雷达原理(第三版)--丁鹭飞第5章

合集下载

雷达原理与系统教学讲义

雷达原理与系统教学讲义
南宁 0°50‘ 湛江 0°44’ 海口 0°29‘ 拉萨 0°21’ 珠穆朗玛 0°19‘西沙群岛0°10‘曾母暗沙 0°24‘(东) 南沙群岛 0°35’(东) 乌鲁木齐 2°44'(东) 东沙群岛 1°05‘
雷达原理与系统教学
三、测速原理
当目标相对于RD运动后,出现△fD(回 波相对于发射ft 的频率偏移),此时, 目标相对于RD的径向速度为:
角度采用度或密位表示, 其关系为:360度=6000密位 1度=16.7 密位 国外常用角度单位为弧度,度及毫弧度关系为:
1弧度=57度= 1000毫弧度 1毫弧度=0.057度
雷达原理与系统教学
注意:关于真北的概念及三北方向*
我国通用的标准方向有真子午线方向、 磁子午线方向和坐标纵轴方向,简称 为真北方向、磁北方向和轴北方向, 即三北方向。
雷达原理与系统教学
3.坐标纵轴方向:
在高斯平面直角坐标系中 , 其每一投影带中央子午线的 投影为坐标纵轴方向,即轴 北方向。若采用假定坐标系 则坐标纵轴方向为标准方向 。 在同一投影带内,各点的坐 标纵轴线方向是彼此平行的 。
雷达原理与系统教学
三北之间的关系*
+δ –γ
α
β A
1
2
三种方位角之间的关系
A=β+δ A=α+λ α=β+δ+λ
+δ –γ
α
β A
1
2
三种方位角之间的关系
雷达原理与系统教学
真北是通过地面或图面上某点指向北地 极的方向,即经线(亦称子午线)所指 的北,磁北则是通过地面或地图上某点 指向北磁极的方向,由于磁极与地极并 不完全一致,所以磁北方向与真北方向 常有一定的夹角。这个夹角叫做磁偏角。

雷达工作的基本原理

雷达工作的基本原理

雷达工作的基本原理雷达的出现,是由于一战期间当时英国和德国交战时,英国急需一种能探测空中金属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。

二战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。

二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。

后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地开拓。

雷达的观测手段已经由从前的只有雷达一种探测器发展至了红外光、紫外光、激光以及其他光学观测手段融合协作。

当代雷达的同时多功能的能力使得战场指挥员在各种不同的搜索/跟踪模式下对目标进行扫描,并对干扰误差进行自动修正,而且大多数的控制功能是在系统内部完成的。

自动目标辨识则可以并使武器系统最大限度地发挥作用,空中预警机和jstars这样的具备战场敌我辨识能力的综合雷达系统实际上已经沦为了未来战场上的信息指挥中心。

各种雷达的具体用途和结构不尽相同,但基本形式是一致的,包括:发射机、发射天线、接收机、接收天线,处理部分以及显示器。

还有电源设备、数据录取设备、抗干扰设备等辅助设备。

雷达拉艾的促进作用和眼睛和耳朵相近,当然,它不再就是小自然的杰作,同时,它的信息载体就是无线电波。

事实上,不论是红外线或是无线电波,在本质上就是同一种东西,都就是电磁波,在真空中传播的速度都就是光速c,差别是它们各自的频率和波长相同。

其原理就是雷达设备的发射机通过天线把电磁波能量箭向空间某一方向,处于此方向上的物体散射遇到的电磁波;雷达天线发送此反射波,送来至发送设备展开处置,抽取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。

测量距离原理是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成雷达与目标的精确距离。

雷达基本工作原理

雷达基本工作原理

眼睛” 是驾驶员的“眼睛”!
4
航海雷达与ARPA


六、雷达的发展概况
年代: 30 年代:
By 1934 R.M.Page had photographed their first radar echo at NRL and by 1938 the US SCR-268 radar was operational as an Anti Aircraft AA radar. The US first naval radar XAF was at sea in 1938 aboard the USS New York.
8
航海雷达与ARPA
2、测向原理


过程分析: 过程分析:
天线高度定向性——θh很小 a、天线高度定向性 θ 该目标接收电波——反射 b、只有当主波束对准目标——该目标接收电波 只有当主波束对准目标 该目标接收电波 反射 当偏离目标——主波束不对准 c、当偏离目标 主波束不对准 该目标——不能被探测 不能被探测——无反射 该目标 不能被探测 无反射 ∴ 主波束轴方向——代表O—T之间的方向;[理解:→第1 主波束轴方向 代表O T 之间的方向; 理解: 代表 要点] 要点] d、由于显示器扫描线与天线同步旋转 当主波束扫到某一方向——扫描线相应扫在这一 即 : 当主波束扫到某一方向 扫描线相应扫在这一 方位上。 方位上。 [理解:→第2要点] 理解: 要点] 该目标回波——就会立即在该方向上显示出来。 就会立即在该方向上显示出来。 ∴ 该目标回波 就会立即在该方向上显示出来


CH1 雷达基本工作原理( Radar basic principle of operation) operation) ξ1.1 雷达测距测方位基本原理 T2 T1 测距原理( 一. 测距原理( Ranging Principle)

空管一次雷达不明航迹案例分析

空管一次雷达不明航迹案例分析
空管一次雷达不明航迹案例分析
摘要:在某地空管自动化系统中,发现从3月25日至4月3日,出现共计25次一次雷达不明航迹,持续时间从14秒到9分45秒不等。出现区域只要集中在跑道05端5海里和跑道23端10海里附近,不明航迹速度在110公里/小时至170公里/小时之间,出现时段早晚较为集中。技术人员从一次雷达设备自身运行状态检查、现场勘查、录像回放等几个方面进行了技术分析。
图1机场跑道延长线和现场观察人员位置
观察发现,回波状态起伏不定,点迹也较为松散,没有形成航迹。产生的不明航迹在设备维护显示器上的最低速度为110km/h,而鸟群的飞行速度大概为90km/h,判断可能是速度不够,在雷达速率过滤中可能被滤除,但是在高空顺风状态下,会增大鸟的飞行速度,是可以达到不明航迹的最低速度的,仍有形成航迹的可能。且通过现场观察,发现部分不明航迹产生时有鸟群飞过,判断鸟群为零散航迹产生原因可能性较大。
(5)高速行驶的汽车:汽车在高速行驶中容易达到雷达探测速度,形成假目标。
2案例分析
案例1:自动化上观察到零星出现的航迹,由于自动化在显示航迹的设置中会进行平滑处理,为获取更加全面的历史航迹信息,技术人员在雷达头利用SELEX一次雷达录像回放功能,进行回放显示,发现有较多数量的航迹点迹显示。
分析1:出现的航迹在同一航向,且当时正值春秋季节,温差较大时间段,怀疑可能为仙波。初步研究表明大气湿度达或者水蒸气密度大是仙波形成的一个必要条件[2]。假使出现的不明航迹为仙波,仙波数量在未做处理的情况下数量应该更多且更加显著。
参考文献
[1]丁鹭飞,耿富录.雷达原理[M]第三版.西安电子科技大学出版社.2002.3:160.
[2]方青,陈磊.一种雷达仙波3-486.
分析2:怀疑为鸟群,当时正值候鸟迁徙季节,且不明航迹出现时段为早晚较为集中,与鸟群生活习性相近。为验证猜想,技术人员在雷达显示上确定不明航迹的出现位置,及其距离雷达头的方位角度,在谷歌地图上找到利用测距以及经纬度夹角计算,找到对应的现场具体位置。技术人员分为两组,一组到达现场使用望远镜进行观察,另一名技术人员在雷达维护显示器上观察点迹状态,观察不明航迹产生时是否有鸟群出没。图1中,左下角白色为当地机场位置,长的红线为机场跑道延长线,和维护显示器显示的跑道延长线一致,黄色框内短红线的位置为现场观察人员的位置。

雷达原理教学课件—第五章 雷达作用距离

雷达原理教学课件—第五章 雷达作用距离
可以得出以下结论:
① 虚警概率(门限)一定时,信噪比越大,发 现概率越大。信噪比对发现概率的影响较大。
② 虚警率越低,则门限电平越高。
第五章 雷达作用距离
雷达系统中采用的是CFAR检测器( 恒虚警检测器) 检测概率和虚警概率(采样)的直观 理解(A/D变换后回波的离散采样)
作业
第五章 雷达作用距离
的噪声是宽带高斯噪声, 其概率密度函数由下
式给出:
p(v)
1
2
exp(
v2
2 2
)
高斯噪声通过窄带中频滤波器(其带宽远小于
其中心频率)后加到包络检波器, 根据随机噪声
的数学分析可知, 包络检波器输出端噪声电压
振幅的概率密度函数(瑞利分布)为
p(r)
r
2
exp(
r2
2 2
)
r0
第五章 雷达作用距离
1、雷达带宽B=50kHz,平均虚警时间为10分钟,则该 雷达的虚警概率是多少?虚警总数又是多少?
解:
雷达的虚警概率为: Pfa
1
BIF Tfa
1 50 103 10 60
3.33 108
雷达的虚警总数为: nf
1
Pfa
3 107
第五章 雷达作用距离
★ 脉冲积累NS o对min =D检o 测性能的改善
虚警 真实目标A、B、C
第五章 雷达作用距离
当按图中所设的门限电平2来进行检测判决时,此时会出现 虚警现象,即
除了目标A、B和C三个真实目标可以被检出外,在D和E 处的噪声电平因为超过门限值,因而也被误认为是目标信号
检测判决准则
第五章 雷达作用距离
雷达系统中主要使用检测概率和虚警概率 这两个物理量。

雷达原理

雷达原理
离 散型 寄生输出
4
雷达原理
2.4 固态发射机
• 固态发射机发展概况和特点
– 逐步替代常规微波电子管发射机,优点如下 • 寿命长、可靠性高 • 体积小、重量轻 • 工作频带宽、效率高 • 系统设计和运用灵活、维护方便, 成本较低
– 平均功率大而峰值功率受限,适用于高工作比 雷达,如连续波雷达
– 在 UHF ~ L 波段发展较快
• 雷达的基本概念
– 利用电磁波的二次辐射、转发或目标固有辐射 来探测目标,获取目标空间坐标、速度、特征 等信息的一种无线电技术,相应的设备称为雷 达站或雷达机,简称雷达
– 二次辐射:反射(单基地)、散射(多基地)
– 转发:二次雷达(导航)
– 固有辐射:通信及雷达信号(被动/无源)、随 机热运动电磁辐射(导引头)
雷达原理
1.1 雷达的概念
• 雷达信号处理
– 目标信号总是被淹没于 杂波(+干扰)+ 噪声
的背景中 – 杂波及干扰强度往往超过目标信号的千万倍 – 信号处理作用
• 增强待测目标信噪比,提取目标参数 • 抑制杂波和干扰信号
雷达原理
1.2 雷达探测原理
• 雷达回波中的可用信息
– 斜距 R ( Rmax 可由雷达方程估算)
• 总效率
– 发射机输出功率与其输入总功率之比 – 对主振放大式发射机应改善输出级的效率
雷达原理
2.2 雷达发射机电性能指标
• 信号形式(调制形式)
– 不同信号形式对发射机的要求各异
波形 简单脉冲 脉冲压缩 高工作比多卜勒
调制类型 矩形调幅
线性调频、相位编码 矩形调幅
工作比(占空比)% 0.01 ~ 1 0.1 ~ 10 30 ~ 50

雷达原理第三版丁鹭飞精品PPT课件

雷达原理第三版丁鹭飞精品PPT课件

设雷达发射功率为Pt, 雷达天线的增益为Gt, 则在自由空间
工作时, 距雷达天线R远的目标处的功率密度S1为
S1
PtGt
4R2
(5.1.1)
目标受到发射电磁波的照射, 因其散射特性而将产生散射回波。
散射功率的大小显然和目标所在点的发射功率密度S1以及目标 的特性有关。用目标的散射截面积σ(其量纲是面积)来表征其散
Pr
Si min
PtAr2 42Rm4 ax
PtG 22 (4 )3 Rm4 ax
(5.1.7)
第 5 章 雷达作用距离

1
Rmax
PtAr2
42
Si
min
4
1
Rmax
PtG 22 (4 )3 Si min
4
(5.1.8) (5.1.9)
式(5.1.8)、(5.1.9)是雷达距离方程的两种基本形式, 它表明了作 用距离Rmax和雷达参数以及目标特性间的关系。
第 5 章 雷达作用距离
5.2 最小可检测信号
5.2.1 典型的雷达接收机和信号处理框图如图5.2所示, 一般把检波
器以前(中频放大器输出)的部分视为线性的, 中频滤波器的特性 近似匹配滤波器, 从而使中放输出端的信号噪声比达到最大。
第 5 章 雷达作用距离
Si min
kT0BnF
n
S N o min=Do
Pr
Ar S2
PtGtA (4R2 )2
(5.1.4)
第 5 章 雷达作用距离
由天线理论知道, 天线增益和有效面积之间有以下关系:
G
4A 2
式中λ为所用波长, 则接收回波功率可写成如下形式:
Pr
PtGtGr2 (4 )3 R4

雷达隐身与反隐身

雷达隐身与反隐身

雷达隐身与反隐身一、引言谈起隐身你可能会联想到《哈利波特》中霍格华兹魔法学院的隐身斗篷,但我们在这所讲的隐身主要是雷达波的隐身以及反隐身。

隐身和反隐身技术在现代战争中具有重要作用和战略意义, 上个世纪的局部战争已充分证实了这一点,如美国的F-117飞机在1989年入侵巴拿马和1991年轰炸伊拉克的战争中大显神威, 这就是隐身技术应用的成功实例。

作为矛与盾的对抗,反隐身技术也在随着隐身技术的发展而不断地更新着。

隐身与反隐身技术越来越受到人们的重视。

目前应用于武器系统中的探测手段有雷达、红外、激光和声波等,而雷达在各种探测器中占有相当重要的地位,因此研究雷达的隐身和反隐身技术势在必行。

二、雷达基本原理雷达发射机输出的功率馈送到天线,由天线将能量以电磁波的形式辐射到空间,电磁波脉冲在空间传输过程中遇到目标会产生反射,雷达就是利用目标对电磁波的反射、应答等来发现目标的。

但雷达的探测距离有一定范围,雷达探测的基本原理和系统特征可以用雷达方程来描述:m ax R =式中:t P 为雷达发射功率, m in S 为雷达最小可检测信号, t G 为发射天线的增益, r G 为接收天线的增益,λ为雷达工作波长,σ为目标的雷达散射截面积(RCS )。

雷达截面积是目标对入射雷达波呈现的有效散射面积。

从公式中可以看出雷达最大作用距离max R 与目标的雷达截面积σ的14 次方成正比。

因此,要减小雷达的最大作用距离可以通过减小目标的RCS 来实现。

目前用来减小目标RCS 的主要途径有两种:一是改变飞机的外形和结构,称之为外形隐身;二是采用吸收雷达波的涂敷材料和结构材料,称之为材料隐身。

三、雷达隐身技术隐身技术,又称隐形技术,准确的术语应该是“低可探测技术”。

隐身技术是一种研究如何减小目标的可探测性,使目标不易被探测器发现的技术。

雷达对目标的探测是靠接收目标在雷达波照射下产生的回波来实现的,如果目标的表面能使雷达波被散射或吸收,就可以大大减小被对方雷达发现的概率,从而达到隐身的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档