2018年11月浙江省高中学业水平考试数学试题
2018年浙江学业水平考试数学

1. 已知集合{1,2}A =,{2,3}B =,则A B =( )A. {1}B. {2}C. {1,2}D. {1,2,3} 答案: B解答:由集合{1,2}A =,集合{2,3}B =,得{2}AB =.2. 函数2log (1)y x =+的定义域是( ) A. (1,)-+∞ B. [1,)-+∞ C. (0,)+∞ D. [0,)+∞ 答案: A解答:∵2log (1)y x =+,∴10x +>,1x >-,∴函数2log (1)y x =+的定义域是(1,)-+∞. 3. 设R α∈,则sin()2πα-=( )A. sin αB. sin α-C. cos αD. cos α- 答案: C解答:根据诱导公式可以得出sin()cos 2παα-=.4. 将一个球的半径扩大到原来的2倍,则它的体积扩大到原来的( )B. 4倍C. 6倍D. 8倍 答案: D解答:设球原来的半径为r ,则扩大后的半径为2r ,球原来的体积为343r π,球后来的体积为334(2)3233r r ππ=,球后来的体积与球原来的体积之比为33323843r rππ=. 5. 双曲线221169x y -=的焦点坐标是( ) A. (5,0)-,(5,0) B. (0,5)-,(0,5) C.(, D.(0,, 答案: A解答:因为4a =,3b =,所以5c =,所以焦点坐标为(5,0)-,(5,0). 6. 已知向量(,1)a x =,(2,3)b =-,若//a b ,则实数x 的值是( ) A. 23- B.23 C. 32-D. 32答案: A解答:(,1)a x =,(2,3)b =-,利用//a b 的坐标运算公式得到320x --=,所以解得23x =-. 7. 设实数x ,y 满足0230x y x y -≥⎧⎨+-≤⎩,则x y +的最大值为( )A. 1B. 2C. 3D. 4 答案: B解答:作出可行域,如图:当z x y =+经过点(1,1)A 时,有ax 2m z x y =+=.8. 在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知45B =,30C =,1c =,则b =( ) A.B.C.D.答案: C解答:由正弦定理sin sin b c B C =可得sin 1sin 4521sin sin 302c B b C ⋅︒====︒9. 已知直线l ,m 和平面α,m α⊂,则“l m ⊥”是“l α⊥”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 答案: B解答:因为“直线和平面垂直,垂直与平面上所有直线”,但是“直线垂直于平面上一条直线不能判断垂直于整个平面”所以是必要不充分条件。
11月浙江数学学考试卷和答案精校版

2017年11月浙江数学学考6.函10.若(直线)l 不平行于平面,且A.内所有直线与l异面B.内只存在有限条直线与l共面C.内存在唯一的直线与l平行D.内存在无数条直线与l相交11.图(1)是棱长为1的正方体ABCD—A1B1C1D1截去三棱锥A1 —AB1D1后的几何体,将其绕着棱DD1逆时针旋转45° ,得到如图(2)的几何体的正视图为()、选择题(本大题共18小题,每小题3分,共54分。
1. 已知集合A. { 1,3}2. 已知向量A= {1,2,3}, B {1,3,4,},则A U B=B. {1,2,3}a=(4,3),则|a|=C. {1,3,4}D. {123,4}3•设sin cos( )A血A.-34.log2「6C.——315.下(C.12最71=sin x =cos x =ta nx.x=si n2(A.(-1,2]7.点(0,0)到直线2A.-2B.[-1,2] x+y-1=0的距离是C.(-1,2)D.[-1,2)8.设不等式组2xB.一2y>0所表示的平面区域为y 4v0的M,则点(1,0) (3,2) 中在y=<1> ⑵(巒11D.A.12. 过圆x2+y2-2x-8=0 的圆心,+2=013. 已知a,b是实数,则+2y-1=0a |a|A.充分不必要条件C.充要条件B. C.且与直线x+2y=0垂直的直线方程是+y-2=0 =0v 1 且|b| v 1 ”是“ a2+b2v 1 ”的B.必要不充分条件D.既不充分也不必要条件2x14.设A, B为椭圆飞a2B的点,41113A.-B.-C.—D.——4322冷=1 (a> b> 0)的左、右顶点,P为椭圆上异于A, b3PA, PB的斜率分别为k1,k2.若k1k2=-,则该椭圆的离心率为A.{a n+1}B.{a n-1}C.{S+1}D.{S n-1}1 y16.正实数x, y满足x+y-1,则1—的最小值是x y+ 2 +2 211D.—215.数列{a n}的前n项和3满足S n= 3 a n-n, n € N* ,则下列为等比数列的是217.已知1是函数f ( x)=a x2+b x+c(a> b> c)的一个零点,若存在实数x0,使得f (x°) v 0,则f (x)的另一个零点可能是1 3X。
2018年11月浙江省高中学业水平考试数学试题

2018年11月浙江省高中学业水平考试数学试题一、选择题1.已知集合{1,2,3,4}A =,{1,3,5}B =,则A B =( )A.{1,2,3,4,5}B.{1,3,5}C.{1,4}D.{1,3}【答案】D【解析】因为{1,2,3,4}A =,{1,3,5}B =,所以{1,3}A B =.2.函数()cos 2f x x =的最小正周期是( ) A.4π B.2πC.πD.2π【答案】C【解析】()cos 2f x x =,因为2ω=,所以22T ππ==. 3.计算129()4=( )A.8116B.32C.98D.23【答案】B【解析】1293()42==.4.直线210x y +-=经过点( ) A.(1,0) B.(0,1)C.11(,)22D.1(1,)2【答案】A【解析】把四个选项的横纵坐标代入直线方程210x y +-=中,可知选项A 可使等式成立.5.函数2()log f x x 的定义域是( ) A.(0,2] B.[0,2)C.[0,2]D.(0,2)【答案】A【解析】20020x x x -≥⎧⇒<≤⎨>⎩,故函数()f x 的定义域为(0,2]. 6.对于空间向量(1,2,3)a =,(,4,6)b λ=,若//a b ,则实数λ=( )A.2-B.1-C.1D.2【答案】D【解析】因为//a b,所以12346λ==,即112λ=,所以2λ=.7.渐近线方程为43y x=±的双曲线方程是()A.221169x y-= B.221916x y-=C.22134x y-= D.22143x y-=【答案】B【解析】依题可设双曲线方程为22221x ya b-=,因为渐进线方程为43y x=±,所以43ba=,即22169ba=,只有B选项221 916x y-=符合.8.若实数x,y满足101010xx yx y-≤⎧⎪+-≥⎨⎪-+≥⎩,则y的最大值是()A.1B.2C.3D.4【答案】B【解析】由约束条件101010xx yx y-≤⎧⎪+-≥⎨⎪-+≥⎩,作出可行域如图,由图易知y的最大值为2.9.某简单几何体的三视图(俯视图为等边三角形)如图所示(单位:cm),则该几何体的体积(单位:3cm)为()A.18B. C. D.【答案】C【解析】该几何体为正三棱柱,其底面积为2444S ===3h =,所以体积V Sh ==10.关于x 的不等式13x x +-≥的解集是( ) A.(,1]-∞- B.[2,)+∞C.(,1][2,)-∞-+∞D.[1,2]-【答案】C【解析】当1x ≥时,1132x x x x x +-=+-≥⇒≥; 当11x -<<时,1113x x x x x +-=+-=≥⇒无解; 当1x ≤时,1131x x x x x +-=--+≥⇒≤-; 综上可得,2x ≥或1x ≤-. 11.下列命题为假命题的是( ) A.垂直于同一直线的两个平面平行 B.垂直于同一平面的两条直线平行 C.平行于同一直线的两条直线平行 D.平行于同一平面的两条直线平行 【答案】D【解析】平行于同一平面的两条直线除了平行外,还可以异面,可以相交.12.等差数列{}()n a n N *∈的公差为d ,前n 项和为n S ,若10a >,0d <,39S S =,则当n S 取得最大值时,n =( ) A.4B.5C.6D.7【答案】C【解析】∵10a >,0d <,∴n a 是递减数列.又∵3993987654763()0S S S S a a a a a a a a =⇒-=+++++=+=,∴760a a +=,67a a >,∴60a >,70a <,∴max 6()n S S =.13.对于实数a 、b ,则“0a b <<”是“1ba<”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件【答案】A【解析】充分性:由0a b <<,得01ba<<,故充分性成立; 必要性:由1ba <,得0ab a >⎧⎨<⎩或0a b a<⎧⎨>⎩,故必要性不成立. 所以“0a b <<”是“1ba<”的充分不必要条件. 14.已知函数()y f x =的定义域是R ,值域为[1,2]-,则值域也为[1,2]-的函数是( ) A.2()1y f x =+ B.(21)y f x =+ C.()y f x =-D.()y f x =【答案】B【解析】分析四个选项可知只有(21)y f x =+是由()y f x =的图象纵坐标不变,横坐标缩小为原来的12之后再将图像向左平移12个单位得到,故(21)y f x =+和()y f x =的值域是相同的. 15.函数2()()af x x a R x=+∈的图象不可能是( ) A. B.C. D.【答案】A【解析】当0a =时,函数22()(0)af x x x x x=+=≠,函数图象可以是B. 当1a =时,函数221()a f x x x x x=+=+,函数可以类似于D. 当1a =-时,221()a f x x x x x =+=-,0x >时,210x x-=只有一个实数根1x =,图象可以是C. 所以函数图象不可能是A.16.若实数a ,b 满足0ab >,则2214a b ab++的最小值为( ) A.8 B.6 C.4 D.2【答案】C【解析】因为0ab >,所以2211444a b ab ab ab ++≥+≥=, 当且仅当214a bab ab =⎧⎪⎨=⎪⎩,即1a =,12b =时取等号,所以最小值为4.17.如图,在同一平面内,A ,B 是两个不同的定点,圆A 和圆B 的半径为r ,射线AB 交圆于点P ,过P 作圆A 的切线l ,当1()2r r AB ≥变化时,l 与圆B 的公共的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线【答案】D【解析】设直线l 与圆B 的交点为M ,过点M 作与过点A 平行于l 的直线的垂线,垂足为N ,易知MN PA MB r ===,即点M 到定直线AN 的距离等于其到定点B 的距离,所以点M 的轨迹是抛物线.18.如图,四边形ABCD 是矩形,沿AC 将ADC ∆翻折成AD C '∆,设二面角D AB C '--的平面角为θ,直线AD '与直线BC 所成角为1θ,直线AD '与平面ABC 所成的角为2θ,当θ为锐角时,有( )A.21θθθ≤≤B.21θθθ≤≤C.12θθθ≤≤D.21θθθ≤≤【答案】B【解析】由二面角的最大性与最小角定理可知,答案在A ,B 选项中产生. 下面比较1θ和θ的大小关系即可.过D '作平面ABC 垂线,垂足为O ,过O 作OE AB ⊥,垂足为E ,连结D E ',则D EO θ'=∠可以认为是OE 与平面AD E '所成的线面角,1θ可以认为是OE 与平面AD E '内的AD '所成的线线角,所以1θθ≤,综上,21θθθ≤≤.二、填空题19.已知函数2,0()1,0x f x x x ≥⎧=⎨+<⎩,则(1)f -= ,(1)f = .【答案】0,2【解析】因为10-<,故(1)110f -=-+=;又10>,故(1)2f =.20.已知O 为坐标原点,B 与F 分别为椭圆22221(0)x y a b a b+=>>的上顶点与右焦点,若OB OF =,则该椭圆的离心率是 .【答案】2【解析】因为B,F为椭圆22221(0)x ya ba b+=>>的上顶点和右焦点,故设OB b=,OF c=,又OB OF=,所以b c=,因为a a===,所以椭圆的离心率2c bea a====.21.已知数列{}()na n N*∈满足:11a=,12nn na a+⋅=,则2018a=.【答案】10092【解析】1122nn na a+++=,12nn na a+=,22nnaa+=,数列21{}na-和2{}na均为等比数列,且公比均为2,首项分别是121,2a a==,所以数列{}na的通项为1222()2(n)nn nna-⎧⎪=⎨⎪⎩为奇数为偶数,故100920182a=.22.如图,O是坐标原点,圆O的半径为1,点(1,0)A-,(1,0)B,点P,Q分别从点A,B同时出发,在圆O上按逆时针方向运动,若点P的速度大小是点Q的两倍,则在点P运动一周的过程中,AP AQ⋅的最大值为.【答案】2【解析】设(cos,sin)([0,])Qθθθπ∈,由P点的速度是点Q的两倍,即(cos2,sin2)Pθθ--,(cos21,sin2)(cos1,sin)AP AQθθθθ⋅=-+-⋅+(cos21)(cos1)(sin2)sinθθθθ=-+++-cos2cos cos cos21sin2sinθθθθθθ=-+-+-cos(2)cos cos21θθθθ=--+-+cos21θ=-+22sin2θ=≤.三、解答题23.在ABC ∆中,内角A ,B ,C 所对的边分别是a ,b ,c ,且222b a c ac =+-. (Ⅰ)求角B 的大小;(Ⅱ)若2a c ==,求ABC ∆的面积; (Ⅲ)求sin sin A C +的取值范围.【答案】(Ⅰ)60︒2. 【解析】(Ⅰ)由222cos 2a c b B ac+-=,可知1cos 2B =,所以60B =︒.(Ⅱ)由(Ⅰ)得60B ∠=︒,又2a c ==,所以11sin 22sin 6022ABC S ac B ∆==⨯⨯⨯︒=(Ⅲ)由题意得3sin sin sin sin(120)sin 30)22A C A A A A A +=+︒-=+=+︒,因为0120A ︒<<︒,所以3030150A ︒<+︒<︒,即30)2A <+︒≤. 24.已知抛物线2:4C y x =的焦点是F ,准线是l . (Ⅰ)写出F 的坐标和l 的方程;(Ⅱ)已知点(9,6)P ,若过F 的直线交抛物线C 于不同的两点A ,B (均与P 不重合),直线PA ,PB 分别交l 于点M ,N .求证:MF NF ⊥.【答案】(Ⅰ)(1,0)F ,1x =-; (Ⅱ)略.【解析】(Ⅰ)因为抛物线24y x =是焦点在x 轴正半轴的标准方程,所以2p =,所以焦点为(1,0)F .准线方程为1x =-.(Ⅱ)设11(,)A x y ,22(,)B x y (16y ≠±且26y ≠±),AB 直线方程为1x my =+(m 是实数),代入24y x =,得2440y my --=,于是124y y m +=,124y y ⋅=-.由(9,6)P ,得146PA k y =+,直线PA 的方程为146(9)6y x y -=-+,令1x =-,得1164(1,)6y M y --+,同理可得2264(1,)6y N y --+,所以12121296()41(6)(6)F N F M MF NF F M F N y y y y y y y y k k x x x x y y ---++⋅=⋅==---++,故MF NF ⊥.25.已知函数()()af x x a R x=+∈. (Ⅰ)当1a =时,写出()f x 的单调递增区间(不需写出推证过程);(Ⅱ)当0x >时,若直线4y =与函数()f x 的图象相交于A ,B 两点,记()AB g a =,求()g a 的最大值;(Ⅲ)若关于x 的方程()4f x ax =+在区间(1,2)上有两个不同的实数根,求实数a 的取值范围. 【答案】(Ⅰ)[1,0)-,[1,)+∞, (Ⅱ)4,(Ⅲ)5)2-. 【解析】(Ⅰ)()f x 的单调递增区间为[1,0)-,[1,)+∞ (Ⅱ)因为0x >,所以(ⅰ)当4a >时,()y f x =的图象与直线4y =没有交点;(ⅱ)当4a =或0a =时,()y f x =的图象与直线4y =只有一个交点; (ⅲ)当04a <<时,0()4g a <<; (ⅳ)当0a <时,由4ax x+=,得240x x a -+=,解得2A x =由4ax x+=-,得240x x a ++=,解得2B x =-所以()4A B g a x x =-=,故()g a 的最大值是4.(Ⅲ)要使关于方程4(12)()ax ax x x+=+<<*有两个不同的实数根1x ,2x ,则0a ≠,且1a ≠±.(ⅰ)当1a >时,由()*得2(1)40a x x a -+-=,所以1201ax x a =-<-,不符合题意; (ⅱ)当01a <<时,由()*得2(1)40a x x a -+-=,其对称轴221x a=>-,不符合题意; (ⅲ)当0a <,且1a ≠-时,由()*得2(1)40a x x a +++=,又因为1201ax x a =>+,所以1a <-.所以函数ay x x=+在(0,)+∞是增函数.要使直线4y ax =+与函数ay x x=+图象在(1,2)内有两个交点,则(1)11f a a =+=--,只需14164(1)0a a a a -->+⎧⎨-+>⎩52a <<-.综上所述,实数a 的取值的范围为5)2-.。
2018年11月浙江省普通高中学业水平模拟考试数学仿真模拟试题二(全解全析)

2
3
4
5
6
7
8
9
B
A
D
B
C
A
D
B
C
10
11
12
13
14
15
16
17
18
C
B
C
D
C
A
C
D
C
1.【答案】B
【解析】∵ A {0,1, 2,3}, B {x|x 0} ,∴ A B 1, 2,3 .故选 B.
2.【答案】A
【解析】由 log2 x2 2 得, x2 4 ,解得 x 2 或 x 2 ,所以 p 是 q 成立的必要不充分条件.故选 A.
5
点即可,当
x
0 时,
f
x
1 2
x1
m
,转化为函数
y
m 和
f
x
1 2
x1
的图象交点个数即
可,画出函数的图象,如图所示,
结合图象可知只需
1 2
m
1
,即
1
m
1 2
,故答案为
1,
1 2
.
23.(本小题满分 10 分) 学科@网
由 4a 23 0 a 23 ,∴ a .(10 分) 4
综上所述, a 的取值范围是 11 a 2 7 .(11 分) 2
9
10
3.【答案】D
4.【答案】B
【解析】易得第一层有 4 桶,第二层最少有 3 桶,第三层最少有 2 桶,所以至少共有 9 桶.故选 B.
201811月浙江数学学考试题及答案解析

一、选择题(本大题共18小题,每小题3分,共54分。
每小题列出的四个选项中只有一个是符合题目要求的,不选、多选、错选均你不得分。
) 1.已知集合A={1,2,3},B {1,3,4,},则A ∪B=A.{1,3}B.{1,2,3}C.{1,3,4}D.{1,2,3,4} 2.已知向量a=(4,3),则|a|=A.3B.4C.5D.7 3.设θ为锐角,sin θ=31,则cos θ= A.32 B.32 C.36 D.3224.log 241= A.-2 B.-21 C.21D.2 5.下面函数中,最小正周期为π的是A.y=sin xB.y=cos xC.y=tan xD.y=sin 2x6.函数y=112++-x x 的定义域是 A.(-1,2] B.[-1,2] C.(-1,2) D.[-1,2) 7.点(0,0)到直线x +y-1=0的距离是 A.22 B.23 C.1 D.2 8.设不等式组⎩⎨⎧-+-0<420>y x y x ,所表示的平面区域为M ,则点(1,0)(3,2)(-1,1)中在M内的个数为A.0B.1C.2D.3 9.函数f(x )=x ·1n|x |的图像可能是10.若直线l 不平行于平面a ,且a l ⊄则A.a 内所有直线与l 异面B.a 内只存在有限条直线与l 共面C.a 内存在唯一的直线与l 平行D.a 内存在无数条直线与l 相交11.图(1)是棱长为1的正方体ABCD —A1B1C1D1截去三棱锥A1—AB1D1后的几何体,将其绕着棱DD1逆时针旋转45°,得到如图(2)的集合体的正视图为(1) (2) (第11题图)2222 22222222222212.过圆x 2=y 2-2x-8=0的圆心,且与直线x=2y=0垂直的直线方程是 A.2x=y=2=0 B.x=2y-1=0 C.2x=y-2=0 D.2x-y-2=013.已知a,b 是实数,则“|a|<1且|b|<1”是“a 2+b 2<1”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件14.设A ,B 为椭圆2222by a x +=1(a >b >0)的左、右顶点,P 为椭圆上异于A ,B 的点,直线PA ,PB 的斜率分别为k 1k 2.若k 1·k 2=-43,则该椭圆的离心率为 A.41 B.31 C.21D.2315.数列{a n }的前n 项和S n 满足S n =23a n -n ·n ∈N ﹡,则下列为等比数列的是 A.{a n +1} B.{a n -1} C.{S n +1} D.{S n -1} 16.正实数x ,y 满足x+y=1,则yx y 11++的最小值是A.3+2B.2+22C.5D.211 17.已知1是函数f (x )=a x 2+b x +c(a >b >c)的一个零点,若存在实数0x ,使得f (0x ) <0,则f (x )的另一个零点可能是A.0x -3B.0x -21C.0x +23D.0x +2 18.等腰直角△ABC 斜边BC 上一点P 满足CP ≤41CB ,将△CAP 沿AP 翻折至△C ′AP ,使两面角C ′—AP —B 为60°记直线C ′A ,C ′B ,C ′P 与平面APB 所成角分别为a ,β,γ,则 A.a <β<γ B.a <γ<β C.β<a <γ D.γ<a <β 二、填空题(本大题共4小题,每空3分,共15分。
2018年11浙江省普通高中学业水平考试(数学试题及答案)

2017年11月浙江省普通高中学业水平考试数学试题一、选择题(本大题共18小题,每小题3分,共54分。
每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)4、log214= ()5、下列函数中,最小正周期为π的是()6、函数的定义域是()A.(-1,2]B.[-1,2]C.(-1,2)D.[-1,2)7、点(0,0)到直线x+y-1=0的距离是()8、设不等式0,240,x yx y->⎧⎨+-<⎩所表示的平面区域为M,则点(1,0),(3,2),(-1,1)中在M内的个数为()A.0B.1C.2D.39、函数f(x)=x·ln|x|的图象可能是()10、若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B. α内只存在有限条直线与l共面C. α内存在唯一直线与l平行D. α内存在无数条直线与l相交11、图(1)是棱长为1的正方体ABCD-A1B1C1D1截去三棱锥A1-AB1D1后的几何体,将其绕着棱DD1逆时针旋转45°,得到如图(2)的几何体的正视图为()12、过圆x2+y2-2x-8=0的圆心,且与直线x+2y=0垂直的直线方程是()A.2x-y+2=0B.x+2y-1=0C.2x+y-2=0D.2x-y-2=013、已知a,b是实数,则“|a|<1且|b|<1”是“a2+b2<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、填空题(本大题共4小题,每空3分,共15分)19、设数列{a n }的前n 项和为S n ,若a n =2n -1, n ∈N*,则a 1= ,S 3=20、双曲线221916y x -=的渐近线方程是 21、若不等式|2x -a|+|x+1|≥1的解集为R ,则实数a 的取值范围是22、正四面体A -BCD 的棱长为2,空间动点P 满足||PB PC +=2,则AP AD ⋅的取值范 围是三、解答题(本大题共3小题,共31分)23、(本题10分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c 。
2018年11月浙江数学学考试题(含答案)x3

2018年11月浙江省高中学业水平考试数学试题一、选择题1.已知集合{1,2,3,4}A =,{1,3,5}B =,则A B =( )A.{1,2,3,4,5}B.{1,3,5}C.{1,4}D.{1,3}【答案】D【解析】因为{1,2,3,4}A =,{1,3,5}B =,所以{1,3}AB =.2.函数()cos 2f x x =的最小正周期是( ) A.4π B.2π C.π D.2π 【答案】C【解析】()cos 2f x x =,因为2ω=,所以22T ππ==. 3.计算129()4=( ) A.8116 B.32 C.98 D.23【答案】B【解析】1293()42==. 4.直线210x y +-=经过点( )A.(1,0)B.(0,1)C.11(,)22D.1(1,)2【答案】A【解析】把四个选项的横纵坐标代入直线方程210x y +-=中,可知选项A 可使等式成立.5.函数2()log f x x 的定义域是( )A.(0,2]B.[0,2)C.[0,2]D.(0,2)【答案】A【解析】20020x x x -≥⎧⇒<≤⎨>⎩,故函数()f x 的定义域为(0,2].6.对于空间向量(1,2,3)a =,(,4,6)b λ=,若//a b ,则实数λ=( )A.2-B.1-C.1D.2【答案】D【解析】因为//a b ,所以12346λ==,即112λ=,所以2λ=. 7.渐近线方程为43y x =±的双曲线方程是( ) A.221169x y -= B.221916x y -= C.22134x y -= D.22143x y -= 【答案】B 【解析】依题可设双曲线方程为22221x y a b -=,因为渐进线方程为43y x =±,所以43b a =,即22169b a =,只有B 选项221916x y -=符合. 8.若实数x ,y 满足101010x x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则y 的最大值是( )A.1B.2C.3D.4【答案】B【解析】由约束条件101010x x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,作出可行域如图,由图易知y 的最大值为2.9.某简单几何体的三视图(俯视图为等边三角形)如图所示(单位:cm ),则该几何体的体积(单位:3cm )为( )A.18B.【答案】C【解析】该几何体为正三棱柱,其底面积为24S ===3h =,所以体积V Sh ==10.关于x 的不等式13x x +-≥的解集是( )A.(,1]-∞-B.[2,)+∞C.(,1][2,)-∞-+∞D.[1,2]-【答案】C【解析】当1x ≥时,1132x x x x x +-=+-≥⇒≥;当11x -<<时,1113x x x x x +-=+-=≥⇒无解;当1x ≤时,1131x x x x x +-=--+≥⇒≤-;综上可得,2x ≥或1x ≤-.11.下列命题为假命题的是( )A.垂直于同一直线的两个平面平行B.垂直于同一平面的两条直线平行C.平行于同一直线的两条直线平行D.平行于同一平面的两条直线平行【答案】D【解析】平行于同一平面的两条直线除了平行外,还可以异面,可以相交.12.等差数列{}()n a n N *∈的公差为d ,前n 项和为n S ,若10a >,0d <,39S S =,则当n S 取得最大值时,n =( )A.4B.5C.6D.7【答案】C【解析】∵10a >,0d <,∴n a 是递减数列.又∵3993987654763()0S S S S a a a a a a a a =⇒-=+++++=+=,∴760a a +=,67a a >,∴60a >,70a <,∴max 6()n S S =.13.对于实数a 、b ,则“0a b <<”是“1ba <”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】充分性:由0a b <<,得01ba <<,故充分性成立; 必要性:由1ba <,得0ab a >⎧⎨<⎩或0a b a <⎧⎨>⎩,故必要性不成立.所以“0a b <<”是“1ba <”的充分不必要条件.14.已知函数()y f x =的定义域是R ,值域为[1,2]-,则值域也为[1,2]-的函数是()A.2()1y f x =+B.(21)y f x =+C.()y f x =-D.()y f x =【答案】B【解析】分析四个选项可知只有(21)y f x =+是由()y f x =的图象纵坐标不变,横坐标缩小为原来的12之后再将图像向左平移12个单位得到,故(21)y f x =+和()y f x =的值域是相同的. 15.函数2()()a f x x a R x=+∈的图象不可能是( ) A. B.C.D.【答案】A 【解析】当0a =时,函数22()(0)a f x x x x x=+=≠,函数图象可以是B. 当1a =时,函数221()a f x x x x x=+=+,函数可以类似于D. 当1a =-时,221()a f x x x x x =+=-,0x >时,210x x-=只有一个实数根1x =,图象可以是C.所以函数图象不可能是A. 16.若实数a ,b 满足0ab >,则2214a b ab ++的最小值为( ) A.8 B.6 C.4 D.2【答案】C【解析】因为0ab >,所以2211444a b ab ab ab ++≥+≥=,当且仅当214a b ab ab =⎧⎪⎨=⎪⎩,即1a =,12b =时取等号,所以最小值为4. 17.如图,在同一平面内,A ,B 是两个不同的定点,圆A 和圆B 的半径为r ,射线AB 交圆于点P ,过P 作圆A 的切线l ,当1()2r r AB ≥变化时,l 与圆B 的公共的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线【答案】D【解析】设直线l 与圆B 的交点为M ,过点M 作与过点A 平行于l 的直线的垂线,垂足为N ,易知MN PA MB r ===,即点M 到定直线AN 的距离等于其到定点B 的距离,所以点M 的轨迹是抛物线.18.如图,四边形ABCD 是矩形,沿AC 将ADC ∆翻折成AD C '∆,设二面角D AB C '--的平面角为θ,直线AD '与直线BC 所成角为1θ,直线AD '与平面ABC 所成的角为2θ,当θ为锐角时,有( )A.21θθθ≤≤B.21θθθ≤≤C.12θθθ≤≤D.21θθθ≤≤【答案】B【解析】由二面角的最大性与最小角定理可知,答案在A ,B 选项中产生.下面比较1θ和θ的大小关系即可.过D '作平面ABC 垂线,垂足为O ,过O 作OE AB ⊥,垂足为E ,连结D E ',则 D EO θ'=∠可以认为是OE 与平面AD E '所成的线面角,1θ可以认为是OE 与平面AD E '内的AD '所成的线线角,所以1θθ≤,综上,21θθθ≤≤.二、填空题19.已知函数2,0()1,0x f x x x ≥⎧=⎨+<⎩,则(1)f -= ,(1)f = . 【答案】0,2【解析】因为10-<,故(1)110f -=-+=;又10>,故(1)2f =. 20.已知O 为坐标原点,B 与F 分别为椭圆22221(0)x y a b a b+=>>的上顶点与右焦点,若OB OF =,则该椭圆的离心率是 .【解析】因为B ,F 为椭圆22221(0)x y a b a b+=>>的上顶点和右焦点,故设OB b =,OF c =,又OB OF =,所以b c =,因为a a ==,所以椭圆的离心率2c b e a a ====. 21.已知数列{}()n a n N *∈满足:11a =,12n n n a a +⋅=,则2018a = .【答案】10092【解析】1122n n n a a +++=,12n n n a a +=,22n na a +=,数列21{}n a -和2{}n a 均为等比数列,且公比均为2,首项分别是121,2a a ==,所以数列{}n a 的通项为,故100920182a =.22.如图,O 是坐标原点,圆O 的半径为1,点(1,0)A -,(1,0)B ,点P ,Q 分别从点A ,B 同时出发,在圆O 上按逆时针方向运动,若点P 的速度大小是点Q 的两倍,则在点P 运动一周的过程中,AP AQ ⋅的最大值为 .【答案】2【解析】设(cos ,sin )([0,])Q θθθπ∈,由P 点的速度是点Q 的两倍,即(cos 2,sin 2)P θθ--,(cos 21,sin 2)(cos 1,sin )AP AQ θθθθ⋅=-+-⋅+(cos 21)(cos 1)(sin 2)sin θθθθ=-+++-cos2cos cos cos21sin 2sin θθθθθθ=-+-+-cos(2)cos cos21θθθθ=--+-+cos 21θ=-+22sin 2θ=≤.三、解答题23.在ABC ∆中,内角A ,B ,C 所对的边分别是a ,b ,c ,且222b a c ac =+-. (Ⅰ)求角B 的大小;(Ⅱ)若2a c ==,求ABC ∆的面积;(Ⅲ)求sin sin A C +的取值范围.【答案】(Ⅰ)60︒; ; (Ⅲ). 【解析】(Ⅰ)由222cos 2a c b B ac +-=,可知1cos 2B =,所以60B =︒. (Ⅱ)由(Ⅰ)得60B ∠=︒,又2a c ==,所以11sin 22sin 6022ABC S ac B ∆==⨯⨯⨯︒=(Ⅲ)由题意得3sin sin sin sin(120)sin 30)2A C A A A A A +=+︒-=+=+︒,因为0120A ︒<<︒,所以3030150A ︒<+︒<︒30)A <+︒≤值范围是2. 24.已知抛物线2:4C y x =的焦点是F ,准线是l .(Ⅰ)写出F 的坐标和l 的方程;(Ⅱ)已知点(9,6)P ,若过F 的直线交抛物线C 于不同的两点A ,B (均与P 不重合),直线PA ,PB 分别交l 于点M ,N .求证:MF NF ⊥.【答案】(Ⅰ)(1,0)F ,1x =-; (Ⅱ)略.【解析】(Ⅰ)因为抛物线24y x =是焦点在x 轴正半轴的标准方程,所以2p =,所以焦点为(1,0)F .准线方程为1x =-.(Ⅱ)设11(,)A x y ,22(,)B x y (16y ≠±且26y ≠±),AB 直线方程为1x my =+(m 是实数),代入24y x =,得2440y m y --=,于是124y y m +=,124y y ⋅=-.由(9,6)P ,得146PA k y =+,直线PA 的方程为146(9)6y x y -=-+,令1x =-,得1164(1,)6y M y --+,同理可得2264(1,)6y N y --+,所以12121296()41(6)(6)F N F M MF NF F M F N y y y y y y y y k k x x x x y y ---++⋅=⋅==---++,故MF NF ⊥. 25.已知函数()()a f x x a R x =+∈. (Ⅰ)当1a =时,写出()f x 的单调递增区间(不需写出推证过程);(Ⅱ)当0x >时,若直线4y =与函数()f x 的图象相交于A ,B 两点,记()AB g a =,求()g a 的最大值;(Ⅲ)若关于x 的方程()4f x ax =+在区间(1,2)上有两个不同的实数根,求实数a 的取值范围.【答案】(Ⅰ)[1,0)-,[1,)+∞; (Ⅱ)4;(Ⅲ)15()22--. 【解析】(Ⅰ)()f x 的单调递增区间为[1,0)-,[1,)+∞(Ⅱ)因为0x >,所以(ⅰ)当4a >时,()y f x =的图象与直线4y =没有交点;(ⅱ)当4a =或0a =时,()y f x =的图象与直线4y =只有一个交点;(ⅲ)当04a <<时,0()4g a <<;(ⅳ)当0a <时,由4a x x +=,得240x x a -+=,解得2A x =由4a x x+=-,得240x x a ++=,解得2B x =-所以()4A B g a x x =-=,故()g a 的最大值是4.(Ⅲ)要使关于方程4(12)()a x ax x x +=+<<*有两个不同的实数根1x ,2x ,则0a ≠,且1a ≠±.(ⅰ)当1a >时,由()*得2(1)40a x x a -+-=,所以1201a x x a =-<-,不符合题意; (ⅱ)当01a <<时,由()*得2(1)40a x x a -+-=,其对称轴221x a =>-,不符合题意; (ⅲ)当0a <,且1a ≠-时,由()*得2(1)40a x x a +++=,又因为1201a x x a =>+,所以1a <-.所以函数a y x x=+在(0,)+∞是增函数. 要使直线4y ax =+与函数a y x x =+图象在(1,2)内有两个交点,则(1)11f a a =+=--,只需14164(1)0a a a a -->+⎧⎨-+>⎩,解得1522a --<<-.综上所述,实数a 的取值的范围为15()22--.。
2018年11月浙江省普通高中学业水平模拟考试数学仿真模拟试题03(考试版)

数学试题 第1页(共4页) 数学试题 第2页(共4页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________绝密★启用前|2018年11月浙江省普通高中学业水平考试数学仿真模拟试题03考生须知:1.本试题卷分选择题和非选择题两部分,共4页,满分100分,考试时间80分钟。
2.考生答题前,务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
3.选择题的答案须用2B 铅笔将答题纸上对应题目的答案标号涂黑,如要改动,须将原填涂处用橡皮擦净。
4.非选择题的答案须用黑色字迹的签字笔或钢笔写在答题纸上相应区域内,作图时可先使用2B 铅笔,确定后须用黑色字迹的签字笔或钢笔描黑,答案写在本试题卷上无效。
选择题部分一、选择题(本大题共18小题,每小题3分,共54分,每小题列出的四个选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.已知集合M ={x ∈Z |–1≤x ≤1},N ={x |x 2=x },则M ∪N = A .{–1} B .{–1,1}C .{0,1}D .{–1,0,1}2.函数f (x )=24x-+ln (2x +1)的定义域为 A .[–12,2] B .[–12,2) C .(–12,2] D .(–12,2) 3.如果ac <0,bc <0,那么直线ax +by +c =0不经过 A .第一象限B .第二象限C .第三象限D .第四象限4.双曲线2222x y a b-=1(a >0,b >0)的离心率为3,则其渐近线方程为A .y =±2xB .y =±3xC .y =±2x D .y =±3x 5.若x log 34=1,则4x+4–x =A .1B .2C .83D .1036.已知036020x y x y x y -≥⎧⎪--≤⎨⎪+-≥⎩,则z =22x +y 的最小值是A .1B .16C .8D .47.将一个直角边长为1的等腰直角三角形绕其一条直角边旋转一周所形成几何体的侧面积为 A .4πB .2πC .22πD .2π8.已知3sin(30)α︒+=,则cos (60°–α)的值为 A .12B .12-C .3D .–3 9.已知数列112,314,518,7116,…则其前n 项和S n 为 A .n 2+1–12n B .n 2+2–12nC .n 2+1–112n -D .n 2+2–112n - 10.圆心在y 轴上,半径为1,且过点(1,3)的圆的方程为A .x 2+(y +3)2=1B .x 2+(y –3)2=1C .(x –3)2+y 2=1D .(x +3)2+y 2=111.如图,在平行六面体ABCD –A 1B 1C 1D 1中,M 为A 1C 1,B 1D 1的交点.若AB =a ,AD =b ,1AA =c ,则向量BM =A .–12a +12b +cB .1122++a b cC .–11–22a b +cD .11–22a b +c12.不等式|x –1|+|x –2|≥3的解集是A .(–∞,1]∪[2,+∞)B .[1,2]C .(–∞,0]∪[3,+∞)D .[0,3]13.已知函数f (x +1)为偶函数,且f (x )在(1,+∞)上单调递增,f (–1)=0,则f (x –1)>0的解集为A .(–∞,0)∪(4,+∞)B .(–∞,–1)∪(3,+∞)C .(–∞,–1)∪(4,+∞)D .(–∞,0)∪(1,+∞)14.设a ,b ∈R ,下列四个条件中,使a <b 成立的充分不必要条件是A .a <b +1B .a <b –1C .a 2<b 2D .a 3<b 315.已知某几何体的三视图如图所示,图中每个小正方形的边长为1,则该几何体的体积为数学试题第3页(共4页)数学试题第4页(共4页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………A.2 B.8 3C.103D.316.已知椭圆22xa+22yb=1(a>b>0)的左,右焦点分别为F1(–c,0),F2(c,0),过点F1且斜率为1的直线l交椭圆于点A,B,若AF2⊥F1F2,则椭圆的离心率为A.212-B.21-C.22D.1217.已知函数f(x)=–x2+4x+a在区间[–3,3]上存在2个零点,求实数a的取值范围A.(–4,21)B.[–4,21]C.(–4,–3] D.[–4,–3]18.如图,在正三棱柱ABC–A1B1C1中,AB=1,若二面角C–AB–C1的大小为60°,则点C到平面C1AB的距离为A.34B.12C.3D.1非选择题部分二、填空题(本大题共4小题,每空3分,共15分)19.函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π2)的部分图象如图所示,则φ=____________;ω=____________.20.设向量a=(1,4),b=(–1,x),c=a+3b,若a∥c,则实数x的值是____________.21.已知△ABC的三内角A、B、C所对的边分别为a、b、c,若a2=b2+c2–2bc sin A,则内角A的大小是____________.22.函数8()21f x x mx=+--,若当x∈(1,+∞)时f(x)≥0恒成立,则m的取值范围是____________.三、解答题(本大题共3小题,共31分)23.(本小题满分10分)已知{a n}是公差为1的等差数列,且a1,a2,a4成等比数列.(1)求{a n}的通项公式;(2)求数列{2nna}的前n项和.24.(本小题满分10分)已知O为坐标原点,抛物线y2=–x与直线y=k(x+1)相交于A,B两点.(1)求证:OA⊥OB;(2)当△OAB10k的值.25.(本小题满分11分)已知函数f(x)=x|x–a|,(1)若函数y=f(x)+x在R上是增函数,求实数a的取值范围;(2)若对于任意x∈[1,2],函数f(x)的图象恒在直线y=1的下方,求实数a的取值范围;(3)设a≥2,求函数f(x)在区间[2,4]上的值域.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.对于实数 a,b,则“a<b<0”是“ A.充分不必要条件 C.充分必要条件
b 1 ”的 a
B.必要不充分条件 D.既不充分也不必要条件
14.已知函数 y=f(x)的定义域是 R,值域为[-1,2],则值域也为[-1,2]的函数是 A. y 2 f x 1 15.函数 f x x 2 B. y f 2 x 1 C. y f x D. y f x
x 1≤ 0 , 8.若实数 x,y 满足 x y 1≥ 0 , ,则 y 的最大值是 x y 1≥ 0 ,
A.1
B.2
C.3
D.4
9.某简单几何体的三视图(俯视图为等边三角形)如图所示(单位:cm),则该几何体的体积(单位:cm3) 为
1
A.18
B. 6 3
1 AB )变化时,l 与圆 B 的公共点的轨迹是 2
C.双曲线的一支 D.抛物线
(第 17 题图) 18.如图,四边形 ABCD 为矩形,沿 AB 将△ADC 翻折成 △AD ' C .设二面角 D ' AB C 的平面角为 ,直 线 AD ' 与直线 BC 所成角为 1 ,直线 AD ' 与平面 ABC 所成角为 2 ,当 为锐角时,有 A. 2 ≤ 1 ≤ B. 2 ≤ ≤ 1 C. 1 ≤ 2 ≤ D. ≤ 2 ≤ 1
a ( a R )的图像不可能是 x
2
A.
ห้องสมุดไป่ตู้
B.
C.
D.
16.若实数 a,b 满足 ab>0,则 a 2 4b2 A.8 B.6 C.4 D.2
1 的最小值为 ab
17.如图,在同一平面内,A,B 为两个不同的定点,圆 A 和圆 B 的半径都为 r,射线 AB 交圆 A 于点 P,过 P 作圆 A 的切线 l,当 r( r ≥ A.圆 B.椭圆
21.已知数列 an n N * 满足: a1 1, an 1 2n ,则 a2018 ▲
.
22.如图,O 是坐标原点,圆 O 的半径为 1,点 A(-1,0),B(1,0),点 P,Q 分别从点 A,B 同时出发, 圆 O 上按逆时针方向运动.若点 P 的速度大小是点 Q 的两倍,则在点 P 运动一周的过程中, AP AQ 的最大 值是 ▲ .
6.对于空间向量 a=(1,2,3),b=(λ,4,6).若 a ∥b ,则实数λ= A.-2 B.-1 C.1 D.2
4 7.渐近线方程为 y x 的双曲线方程是 3
A.
x2 y 2 1 16 9
B.
x2 y 2 1 9 16
C.
x2 y 2 1 3 4
D.
x2 y 2 1 4 3
(第 22 题图) 三、解答题(本大题共 3 小题,共 31 分.) 23.(本题 10 分)在△ABC 中,内角 A,B,C 所对的边分别为 a,b,c,且 b2 a 2 c 2 ac , (Ⅰ)求角 B 的大小; (Ⅱ)若 a=c=2,求△ABC 的面积; (Ⅲ)求 sinA+sinC 的取值范围. 24.(本题 10 分)已知抛物线 C: y 2 4 x 的焦点是 F,准线是 l, (Ⅰ)写出 F 的坐标和 l 的方程; (Ⅱ)已知点 P(9,6),若过 F 的直线交抛物线 C 于不同两点 A,B(均与 P 不重合),直线 PA,PB 分 别交 l 于点 M,N.求证:MF⊥NF.
2018 年 11 月浙江省高中数学学业水平测试卷
一、选择题(本大题共 18 小题,每小题 3 分,共 54 分。每小题列出的四个选项中只有一个是符合题目要求 的,不选、多选、错选均不得分。) 1.已知集合 A={1,2,3,4},B={1,3,5},则 A∩B= A.{1,2,3,4,5} B.{1,3,5} C.{1,4} 2.函数 f x cos 2 x 的最小正周期是 A. D.{1,3}
C. 3 3
D. 2 3
(第 9 题图) 10.关于 x 的不等式 x x 1 ≥ 3 的解集是 A. , 1 B. 2, C. , 1 ∪ 2, D.[-1,2]
11.下列命题中为假命题的是 A.垂直于同一直线的两个平面平行 B.垂直于同一平面的两条直线平行 C.平行于同一直线的两条直线平行 D.平行于同一平面的两条直线平行 12.等差数列 an n N * 的公差为 d,前 n 项和为 S n ,若 a1 0, d 0, S3 S9 ,则当 S n 取得最大值时,n= A.4 B.5 C.6 D.7
4
(第 24 题图) 25.(本题 11 分)已知函数 f x x
a a R . x
(Ⅰ)当 a=1 时,写出 f x 的单调递增区间(不需写出推证过程); (Ⅱ)当 x>0 时,若直线 y=4 与函数 f x 的图像交于 A,B 两点,记 AB g a ,求 g a 的最大值; (Ⅲ)若关于 x 的方程 f x ax 4 在区间(1,2)上有两个不同的实数根,求实数 a 的取值范围.
π 4
B.
1
π 2
C.π
D.2π
9 2 3.计算 4
A.
81 16
B.
3 2
C.
9 8
D.
2 3
4.直线 x 2 y 1 0 经过点 A.(1,0) B.(0,1)
1 1 C. , 2 2
1 D. 1, 2
5.函数 f x 2 x log 2 x 的定义域是 A. 0, 2 B. 0, 2 C.[0,2] D.(2,2)
(第 18 题图)
二、填空题(本大题共 4 小题,每空 3 分,共 15 分)
2, x ≥ 0 , 19.已知函数 f x 则 f 1 x 1, x 0 ,
▲
; f 1
▲
.
3
20.已知 O 为坐标原点,B 与 F 分别为椭圆 的离心率是 ▲ .
x2 y 2 1 a b 0 的上顶点与右焦点,若 OB OF ,则该椭圆 a b