实验三基于simulink通信系统仿真

合集下载

simulink模拟通信系统仿真及仿真流程

simulink模拟通信系统仿真及仿真流程

基于Simulink的通信系统建模与仿真——模拟通信系统姓名:XX完成时间:XX年XX月XX日一、实验原理(调制、解调的原理框图及说明)AM调制AM调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。

AM调制原理框图如下AM信号的时域和频域的表达式分别为式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。

AM解调AM信号的解调是把接收到的已调信号还原为调制信号。

AM信号的解调方法有两种:相干解调和包络检波解调。

AM相干解调原理框图如下。

相干解调的关键在于必须产生一个与调制器同频同相位的载波。

如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。

AM包络检波解调原理框图如下。

AM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。

包络检波器一般由半波或全波整流器和低通滤波器组成。

DSB调制在幅度调制的一般模型中,若假设滤波器为全通网络(=1),调制信号中无直流分量,则输出的已调信号就是无载波分量的双边带调制信号(DSB)。

DSB调制原理框图如下DSB信号实质上就是基带信号与载波直接相乘,其时域和频域表示式分别为DSB解调DSB只能进行相干解调,其原理框图与AM信号相干解调时完全相同,如图SSB调制SSB调制分为滤波法和相移法。

滤波法SSB调制原理框图如下所示。

图中的为单边带滤波器。

产生SSB信号最直观方法的是,将设计成具有理想高通特性或理想低通特性的单边带滤波器,从而只让所需的一个边带通过,而滤除另一个边带。

产生上边带信号时即为,产生下边带信号时即为。

滤波法SSB调制的频域表达式相移法SSB调制的原理框图如下。

图中,为希尔伯特滤波器,它实质上是一个宽带相移网络,对中的任意频率分量均相移。

相移法SSB调制时域表达式如下。

式中,“-”对应上边带信号,“+”对应下边带信号;表示把的所有频率成分均相移,称是的希尔伯特变换。

SSB解调SSB只能进行相干解调。

simulink模拟通信系统仿真及仿真流程

simulink模拟通信系统仿真及仿真流程

基于Simulink的通信系统建模与仿真——模拟通信系统姓名:XX完成时间:XX年XX月XX日一、实验原理(调制、解调的原理框图及说明)AM调制AM调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。

AM调制原理框图如下AM信号的时域和频域的表达式分别为式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。

AM解调AM信号的解调是把接收到的已调信号还原为调制信号。

AM信号的解调方法有两种:相干解调和包络检波解调。

AM相干解调原理框图如下。

相干解调的关键在于必须产生一个与调制器同频同相位的载波。

如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。

AM包络检波解调原理框图如下。

AM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。

包络检波器一般由半波或全波整流器和低通滤波器组成。

DSB调制在幅度调制的一般模型中,若假设滤波器为全通网络(=1),调制信号中无直流分量,则输出的已调信号就是无载波分量的双边带调制信号(DSB)。

DSB调制原理框图如下DSB信号实质上就是基带信号与载波直接相乘,其时域和频域表示式分别为DSB解调DSB只能进行相干解调,其原理框图与AM信号相干解调时完全相同,如图SSB调制SSB调制分为滤波法和相移法。

滤波法SSB调制原理框图如下所示。

图中的为单边带滤波器。

产生SSB信号最直观方法的是,将设计成具有理想高通特性或理想低通特性的单边带滤波器,从而只让所需的一个边带通过,而滤除另一个边带。

产生上边带信号时即为,产生下边带信号时即为。

滤波法SSB调制的频域表达式相移法SSB调制的原理框图如下。

图中,为希尔伯特滤波器,它实质上是一个宽带相移网络,对中的任意频率分量均相移。

相移法SSB调制时域表达式如下。

式中,“-”对应上边带信号,“+”对应下边带信号;表示把的所有频率成分均相移,称是的希尔伯特变换。

SSB解调SSB只能进行相干解调。

通信系统仿真实验报告

通信系统仿真实验报告

通信系统仿真实验报告摘要:本篇文章主要介绍了针对通信系统的仿真实验,通过建立系统模型和仿真场景,对系统性能进行分析和评估,得出了一些有意义的结果并进行了详细讨论。

一、引言通信系统是指用于信息传输的各种系统,例如电话、电报、电视、互联网等。

通信系统的性能和可靠性是非常重要的,为了测试和评估系统的性能,需进行一系列的试验和仿真。

本实验主要针对某通信系统的部分功能进行了仿真和性能评估。

二、实验设计本实验中,我们以MATLAB软件为基础,使用Simulink工具箱建立了一个通信系统模型。

该模型包含了一个信源(source)、调制器(modulator)、信道、解调器(demodulator)和接收器(receiver)。

在模型中,信号流经无线信道,受到了衰落等影响。

在实验过程中,我们不断调整系统模型的参数,例如信道的衰落因子以及接收机的灵敏度等。

同时,我们还模拟了不同的噪声干扰场景和信道状况,以测试系统的鲁棒性和容错性。

三、实验结果通过实验以及仿真,我们得出了一些有意义的成果。

首先,我们发现在噪声干扰场景中,系统性能并没有明显下降,这说明了系统具有很好的鲁棒性。

其次,我们还测试了系统在不同的信道条件下的性能,例如信道的衰落和干扰情况。

测试结果表明,系统的性能明显下降,而信道干扰和衰落程度越大,系统则表现得越不稳定。

最后,我们还评估了系统的传输速率和误码率等性能指标。

通过对多组测试数据的分析和对比,我们得出了一些有价值的结论,并进行了讨论。

四、总结通过本次实验,我们充分理解了通信系统的相关知识,并掌握了MATLAB软件和Simulink工具箱的使用方法,可以进行多种仿真。

同时,我们还得出了一些有意义的结论和数据,并对其进行了分析和讨论。

这对于提高通信系统性能以及设计更加鲁棒的系统具有一定的参考价值。

通信系统Simulink仿真

通信系统Simulink仿真

实验报告课程名称:MATLAB程序设计实验项目:通信系统仿真班级:学号:姓名:成绩:教师签字:1.实验项目名称通信系统仿真2.实验目的(1)熟悉通信相关方面的知识、学习并掌握OFDM技术的原理。

(2)熟悉MATLAB语言和simulinkSimulink 工具箱的使用。

(3)设计并实现OFDM通信系统的建模与仿真。

3.实验内容与实验步骤要完成的实验内容:自行设计基于OFDM的通信息系统仿真模型,分别采用MATLAB脚本程序和基于Simulink 工具箱实验相同的功能。

对系统的性能进行分析。

本次试验采用OFDM-16QAM系统来建模和仿真。

应用(或涉及)的原理:OFDM的全称为Orthogonal Frequency Division Multiplexing,意为正交频分复用。

OFDM通信技术是多载波传输技术的典型代表。

多载波传输把数据流分解为若干个独立的子比特流,每个子数据流将具有低得多的比特速率,用这样低比特率形成的低速率多状态符号去调制相应的子载波,就构成了多个低速率符号并行发送的传输系统。

OFDM是多载波传输方案的实现方式之一,利用快速傅里叶逆变换(IFFT,Inverse Fast Fourier Transform)和快速傅里叶变换(FFT,Fast Fourier Transform)来分别实现调制和解调,是实现复杂度最低、应用最广的一种多载波传输方案。

OFDM是一种多载波调制技术,其原理是用N个子载波把整个信道分割成N个子信道,即将频率上等间隔的N个子载波信号调制并相加后同时发送,实现N 个子信道并行传输信息。

这样每个符号的频谱只占用信道带宽的1/N,且使各子载波在OFDM符号周期T内保持频谱的正交性。

在发送端,串行码元序列经过数字基带调制、串并转换,将整个信道分成N 个子信道。

N个子信道码元分别调制在N个子载波频率上,设为最低频率,相邻频率相差1/N,则,,角频率为,。

待发送的OFDM信号为:接收端对接收到的信号进行如下解调:由于OFDM符号周期内各子载波是正交的。

(完整版)simulink模拟通信系统仿真及仿真流程

(完整版)simulink模拟通信系统仿真及仿真流程

基于Simulink的通信系统建模与仿真——模拟通信系统姓名:XX完成时间:XX年XX月XX日一、实验原理(调制、解调的原理框图及说明)AM调制AM调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。

AM调制原理框图如下AM信号的时域和频域的表达式分别为式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。

AM解调AM信号的解调是把接收到的已调信号还原为调制信号。

AM信号的解调方法有两种:相干解调和包络检波解调。

AM相干解调原理框图如下。

相干解调的关键在于必须产生一个与调制器同频同相位的载波。

如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。

AM包络检波解调原理框图如下。

AM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。

包络检波器一般由半波或全波整流器和低通滤波器组成。

DSB调制在幅度调制的一般模型中,若假设滤波器为全通网络(=1),调制信号中无直流分量,则输出的已调信号就是无载波分量的双边带调制信号(DSB)。

DSB调制原理框图如下DSB信号实质上就是基带信号与载波直接相乘,其时域和频域表示式分别为DSB解调DSB只能进行相干解调,其原理框图与AM信号相干解调时完全相同,如图SSB调制SSB调制分为滤波法和相移法。

滤波法SSB调制原理框图如下所示。

图中的为单边带滤波器。

产生SSB信号最直观方法的是,将设计成具有理想高通特性或理想低通特性的单边带滤波器,从而只让所需的一个边带通过,而滤除另一个边带。

产生上边带信号时即为,产生下边带信号时即为。

滤波法SSB调制的频域表达式相移法SSB调制的原理框图如下。

图中,为希尔伯特滤波器,它实质上是一个宽带相移网络,对中的任意频率分量均相移。

相移法SSB调制时域表达式如下。

式中,“-”对应上边带信号,“+”对应下边带信号;表示把的所有频率成分均相移,称是的希尔伯特变换。

SSB解调SSB只能进行相干解调。

simulink仿真实验报告

simulink仿真实验报告

simulink仿真实验报告Simulink仿真实验报告一、引言Simulink是一种基于模型的设计和仿真工具,广泛应用于各领域的工程设计和研究中。

本次实验将利用Simulink进行系统仿真实验,通过搭建模型、参数调整、仿真运行等过程,验证系统设计的正确性和有效性。

二、实验目的本实验旨在帮助学生掌握Simulink的基本使用方法,了解系统仿真的过程和注意事项。

通过本实验,学生将能够:1. 熟悉Simulink的界面和基本操作;2. 理解和掌握模型构建的基本原理和方法;3. 学会调整系统参数、运行仿真和分析仿真结果。

三、实验内容本实验分为以下几个步骤:1. 绘制系统模型:根据实验要求,利用Simulink绘制出所需的系统模型,包括输入、输出、控制器、传感器等。

2. 参数设置:针对所绘制的系统模型,根据实验要求设置系统的参数,例如增益、阻尼系数等。

3. 仿真运行:通过Simulink的仿真功能,对所构建的系统模型进行仿真运行。

4. 仿真结果分析:根据仿真结果,分析系统的动态性能、稳态性能等指标,并与理论值进行对比。

四、实验结果与分析根据实验要求,我们绘制了一个负反馈控制系统的模型,并设置了相应的参数。

通过Simulink的仿真功能,我们进行了仿真运行,并获得了仿真结果。

仿真结果显示,系统经过调整参数后,得到了较好的控制效果。

输出信号的稳态误差较小,并且在过渡过程中没有发生明显的振荡或超调现象。

通过与理论值进行对比,我们验证了系统的稳态稳定性和动态响应性能较为理想。

五、实验总结通过本次实验,我们掌握了使用Simulink进行系统仿真的基本方法和技巧。

了解了系统模型构建的基本原理,并学会了参数调整和仿真结果分析的方法。

这对于我们今后的工程设计和研究具有重要的意义。

六、参考文献1. 《Simulink使用手册》,XXX出版社,20XX年。

2. XXX,XXX,XXX等.《系统仿真与建模实践教程》. 北京:XXX出版社,20XX年。

simulink仿真实验报告

simulink仿真实验报告

simulink仿真实验报告一、实验目的本次实验的主要目的是通过使用Simulink软件来进行仿真实验,掌握Simulink仿真工具的基本使用方法,并且了解如何应用Simulink软件来进行系统建模和仿真分析。

二、实验内容1. Simulink软件的基本介绍2. Simulink仿真工具的使用方法3. Simulink模型建立与参数设置4. Simulink仿真结果分析三、实验步骤及方法1. Simulink软件的基本介绍Simulink是一种基于模块化编程思想的图形化编程工具,可以用于建立各种系统模型,并且进行系统仿真分析。

在Simulink中,用户可以通过拖动不同类型的模块来搭建自己所需要的系统模型,并且可以对这些模块进行参数设置和连接操作。

2. Simulink仿真工具的使用方法首先,在打开Simulink软件后,可以看到左侧有一系列不同类型的模块,包括数学运算、信号处理、控制系统等。

用户可以根据自己需要选择相应类型的模块,并将其拖入到工作区域中。

然后,用户需要对这些模块进行参数设置和连接操作,以构建出完整的系统模型。

最后,在完成了系统模型的构建后,用户可以进行仿真分析,并且观察系统的运行情况和输出结果。

3. Simulink模型建立与参数设置在本次实验中,我们主要是以一个简单的控制系统为例来进行仿真分析。

首先,我们需要将数学运算模块、控制器模块和被控对象模块拖入到工作区域中,并将它们进行连接。

然后,我们需要对这些模块进行参数设置,以确定各个模块的输入和输出关系。

最后,在完成了系统模型的构建后,我们可以进行仿真分析,并观察系统的运行情况和输出结果。

4. Simulink仿真结果分析在完成了Simulink仿真实验之后,我们可以得到一系列仿真结果数据,并且可以通过Simulink软件来对这些数据进行进一步的分析和处理。

例如,在本次实验中,我们可以使用Simulink软件来绘制出控制系统的输入信号、输出信号和误差曲线等图形,并且可以通过这些图形来判断系统是否满足预期要求。

实验三 SIMULINK环境下典型环节阶跃响应仿真及分析

实验三 SIMULINK环境下典型环节阶跃响应仿真及分析

(7)设仿真过程参数:SIMULATION 菜单\PARAMETERS 菜单项。 其中: Start Time 为仿真开始时间, Stop time 为仿真终止时间, Mix Step Size 为仿真最小步长。 Max Step Size 为仿真最大步长。, Tolerance 为仿真精度。 仿真开始前应对 Stop Time 进行修改,如改为 10 秒,50 秒或 200 秒,再根据实际情况进行 调整。
012??ssg积分环节ssg11?微分环节ssg?1比例微分环节pd21??ssg和12??ssg比例积分环节pissg111??和ssg2112??2对典型二阶系统4442???szssg进行仿真分别取00205071观察p?和ts的变化情况
实验三 SIMULINK 环境下典型环节阶跃响应仿真及分析
3.实验总结 初步了解 MATLAB 中 SIMULINK 的使用方法,了解 SIMULINK 下实现典型环节阶跃响应 方法。定性了解各参数变化对典型环节动态特性的影响,实现了实验目的。
S
s2 ,则令 2 s 3s 4
2
为[1];
Denominator 为[1,0]; 例 3-3:要将传递函数变为振荡环节: Denominator 为[1,1,1]; (在此传函中阻尼系数ζ为 0.5) 例 3-4:要将传递函数变为实际微分环节:
1 ,则令 Numerator 为[1]; s s 1
2
s ,则令 Numerator 为[1,0]; s 1
Denominator 为[1,1];
实际微分环节的传递函数为:
K d Td s 1 Td s
分子分母同除以 Td,则为
Kd s s 1 / Td
因此,上式中分子 s 的系数即为 Kd 值,分母中常数项为 Td 的倒数. (6)用鼠标将 step、transfer fcn 及 scope 模块连接。如下图所示:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三基于simulink通信系统的仿真一实验目的1掌握simulink 仿真平台的应用。

2能对基本调制与解调系统进行仿真;3 掌握数字滤波器的设计。

二、实验设备计算机,Matlab软件三数字滤波器设计(1)、IIR数字滤波器设计1、基于巴特沃斯法直接设计IIR数字滤波器例5.1:设计一个10阶的带通巴特沃斯数字滤波器,带通频率为100Hz到200Hz,采样频率为1000Hz,绘出该滤波器的幅频于相频特性,以及其冲击响应图clear all;N=10;Wn=[100 200]/500;[b,a]=butter(N,Wn,’bandpass’);freqz(b,a,128,1000)figure(2)[y,t]=impz(b,a,101);stem(t,y)2、基于切比雪夫法直接设计IIR数字滤波器例5.2:设计一个切比雪夫Ⅰ型数字低通滤波器,要求:Ws=200Hz,Wp=100Hz,Rp=3dB,Rs=30dB,Fs=1000Hzclear all;Wp=100;Rp=3;Ws=200;Rs=30;Fs=1000;[N,Wn]=cheb1ord(Wp/(Fs/2),Ws/(Fs/2),Rp,Rs);[b,a]=cheby1(N,Rp,Wn);freqz(b,a,512,1000);例5.3:设计一个切比雪夫Ⅱ型数字带通滤波器,要求带通范围100-250Hz,带阻上限为300Hz,下限为50Hz,通带内纹波小于3dB,阻带纹波为30 dB,抽样频率为1000 Hz,并利用最小的阶次实现。

clear all;Wpl=100;Wph=250;Wp=[Wpl,Wph];Rp=3;Wsl=50;Wsh=300;Ws=[Wsl,Wsh];Rs=30;Fs=1000;[N,Wn]=cheb2ord(Wp/(Fs/2),Ws/(Fs/2),Rp,Rs);[b,a]=cheby2(N,Rp,Wn);freqz(b,a,512,1000);实验内容:1 设计一个数字信号处理系统,它的采样率为Fs=100Hz,希望在该系统中设计一个Butterworth型高通数字滤波器,使其通带中允许的最小衰减为0.5dB,阻带内的最小衰减为40dB,通带上限临界频率为30Hz,阻带下限临界频率为40Hz。

2 试设计一个带阻IIR数字滤波器,其具体的要求是:通带的截止频率:wp1=650Hz、wp2=850Hz;阻带的截止频率:ws1=700Hz、ws2=800Hz;通带内的最大衰减为rp=0.1dB ;阻带内的最小衰减为rs =50dB ;采样频率为Fs =2000Hz 。

(2)、FIR 数字滤波器设计1、、在MATLAB 中产生窗函数十分简单: (1)矩形窗(Rectangle Window )调用格式:w=boxcar(n),根据长度n 产生一个矩形窗w 。

(2)三角窗(Triangular Window )调用格式:w=triang(n) ,根据长度n 产生一个三角窗w 。

(3)汉宁窗(Hanning Window )调用格式:w=hanning(n) ,根据长度n 产生一个汉宁窗w 。

(4)海明窗(Hamming Window )调用格式:w=hamming(n) ,根据长度n 产生一个海明窗w 。

(5)布拉克曼窗(Blackman Window )调用格式:w=blackman(n) ,根据长度n 产生一个布拉克曼窗w 。

(6)恺撒窗(Kaiser Window )调用格式:w=kaiser(n,beta) ,根据长度n 和影响窗函数旁瓣的β参数产生一个恺撒窗w 。

2、基于窗函数的FIR 滤波器设计 利用MATLAB 提供的函数firl 来实现调用格式:firl (n,Wn,’ftype’,Window),n 为阶数、Wn 是截止频率(如果输入是形如[W1 W2]的矢量时,本函数将设计带通滤波器,其通带为W1<ω<W2)、ftype 是滤波器的类型(低通-省略该参数、高通-ftype=high 、带阻-ftype=stop )、Window 是窗函数。

例6.1: 设计一个长度为8 的线性相位FIR 滤波器。

其理想幅频特性满足1,00.4()0,j d H e else ωωπ≤≤⎧=⎨⎩Window=boxcar(8); b=fir1(7,0.4,Window); freqz(b,1)例6.2:设计线性相位带通滤波器,其长度N=15,上下边带截止频率分别为W1= 0.3π,w2=0.5πWindow=blackman(16);b=fir1(15,[0.3 0.5],Window);freqz(b,1)例6.3:MATLAB中的chirp.mat文件中存储信号y的数据,该信号的大部分号能量集中在Fs/4(或二分之一奈奎斯特)以上,试设计一个34阶的FIR高通滤波器,滤除频率低于Fs/4的信号成分,其中滤波器的截止频率为0.48,阻带衰减为30dB,滤波器窗采用切比雪夫窗clear all;load chirpwindow=chebwin(35,30);b=fir1(34,0.48,’high’,window);yfit=filter(b,1,y);[Py,fy]=pburg(y,10,512,Fs);[Pyfit,fyfit]=pburg(yfit,10,512,Fs);plot(fy,10*log10(Py),’.’,fyfit, 10*log10(Pyfit));grid onylabel(‘幅度(dB)’)xlabel(‘频率(Hz’)legend(‘滤波前的线性调频信号’, ‘滤波后的线性调频信号’)实验内容:1用矩形窗设计线性相位FIR低通滤波器。

该滤波器的通带截止频率wc=pi/4,单位脉冲响h(n)的长度M=21。

并绘出h(n)及其幅度响应特性曲线。

2试用频率抽样法设计一个FIR低通滤波器,该滤波器的截止频率为0.5pi,频率抽样点数为33。

四 实验原理1 模拟通信系统的仿真原理 调制的作用:(1)实现信号的频谱搬移,适应在频带信道内的传输;(2)当频带信道带宽远大于信号带宽时,可以将多路基带信号调制到互不重叠的 频带上,充分利用信道带宽,实现频分复用(FDM);(3)不同的调制方式具有不同的有效性和可靠性(如FM 的可靠性好而有效性差,AM 有效性好而可靠性差),可以根据需要选用合适的调制方法。

1.1 AM 信号的调制解调原理调制原理:AM 调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程,就是按原始电信号的变化规律去改变载波某些参量的过程。

+m(t)S AM (t)A 0cos ωc t图 1-1 AM 调制原理框图AM 信号的时域和频域的表达式分别为:()()[]()()()()t t m t A t t m A t S C C C AM ωωωcos cos cos 00+=+= 式(1-1)()()()[]()()[]C C C C AM M M A S ωωωωωωδωωδπω-+++-++=210 式(1-2) 在式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。

其频谱是DSB SC-AM 信号的频谱加上离散大载波的频谱。

解调原理:AM 信号的解调是把接收到的已调信号还原为调制信号。

AM信号的解调方法有两种:相干解调和包络检波解调。

AM 相干解调原理框图如图1-2。

相干解调(同步解调):利用相干载波(频率和相位都与原载波相同的恢复载波)进行的解调,相干解调的关键在于必须产生一个与调制器同频同相位的载波。

如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。

相干载波的提取:(1)导频法:在发送端加上一离散的载频分量,即导频,在接收端用窄带滤波器提取出来作为相干载波,导频的功率要求比调制信号的功率小;(2)不需导频的方法:平方环法、COSTAS 环法。

LPFm 0(t)S AM(t)cos ωc t图 1-2 AM 相干解调原理框图AM 信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。

包络检波器一般由半波或全波整流器和低通滤波器组成: (1)整流:只保留信号中幅度大于0的部分;(2)低通滤波器:过滤出基带信号; (3)隔直流电容:过滤掉直流分量。

可以使用包络检波器进行解调,成本低,大功率离散载波造成的成本问题由广播电台解决,解调不需要载波提取电路。

并且在高信噪比情况下,包络检波解调具有与相干解调相同的解调输出信噪比,在小信噪比时,输出信噪比不是按比例的随着输入信噪比下降,而是急剧下降,这种现象称为“门限效应”,相干解调不存在门限效应,因为有用信号和噪声在相干解调中不会相混,包络检波中输出有用信号和噪声不再是相加的,而是相混的,即是有用信号分量乘以噪声,这时已经很难从输出中区分出有用信号了。

1.2 DSB 信号的调制解调原理调制原理:在幅度调制的一般模型中,若假设滤波器为全通网络(=1),调制信号中无直流分量,则输出的已调信号就是无载波分量的双边带调制信号(DSB )。

每当信源信号极性发生变化时,调制信号的相位都会发生一次突变π。

()()t t m t S C DSB ωcos = 式(1-3)调制的目的就是进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而提高系统信息传输的有效性和可靠性。

DSB 调制原理框图如图1-3:m(t)S DSB (t)cos ωc t图 1-3 DSB 调制原理框图DSB 信号实质上就是基带信号与载波直接相乘,频域上就是卷积,表示式为: ()()()[]C C DSB M M S ωωωωω-++=21式(1-4)(1)经调制后,调制信号的带宽变为原基带信号的2倍:模拟基带信号带宽为W ,则调制信号的带宽为2W ;(2) 调制信号中不含离散的载频分量:因为原模拟基带信号中不含离散直流分量。

(3) 包含上下两个边带,且携带相同信息(双边带);(4) 不论是确定信号的频谱,还是随机信号的功率谱,都是基带信号频谱/功率谱的线性搬移。

因而被称为线性调制。

解调原理:DSB 只能进行相干解调,其原理框图与AM 信号相干解调时完全相同,利用恢复的载波与信号相乘,将频谱搬移到基带,还原出原基带信号。

LPFm 0(t)cos ωc tS DSB (t)图 1-4 DSB 解调原理框图(1) 当恢复载波与原载波频率不完全一样时,解调信号是原基带信号与低频正弦波的乘积;(2) 若恢复载波与原载波频率相同,而相位不同时,输出信号达不到最大值。

2 数字通信系统的仿真原理数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。

相关文档
最新文档