994+1995+1996+1997+1998+1999+2000 =速算与巧算[分享]一、例题:例1:1234+5678+8766+4322分析:请仔细观察后,发现:1234+8766=10000,5678+4322=10000,如果两数相加,恰好凑成10,100,100 0,……就把其中的一个数叫做另一个数的补数,这两个数为互为补数。
新学期小学五年级奥数题练习

新学期小学五年级奥数题练习1、甲、乙两个人从A、B两地步行相向而行,甲每小时走3千米,乙每小时走2千米,两人相遇时距离中点3千米,问A、B两地相距多远?2、甲、乙两人从A、B两地相向骑车而行,2小时后相遇,相遇后,乙继续向A地前进,而甲则返回,当甲到达A地时,乙距离A地还有4千米,已知A。
B地面相距80千米,问甲、乙每小时各骑多少千米?3、兄弟两人绕操场跑步,哥哥每秒钟跑8米,弟弟每秒钟跑6米,操场全长600米,如果两人同时同地相向而行,问10分钟相遇几次?如果两人同时同地同向而行,又相遇几次?4、甲、乙两人从B城去A城,甲速度为每小时5千米,乙速度为每小时4千米,甲出发时,乙已先走了3个小时,甲走了10千米后,决定以每小时6千米的速度前进,问几小时后追上乙?5、小王、小李共同整理报纸,小王每分钟整理72份,小李每分钟整理60份,小王吃到了1分钟,当小王、小李整理同样多份的报纸时,正好完成了这批任务,问一共有多少份报纸?7月23日1、一辆公共汽车和一辆小轿车同时从相距450千米的两地相向而行,公共汽车每小时行40千米,小轿车每小时行50千米,问几小时后两车相距90千米?2、甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发。
甲车行几小时后与乙车相遇?3、两地相距900米,甲、乙两人同时、同地向同一方向行走,甲每分钟走80米,乙每分钟走100米,当乙达到目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?4、买一件上衣和一条裤子共需要295元钱,上衣比裤子贵75元,问买一件上衣和一条裤子分别需要多少钱?和差问题(奥赛数学思维训练教材32页例1)5、小钱期终考试时语文和数学的平均分数时96分,数学比语文多8分,问语文和数学各得了几分?(和差问题)(奥赛数学思维训练教材33页例2)大数=(和+差)÷2 小数=(和-差)÷2大数=小数+差小数=大数-差大数=和-小数小数=和-大数7月24日1、甲乙两人同时分别从两地骑车相向而行,甲每小时行20千米,乙每小时行18千米,两人相遇时距全程中点3千米,求全程长多少千米?2、甲乙两站相距3.5千米,A车速为每分钟180米,B车速为分钟170米,A、B两车分别从甲、乙两站相向开出,两车到站后都要停留7分钟,他们第一次相遇后要经过多少时间第二次相遇?3、甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲、乙两人从A 地,丙从B地三人同时相向出发。
2022-2023学年小学五年级奥数(全国通用)测评卷01《速算和巧算》(解析版)

【五年级奥数举一反三—全国通用】测评卷01《速算和巧算》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共7小题,满分21分,每小题3分)1.(2015•创新杯)计算:2.3÷0.08÷1.25=()A.230 B.23 C.2.3 D.0.23【分析】根据除法的性质简算即可.【解答】解:2.3÷0.08÷1.25=2.3÷(0.08×1.25)=2.3÷0.1=23故选:B.2.(2009•华罗庚金杯)下面有四个算式:①0.6+=②0.625=③+===④3×4=14其中正确的算式是()A.①和②B.②和④C.②和③D.①和④【分析】①循环小数加、减要根据“四舍五入”取其近似值再计算,0.6中的6不能与中的循环节中的1相加,答案不正确.②把分数化成小数,用分子除以分母5÷8=0.625;或把小数0.625化成分数并化简是,答案正确.③根据分数加、减法的计算法则,把异分数分母化成同分数分数再加、减,分子不变,只把分子相加、减,答案不正确.④把两个带分数化成假分数再相乘,结果再化成带分数,正确.【解答】解:①0.6+=不正确;②0.625=正确;③+===不正确;④3×4=14正确.故选:B.3.(2003•创新杯)2003+2002﹣2001﹣2000+1999+1998﹣1997﹣1996+…+7+6﹣5﹣4+3+2﹣1的计算结果是()A.2002 B.2003 C.2004 D.4005【分析】四个数一组相互抵消,2000是被4整除的,也就是说2000以后的数都可以相互抵消,因为2002÷2=1001,不是偶数组,即有一组不能被抵消,最后剩下2003+2002﹣2001=2004.【解答】解:2003+2002﹣2001﹣2000+1999+1998﹣1997﹣1996+…+7+6﹣5﹣4+3+2﹣1=2003+(2002﹣2001)+(﹣2000+1999)+(1998﹣1997)+…+(6﹣5)+(﹣4+3)+(2﹣1)=2003+1﹣1+1+…+1﹣1+1=2003+1=2004故选:C.4.0.65×201=0.65×(200+1)=0.65×200+0.65运用了乘法的()A.交换律B.结合律C.分配律【分析】本题考查的是乘法运算律的运用.【解答】解:乘法分配律:(a+b)×c=a×c+b×c所以0.65×201=0.65×(200+1)=0.65×200+0.65运用了乘法的分配律.故选:C.5.与0.456×2.1的结果相同的算式是()A.4.56×21 B.21×0.0456 C.45.6×0.21 D.456×0.021【分析】根据积不变的规律,其中一个因数的小数点向右(左)移动多少位,另一个因数的小数点就要向左(右)移动多少位,据此分析解答即可.【解答】解:0.456×2.1=4.56×0.21=0.0456×21=45.6×0.021=456×0.0021故选:B.6.与61.2÷3.4计算结果相同的是()A.6.12÷0.34 B.612÷0.34C.0.612×0.034 D.612÷34【分析】根据商不变的性质,被除数和除数同时乘以或除以一个数(0除外),商不变,据此分析解答即可.【解答】解:61.2÷3.4=612÷34故选:D.7.105×18=100×18+5×18运用了()A.乘法交换律B.乘法结合律C.乘法分配律【分析】本题考查的是乘法运算律的运用.【解答】解:105×18=(100+5)×18=100×18+5×18运用了乘法分配律.故选:C.二.填空题(共10小题,满分30分,每小题3分)8.(2018•其他模拟)计算:3﹣5+7﹣9+11﹣13+…+1995﹣1997+1999=1001.【分析】本题可以从后往前算.【解答】解:3﹣5+7﹣9+11﹣13+……+1995﹣1997+1999=1999﹣1997+1995﹣1993+……+11﹣9+7﹣5+3=(1999﹣1997)+(1995﹣1993)+……+(11﹣9)+(7﹣5)+3=2+2+2+……+2+3=2×499+3=10019.(2018•其他模拟)a=4,b=25,则a+b=,a×b=,a÷b=.【分析】根据题意可知我们运用加法的分配律、乘法的交换律和结合律即可解答.【解答】解:a+b=[(a+b)×]÷=(40+25)÷=a×b=[(a×)×(b×)]÷(×)=(40×25)÷=a÷b=(a×)÷(b×)=40÷25=故:答案见上面的计算结果.10.(2017•育苗杯)计算39.07﹣22.78÷3.4=32.37.【分析】这题有减法,有除法,要先算除法,再算减法.【解答】解:39.07﹣22.78÷3.4=39.07﹣6.7=32.3711.(2018•迎春杯)算式(20.17﹣12.02÷6)×6的计算结果是109.【分析】根据乘法的分配律简算即可.【解答】解:(20.17﹣12.02÷6)×6=20.17×6﹣12.02÷6×6=121.02﹣12.02=109故答案为:109.12.(2017•其他杯赛)计算:(2017﹣1)+(2016﹣2)+…+(2011﹣7)=14070.【分析】应用加法交换律、加法结合律和减法的性质,求出算式的值是多少即可.【解答】解:(2017﹣1)+(2016﹣2)+…+(2011﹣7)=2016+2014+2012+2010+2008+2006+2004=2010×7=14070故答案为:14070.13.(2016•其他杯赛)计算:91.5+19.8+80.2=191.5.【分析】应用加法结合律,求出算式的值是多少即可.【解答】解:91.5+19.8+80.2=91.5+(19.8+80.2)=91.5+100=191.5故答案为:191.5.14.(2016•其他杯赛)计算:(102.4+89.6﹣38×5)×(2016﹣126×16)=0.【分析】首先根据126×16=2016,求出2016﹣126×16的值是0;然后根据:0和任何数相乘都得0,可得:算式的值是0.【解答】解:(102.4+89.6﹣38×5)×(2016﹣126×16)=(102.4+89.6﹣38×5)×(2016﹣2016)=(102.4+89.6﹣38×5)×0=0故答案为:0.15.(2018•陈省身杯)计算200﹣(16+17+18+…+23+24)=20.【分析】凑整计算,通过移多补少将16~24求和,变为9个20求和,据此解答即可.【解答】解:200﹣(16+17+18+…+23+24)=200﹣9×20=200﹣180=2016.(2018•其他模拟)计算:53.3÷0.23÷0.91×16.1÷0.82=5000.【分析】通过分析式中数据可知,53.3能被0.82除尽,16.1能被0.23除尽,由此根据交换律及结合律进行巧算即可.【解答】解:53.3÷0.23÷0.91×16.1÷0.82=(53.3÷0.82)×(16.1÷0.23)÷0.91=65×70÷0.91=13×5×10×7÷0.7÷1.3=10×5×10×10=5000故答案为:5000.17.(2007•迎春杯)计算:379×0.00038+159×0.00621+3.79×0.121= 1.59.【分析】先把算式变形为379×0.00038+379×0.00121+159×0.00621,再运用乘法的分配律进行简算即可.【解答】解:379×0.00038+159×0.00621+3.79×0.121=379×0.00038+379×0.00121+159×0.00621=379×(0.00038+0.00121)+159×0.00621=379×0.00159+159×0.00621=0.00379×159+159×0.00621=(0.00379+0.00621)×159=0.01×159=1.59;故答案为:1.59.三.计算题(共6小题,满分18分,每小题3分)18.(2016•中环杯)计算:(20.15+40.3)×33+20.15.【分析】先把403变形为20.15×2,再根据乘法的分配律简算即可.【解答】解:(20.15+40.3)×33+20.15=(20.15+20.15×2)×33+20.15=20.15×3×33+20.15=20.15×(3×33+1)=20.15×100=201519.计算(1)24×2×125×25(2)125×32×25×2013【分析】根据乘法的交换律与结合律简算即可.【解答】解:(1)24×2×125×25=3×(8×125)×(2×25)=3×1000×50=150000(2)125×32×25×2013=(125×8)×(4×25)×2013=1000×100×2013=20130000020.(2018•学而思杯)2.8×27+28×2.9+2.8×44【分析】首先把28×2.9化成2.8×29,然后应用乘法分配律,求出算式的值是多少即可.【解答】解:2.8×27+28×2.9+2.8×44=2.8×27+2.8×29+2.8×44=2.8×(27+29+44)=2.8×100=28021.(2017•春蕾杯)计算①0.8÷9+0.1÷9=0.1;②201.7×4.5+2017×0.35+20.17×20=2017;③(0.1+0.2+0.3+0.4)×(1+0.1+0.2+0.3)﹣(1+0.1+0.2+0.3+0.4)×(0.1+0.2+0.3)=0.4.【分析】①根据除法的性质简算即可.②首先把2017×0.35、20.17×20分别化成201.7×3.5+201.7×2,然后根据乘法分配律计算即可.③首先计算小括号里面的算式,然后计算乘法和减法即可.【解答】解:①0.8÷9+0.1÷9=(0.8+0.1)÷9=0.9÷9=0.1②201.7×4.5+2017×0.35+20.17×20=201.7×4.5+201.7×3.5+201.7×2=201.7×(4.5+3.5+2)=201.7×10=2017③(0.1+0.2+0.3+0.4)×(1+0.1+0.2+0.3)﹣(1+0.1+0.2+0.3+0.4)×(0.1+0.2+0.3)=1×1.6﹣2×0.6=1.6﹣1.2=0.422.计算:2015+201.5+20.15+985+98.5+9.85.【分析】应用加法结合律、乘法分配律,求出算式的值是多少即可.【解答】解:2015+201.5+20.15+985+98.5+9.85=(2015+201.5+20.15)+(985+98.5+9.85)=(20.15×100+20.15×10+20.15)+(9.85×100+9.85×10+9.85)=20.15×(100+10+1)+9.85×(100+10+1)=20.15×111+9.85×111=(20.15+9.85)×111=30×111=333023.(2003•创新杯)计算:0.79×0.46+7.9×0.24+11.4×0.079.【分析】先把算式变形为0.79×0.46+0.79×2.4+1.14×0.79,再根据乘法的分配律简算即可.【解答】解:0.79×0.46+7.9×0.24+11.4×0.079=0.79×0.46+0.79×2.4+1.14×0.79=0.79×(0.46+1.14+2.4)=0.79×4=(0.8﹣0.01)×4=0.8×4﹣0.01×4=3.2﹣0.04=3.16四.解答题(共6小题,满分31分)24.(5分)(2015•奥林匹克)计算:(12×21×45×10.2)÷(15×4×0.7×51)【分析】运用除法性质及乘法交换律、结合律简算.【解答】解:(12×21×45×10.2)÷(15×4×0.7×51)=(12÷4)×(21÷0.7)×(45÷15)×(10.2÷51)=3×30×3×0.2=5425.(5分)(2018•学而思杯)903+899+902+897+904+898【分析】方法一:应用加法交换律和加法结合律,求出算式的值是多少即可.方法二:首先把每个加数都化成900与某个数的和(或差)的形式;然后应用加法交换律和加法结合律,求出算式的值是多少即可.【解答】解:方法一:903+899+902+897+904+898=(903+897)+(902+898)+(899+904)=1800+1800+1803=5403方法二:903+899+902+897+904+898=(900+3)+(900﹣1)+(900+2)+(900﹣3)+(900+4)+(900﹣2)=(900+900+900+900+900+900)+(3﹣1+2﹣3+4﹣2)=5400+3=540326.(5分)(1996•其他杯赛)376+385+391+380+377+389+383+374+366+378=3799.【分析】将给出的数字写成以380为标准的数,再相加减即可求解.【解答】解:376+385+391+380+377+389+383+374+366+378=380×10﹣(4+3+6+14+2)+(5+11+9+3)=3800+28﹣29=3799.故答案为:3799.27.(5分)(1995•其他杯赛)0.×0.=.【分析】通过0.101×0.19=0.01919,0.0101×0.019=0.0001919,0.00101×0.0019=0.000001919,可以发现小数与小数相乘,积的0的个数等于每个因数零的个数(零的个数是指到第一不为零的之前所有的0,包含小数点前的那一个零)之和,所以该题继而解决.【解答】解:0.×0.=故答案为:.28.(5分)(2015•春蕾杯)(1)10.44÷1.2×0.3= 2.61;(2)[0.5×(6+0.6)﹣0.5]÷2.5= 1.12.【分析】(1)根据除法的性质计算即可.(2)根据乘法运算定律和除法的性质计算即可.【解答】解:(1)10.44÷1.2×0.3=10.44÷(1.2÷0.3)=10.44÷4=2.61(2)[0.5×(6+0.6)﹣0.5]÷2.5=[0.5×(6+0.6﹣1)]÷2.5=0.5×5.6÷2.5=0.5÷2.5×5.6=0.2×5.6=1.12故答案为:2.61、1.12.29.(6分)(2017•学而思杯)(1)解方程:3(15﹣2x)+12=85﹣10x (2)计算:4.02×16+33×4.02﹣4.9×20.2.【分析】(1)根据等式的性质解方程即可;(2)根据乘法的分配律简算即可.【解答】解:(1)3(15﹣2x)+12=85﹣10x45﹣6x+12=85﹣10x10x﹣6x=85﹣574x=28x=7(2)4.02×16+33×4.02﹣4.9×20.2=4.02×(16+33)﹣49×2.02=4.02×49﹣49×2.02=49×(4.02﹣2.02)=49×2=98。
小学生奥数速算与巧算题五篇(最新)

1.小学生奥数速算与巧算题【思路】在计算没有括号的加减法混合运算式题时,有时可以根据题目的特点,采用添括号的方法使计算简便,与前面去括号的方法类似,我们可以把这种方法概括为:括号前面是加号,添上括号不变号;括号前面是减号,添上括号要变号。
(2)812-593+193=812-(593-193)=812-400=412(1)286+879-679=286+(879-679)=286+200=868练习:计算下面各题。
1.368+1859-8592.582+393-2933.632-385+2854.2756-2748+1748+2445.612-375+275+(388+286)6.756+1478+346-(256+278)-2462.小学生奥数速算与巧算题【例题】计算9+99+999+9999【思路】这四个加数分别接近10、100、1000、10000。
在计算这类题目时,常使用减整法,例如将99转化为100-1。
这是小学数学计算中常用的一种技巧。
9+99+999+9999=(10-1)+(100-1)+(1000-1)+(10000-1)=10+100+1000+10000-4=11106练习:1、计算99999+9999+999+99+92、计算9+98+996+99973、计算1999+2998+396+4974、计算198+297+396+4955、计算1998+2997+4995+59946、计算19998+39996+49995+699963.小学生奥数速算与巧算题1、用2、3、4、6这四张牌进行计算,使最后得数等于24。
2、怎样用3、7、8、8四个数进行计算,使最后得数等于24?3、用两个2和两个8计算,使最后得数等于24。
4、现在有三个数:2、6、8,怎样用这三个数进行计算,使计算结果等于24?5、小明从一副扑克牌中摸出2、3、6、9这四张牌,怎样用这四个数进行计算,使结果等于24?6、有四个数:1、3、5、9,请你进行计算,使最后得数等于24。
小学五年级奥数题——速算与巧算

17:1÷(2÷3)÷(3÷4)÷(4÷5)÷……÷(99÷100)18:(44331-443.31)÷(88662-886.62)
19:(112233-112.233)÷(224466-224.466)20 : (40404+404.04)÷(20202+202.02)21: 7.84×55+78.4×4.5
⑧、(824-8.24)÷(412-4.12)
计算:39×1.09+1.3×67.3
计算:①9999×0.7+1111×2.7
②88.88×16669+44.44×66662
计算,1÷(2÷3)(3÷4)÷(4÷5)÷(5÷6)
【练一练】
1÷(2÷3)÷(3÷4)÷(4÷5)÷……÷(99÷100)
计算:(44331-443.31)÷(88662-886.62)
【练一练】
计算:①(112233-112.233)÷(224466-224.466)
②(40404+404.04)÷(20202+202.02)
下面各题,怎样算简便就怎样计算:
①、2.5×3.2
②、85.6×0.32+0.68×85.6+14.4
在日常生活和解答数学问题时经常要进行计算在数学课里我们学习了一些简便计算的方法但如果善于观察勤于思考计算中还能找到更多的巧妙的计算方法不仅使你能算得好算得快还可以让你变得聪明和机敏
小学五年级奥数题——速算与巧算
小学五年级奥数题——速算与巧算
在日常生活和解答数学问题时,经常要进行计算,在数学课里我们学习了一些简便计算的方法,但如果善于观察、勤于思考,计算中还能找到更多的巧妙的计算方法,不仅使你能算得好、算得快,还可以让你变得聪明和机敏。
五年级奥数- 巧算与速算

速算与巧算一、考点、热点回顾:1、掌握小学数学中常用的速算方法,并根据数字特点选择恰当方法计算。
二、典型例题:例1计算72.19+6.48+27.81-1.38-5.48-0.62。
解:观察发现,有些加数可以凑整;有的加数和减数尾数相同,可以抵消。
于是:72.19+6.48+27.81-1.38-5.48-0.62=(72.19+27.81)+(6.48-5.48)-(1.38+0.62)=100+1-2=99例2用简便方法计算 1.25×67.875+125×6.7875+1250×0.053375。
解:观察发现:相加的三个乘积中分别有1.25、125、250,因此想到利用积不变的性质,使三个积有相同的因数。
于是:1.25×67.875+125×6.7875+1250×0.053375=1.25×67.875+1.25×678.75+1.25×53.375=1.25×(67.875+678.75+53.375)=1.25×800=1000例3计算1999+199.9+19.99+1.999。
解法一:观察发现,构成这四个加数的数字和排列顺序完全相同,因此可以把它们都看作1999与某个数的积,于是:1999+199.9+19.99+1.999=1999×(1+0.1+0.01+0.001)=1999×1.111=(2000-1)×1.111=2222-1.111=2220.889解法二:观察发现这四个加数分别接近2000、200、20、2,于是1999+199.9+19.99+1.999=2000+200+20+2-1.111=2220.889例4计算(1+0.33+0.44)×(0.33+0.44+0.55)-(1+0.33+0.44+0.55)×(0.33+0.44)。